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Figure S1. (a) Photograph of the OptiMax reactor setup with in-situ probes: Raman, ATR-

FTIR, temperature, and pH, (b) a close-up view of the dense slurry studied in this work. 

 
Section S1. Design of Experiments 

The experimental space was designed by creating component-wise lower and upper bounds 

based on reported nuclear waste simulants.1,2 Species are bounded by concentrations expected in 

nuclear waste streams at the Hanford Waste Treatment Plant. Individual experiments were 

conducted by randomly sampling from this experimental space using a pseudo-random uniform 

distribution in MATLAB 2021a. Experiments were performed in batches ranging from 6 to 12 

step-wise samples. 48 unique samples (at different concentrations) were collected for ATR-FTIR, 

and 66 unique samples (at different concentrations) were collected for Raman. Verification of the 

independence of the species are shown in Section S9. When silicates were present, solid particles 

deposited on the ATR-FTIR probe during data collection. To eliminate the spectral bands caused 

by depositing solids, the ATR-FTIR probe was cleaned before every measurement containing 

silicates to ensure reliable spectra. Every sample was allowed to equilibrate before the ATR-FTIR 
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probe was cleaned and a measurement was taken. Data showing this deposition is provided in 

Section S2. All solid species are nominally 325-mesh or less (corresponding to a diameter of 45 

µm or less). The ranges of added concentrations are listed below for insoluble and partially soluble 

species in Tables S1 and S2, and soluble species in Table S3. The solubility for these species in 3 

m NaOH is reported in Section S6. 

 

Table S1 - Range of solid concentrations tested in experiments by addition of glass forming 

chemicals (insoluble components in 3 m NaOH). 

Species Formula 
Maximum Solid 
Concentration (g / 
kg water) 

Minimum Solid 
Concentration (g / 
kg water) 

Kyanite Al2SiO5 99.6 5.9 

Wollastonite CaSiO3 99.8 0 

Olivine Mg2SiO4 45.3 0 

Silica SiO2 249.9 18 

Zircon ZrSiO4 42.4 0 

Hematite Fe2O3 9.4 0 

Rutile TiO2 1.2 0 

Tin Oxide SnO2 12.7 0 

Total (Single Experiment) - 401.8 53.1 

 

Table S2 - Range of solids composing glass forming chemicals with intermediate solubility 

measured in 3 m NaOH. 

Species Formula 
Maximum Addition (g / kg 
water) 

Minimum Addition (g / kg 
water) 

Vanadium Pentoxide V2O5 31.9 0 

Zinc Oxide ZnO 22.5 0 

Sucrose C12H22O11 53.7 4.7 
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Table S3 - Range of dissolved anions present in the nuclear waste simulants studied (soluble 

components in 3 m NaOH). 

Species Formula 
Maximum 
Molality (mol / kg 
water) 

Minimum 
Molality (mol / kg 
water) 

Hydroxide OH- 2.98 2.94 

Nitrate NO3
- 1.44 0.75 

Nitrite NO2
- 1.16 0.56 

Soluble 
Carbonate 

CO2- 0.96 0.14 

Sulfate SO4
2- 0.13 0.03 

Borate B(OH)4
- 2.84 0.15 

Phosphate PO4
3- 0.07 0.02 

Oxalate C2O4
2- 0.01 0.00 

Acetate C2H3O2
- 0.19 0.02 

Sucrose C12H22O11 0.24 0.01 

 

Section S2. ATR-FTIR Probe Tip Cleaning 

The silicates (silica, kyanite, wollastonite, olivine, and zircon) were observed to deposit on 

the ATR-FTIR probe at the basic conditions studied. This deposition appeared as a broad 

combination of peaks centered around 1100 cm-1 and spreading from 1000 cm-1 to 1200 cm-1. In 

Fig. S3a, this peak can be seen as it appears in the IR spectrum and in Fig. S3b, images of the solid 

substance on part of the probe tip. Notably, the solids provide a peak but do not interfere with 

quantification of the solution phase (as shown by the unaltered water peak centered at 1640 cm-1).  
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Figure S2. a) Deposition of solids on ATR-FTIR probe tip when placed in a 3 m NaOH 

solution with 10 g silica/kg solvent suspended silica, and b) image of the probe tip showing 

gradual buildup on the probe tip. 

 

While the solid deposition was not observed to interfere with the solution phase 

measurements and could potentially be subtracted as a baseline in practice, the experimental 

procedure included cleaning the probe tip before every measurement to minimize unanticipated 

sources of variation and to ensure experimental consistency. Because of the slow buildup of solids 

on the probe tip, measurements were taken with 15 s scan time and immediately after reinserting 

probe into the solution. Detection and removal of solid contributions may be achieved through 

computational approaches such as blind source separation and Indirect Hard Modeling.7,8 In 

addition, different materials or probe geometries may result in a less favorable surface for 

deposition. Solids were not found to attach to the Raman probe tip during experiments. 

 

Section S3. First Derivative with Savitzky-Golay Filtering 

 Optionally, the first derivative could be taken of Raman spectra to minimize baseline shifts 

caused by fluorescence. This was done as a proof-of-concept with a Savitzky-Golay filter with a 

second order polynomial, 19 filter points, and a first derivative. For the noisy spectra utilized in 

this work, 11 filter points or fewer resulted in noisy derivative spectra. The spectra after filtering 

are shown below in Fig. S3 and quantification results are shown in Table S4. As can be seen in 

Table S4, quantification is improved after Savtizky-Golay filtering for wollastonite, olivine, silica, 

and zircon. Kyanite quantification is worse after filtering. These results show promise for the 
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Savitzky-Golay filter to preprocess noisy and varied Raman spectra for more accurate 

quantification. 

 

Figure S3. All Raman spectra of training and testing data when Savitzky-Golay filter has 

been applied. 

 

Table S4. R2 value of predictions for quantified insoluble species with and without Savitzky-

Golay filtering 

Concentrations (g/kg solvent)  Kyanite Wollastonite Olivine Silica Zircon 

R2 (No Filtering) 0.932 0.912 0.527 0.885 0.837 

R2 (Filtering, 1st Derivative) 0.912 0.916 0.770 0.905 0.863 

 

Section S4. Experimental Replicates 

 A total of 34 replicate measurements were collected using slurries that were mixed and 

measured at least 11 (and no more than 15) days after the original data appearing in the main text 

(Fig. 4b). As can be seen in Fig. S4a, there is a baseline offset in some measurements, with the 

greatest difference in a measurement being 1495 counts (Fig. S4b). The average difference 

between the original measurement and its replicate across the 34 measurements is 239.6 counts (or 

1.24% difference from original measurements). The difference between replicate measurements 

also shows high-frequency noise in addition to the baseline offset. The replicate data were also 

quantified via a PLSR model with and without Savitzky-Golay spectra preprocessing, shown in 

Figure S5. Original measurements only were used for model training. The Savitzky-Golay 

preprocessing appears to be more precise since a vertical offset appears in the predictions of the 
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raw spectra. This result agrees with the offset that can be seen in the replicate spectra. Based on 

these data, we conclude that both our experimental methodology and our Raman apparatus are 

robust to within a relatively small baseline offset for experimental replicates.  

 

Figure S4. (a) Original spectra and replicate spectra collected for 34 replicate measurements 

ranging from 0 to 25 wt% solids, and (b) the difference between original and replicate 

spectra.  
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Figure S5. Parity plots showing PLSR predictions of original and replicate (a-e) raw spectra 

and (f-j) spectra passed through a 19-point Savitzky-Golay filter.   

 

Section S5. Partial Least Squares Regression (PLSR) 

Given a training data set, the relationship between inputs (𝑋௧௥) and outputs (𝑌௧௥) can be 

used to develop a predictive model for new data. In this case, 𝑋௧௥ ∈ ℝே×௤ are spectral data and 

𝑌௧௥ ∈ ℝே×௣ are concentration data with 𝑁 representing the number of training samples, 𝑞 

representing the features (discrete wavenumbers) in a single spectrum, and 𝑝 representing the 

number of components (independent species) included in the calibration model. Motivated by the 

linearity of the Beer-Lambert Law and the analogous linearity of Raman Spectroscopy3, a linear 

calibration model between 𝑋௧௥ and 𝑌௧௥ can be represented by 𝑋௧௥𝐵 = 𝑌௧௥ where 𝐵 ∈ ℝ௤×௣ is a 

matrix of parameters. 

Partial Least Squares Regression4,5 is a projection-based based model that reduces the 

dimension of the input space by identifying underlying latent variables, Λ:  

𝑋௧௥𝑃 =  𝛬௧௥ (S1) 

where 𝑃 ∈ ℝ௤×ௗ is a projection matrix and 𝑑 is the reduced dimension (𝑑 < 𝑞). 𝛬௧௥ ∈ ℝே×ௗ 

represents the matrix of latent variables for the training set. Multiple least-squares regression is 



 9

performed on the reduced set of latent variables to identify the calibration model. The objective 

function for the calibration model can be described by: 

minimize     ฮ𝛬௧௥𝑏෨௝ − 𝑦௝
௧௥ฮ

ଶ

ଶ
      by varying 𝑏෨௝ ∈ ℝௗ      for  𝑗 = 1, … , 𝑝 (S2) 

where 𝑃𝑏෨௝ = 𝑏௝ and the minimized objective function is the squared error of the reduced variable 

(latent) model (𝛬௧௥𝑏෨௝) and training output data (𝑦௝
௧௥). The specific PLSR algorithm used was a 

scikit-learn implementation of PLS-2.  

Four error metrics are used to quantify the quantitative accuracy of the spectra-to-

composition PLSR models. These are Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), the one-sided 95% Confidence Interval (CI (95%)), and Mean Percent Error (MPE). The 

metrics are defined below in Equations S3-S6 for single species: 

RMSE = ඩ෍
(𝑦௜ − 𝑦ො௜)ଶ

𝑁

ே

௜ୀଵ

 

 

(S3) 

 

MAE = ෍
|𝑦௜ − 𝑦ො௜|

𝑁

ே

௜ୀଵ

 
(S4) 

CI (95%) = 𝑧
𝑠

√𝑁
  

(S5) 

MPE = ෍
|𝑦௜ − 𝑦ො௜|

𝑦௜

ே

௜ୀଵ

× 100% 
 

(S6) 

where 𝑦௜ is the true concentration in experiment i, 𝑦ො௜ is the predicted concentration in experiment 

i, N is the total number of experiments, s is the standard deviation of measured concentrations, and 

z is the confidence level value (±1.96 for 95%).  

 Training and Testing datasets are determined using a leave-one-out cross validation 

scheme. A single sample (test spectra) is estimated using a PLSR model trained on all other 

samples (training spectra), and then the process is repeated. Minimum Akaike Information 

Criterion (AIC) was used for determining the number of latent variables in each PLSR model.6 
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The Raman PLSR quantification model was determined to use 10 latent variables, while the ATR-

FTIR PLSR quantification model was determined to use 15 components. 

 
 

 

Section S6. Solubility of Solid GFC’s in Alkaline Media 

The spectra-to-composition model for solids is calibrated using measured addition weights 

of GFC mixtures to 3 m NaOH. An assumption underlying gravimetric calibration of the solid 

phase is that insignificant amounts of solids dissolve. Therefore, insignificant solubility of the 

target solids must be established before performing Raman measurements. As solid GFCs are 

composed of various silicates and oxides, the solubilities of these GFC-constituting compounds 

were determined experimentally due to limited reported data at high pH for many of the studied 

components. Approximately 5 g of GFCs were added to a 3 m NaOH solution (pH > 13) and the 

resulting slurry was stirred using a magnetic stirrer for 10 days. The solution-phase concentration 

of elemental species was monitored using inductively coupled plasma (ICP) spectroscopy. Fig. S6 

depicts the solution phase concentration profiles of various elemental species undergoing 

dissolution in alkaline medium for a particular GFC mixture (GFC-1). The composition of GFC-1 

along with the amount of each dissolved elemental species, determined using ICP, along with their 

source compound, is shown in Table S5. While the data obtained from ICP is elemental (such as 

vanadium, boron, zinc etc.), Table S5 shows the concentration of the respective molecular 

compounds (such as vanadium pentoxide, boric acid, zinc oxide etc.) inferred from the ICP 

analysis. Comparison between “dissolved” and “total” amounts provide a measure of the solubility 

of each component. 
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Table S5. Dissolved solids estimated from ICP measurements (± 5%) after ten days of dissolution, and total solids estimated 

from gravimetric measurements (± 0.2%); both given in (µg / g sample). 

 

Elemental 

species 
Al Ca Mg Si Zr Fe Ti Sn Zn B Li V 

Source Kyanite Wollastonite Olivine Silica Zircon Hematite Rutile 
Tin 

Oxide 

Zinc 

Oxide 

Boric 

Acid 

Lithium 

Carbonate 

Vanadium 

Pentoxide 

Chemical 

formula 
Al2SiO5 CaSiO3 Mg2SiO4 SiO2 ZrSiO4 Fe2O3 TiO2 SnO2 ZnO H3BO3 Li2CO3 V2O5 

GFC-1 

Dissolved 

(ICP) 

335 

 

398 

 
- 

518 

 
- - - 

3 

 

828 

 

18273 

 
- 

13080 

 

GFC-1 

Total 

(Mass) 

33024 34885 - 34652 - - - 7907 930 18745 - 12791 

GFC-2 

Dissolved 

(ICP) 

118 

 

88 

 
 

610 

 
   

2 

 

5219 

 

14790 

 

16309 

 

11559 

 

GFC-2 

Total 

(Mass) 

8874 8968 - 78731 - - - - 6986 13594 15388 10384 
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The concentrations of all species were monitored for 10 days to determine which species 

constituting GFCs were highly soluble. According to the ICP results, a steady state was achieved 

within a day for all species except for silicon, whose solution concentration after 10 days was 

found to be 150 µg/g solution (Fig. S2). The dissolution of silicon does not significantly affect the 

amount of suspended undissolved silicate species; less than 0.15% of all molecules containing 

silicon dissolve in GFC-1 over 10 days, which is less than the precision of the gravimetric 

measurement. Vanadium (vanadium pentoxide) displayed the highest concentration (Table S5), 

followed by zinc (zinc oxide), lithium (lithium carbonate), and boron (boric acid). The results in 

Table S5 indicate that the solution was undersaturated for vanadium and lithium, as complete 

dissolution of their corresponding source compounds was observed. For compounds such as zinc 

oxide, the solution appeared to have reached saturation, as the dissolved amount was less than the 

total amount added in solution. Furthermore, the solubilities at basic conditions are considered 

negligible for aluminum (kyanite), calcium (wollastonite), and tin (tin oxide). Notably, the poor 

solubility of elemental silicon bounds the dissolution of the silicates in GFC-1 (kyanite, 

wollastonite, and silica) to a combined 150 (µg dissolved silicon /g sample) over 10 days for the 

solutions tested.  

 

Figure S6. ICP-measured solution concentrations of various elemental species constituting 

GFC-1 mixture in a 3 m NaOH solution: (a) vanadium (blue dotted line), boron (pink dashed 

line), zinc (green dash-dotted line), (b) calcium (brown dotted line), silicon (purple dashed 

line), aluminum (orange dashed-dotted line), and tin (yellow solid line).  
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Figure S7. (a) FTIR and baseline corrected (b) Raman spectra of metal oxides GFC 

components in a basic 3 m NaOH solution. (i) Rutile (TiO2), (ii) Zinc oxide (ZnO), (iii) Tin 

oxide (SnO2), and (iv) Hematite (Fe2O3). The Raman peaks corresponding to the solids have 

been marked with an ‘*’ and their corresponding wavenumbers have been listed. 

 
Section S7. Carbonate Solubility Model 

The carbonate anion has two sources in the studied slurries: sodium carbonate (from waste 

simulants) and lithium carbonate (from solid GFCs) as indicated by Eqn. S7. A single peak, 

corresponding to CO3
2-, is shared by both components in FTIR. Experiments confirm that CO3

2- 

anions in solution contributed from either salt are identical. Given only ATR-FTIR spectra as the 

model input, predictions cannot be made that differentiate the contributions of sodium carbonate 

and lithium carbonate: only their sum total. However, sodium carbonate and lithium carbonate 

have different solubilities at the conditions tested. In the studied system, the experimental 

solubility of lithium carbonate is exceeded, limiting a gravimetric-based calibration procedure. 

[COଷ
ଶି](௔௤) = [NaଶCOଷ]ௗ௜௦௦௢௖௜௔௧௘ௗ + [LiଶCOଷ]ௗ௜௦௦௢௖௜௔௧௘ௗ 

[NaଶCOଷ]ௗ௜௦௦௢௖௜௔௧௘ௗ = [NaଶCOଷ]௔ௗௗ௘ௗ 

[LiଶCOଷ]ௗ௜௦௦௢௖௜௔௧௘ௗ ≠ [LiଶCOଷ]௔ௗௗ௘ௗ 

 

(S7) 

Because the PLSR model calibration requires knowledge of the amount of total carbonate 

dissolved, a solubility model was used to predict the amount of dissolved lithium carbonate (as 

observed by our ATR-FTIR probe). In lieu of a more complete dissolution model (accounting for 

all present species), lithium carbonate solubility was estimated by a ternary system comprised of 

sodium carbonate, lithium carbonate, and 3 m sodium hydroxide solution (NaOH and H2O). 
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However, the dissolution of lithium carbonate did not have a significant trend in the process-

relevant ranges of sodium carbonate (0.1‒1 m). Therefore, a constant lithium carbonate solubility 

of 0.304 m (the pure component solubility of lithium carbonate in a 3m sodium hydroxide solution 

at 25 ⁰C) was applied to training and testing data for the PLSR model where [LiଶCOଷ]௔ௗௗ௘ௗ >

[LiଶCOଷ]௦௢௟௨௕௟௘. This resulted in the application of the solubility model substitution in 17 of 48 

FTIR samples. 

The effect of the solubility model was tested in Fig. S8. Use of the solubility model (Fig. 

S8a) improves the PLSR model performance over quantification lacking a solubility model (Fig. 

S8b) in terms of both R2 and visual fit. This indicates that the constant solubility model better 

matches the data (Fig. S8a) than an assumption of complete dissolution (Fig. S8b).  

 

Figure S8. a) Parity plot showing quantification of carbonate with solubility model applied 

to concentration data, and b) parity plot showing quantification of carbonate with no 

solubility model applied. 

 

Section S8. Quantification Model Residuals  

Distribution of residuals are shown in Fig. S9. Due to the comparatively little sulfate 

included in these waste simulants, low molality quantification may be hindered by detection limits 

of sulfate with our ATR-FTIR probe. The calculated LOD is 0.01 mol/kg solvent with a sulfate 

reference and 12 repeated measurements. Limit of detection was calculated using the method 

described by Harris.9 From Fig. S9 we can see that the samples with lower sulfate concentration 

are close to the limit of detection. In addition, the limit of detection may be further impacted by 

the overlapping borate peak in all samples, though this is not accounted for in the calculated limit 
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of detection. For this reason, signal-to-noise ratio may become more important for low-

concentration analytes that have overlapping spectral signatures, such as sulfate. 

 

Figure S9. Residual plots of soluble anion quantification using ATR-FTIR spectra input into 

a PLSR model with 15 latent variables for a) nitrate, b) nitrite, c) carbonate, d) sulfate, and 

e) borate. 

 

From residual plots for solids (Fig. S10), patterned residuals can be seen at high solids 

concentrations for all quantified silicates. This might indicate that a PLSR model does not 

adequately model the relationships between inputs (spectra) and outputs (concentrations) at higher 

slurry concentrations. Fig. S10 also suggests the nonlinear behavior may not be described by a 

single function, which would make model corrections component-specific in this regime. For 

example, the zircon residuals appear to undergo a transition around 25 g solid/kg solvent, where 

the model begins to underpredict solids concentrations. In contrast, kyanite appears to undergo an 

analogous transition around 60 g solid/kg solvent. Further analysis is limited by model noise 

obscuring residual trends. 
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Figure S10. Residual plots of insoluble silicate quantification using Raman spectra input into 

a PLSR model with 10 latent variables for a) kyanite, b) wollastonite, c) olivine, d) silica, and 

e) zircon. 

Section S9. Independence of Chemical Species in Dataset 

Experiments were designed to ensure the components of the dataset was sufficiently 

independent of all other components. Without sufficient independence between variables, a model 

may produce unrealistically good quantification. Spurious correlation between variables becomes 

a greater challenge when working with a high dimensional input space (202 and 3101 features for 

ATR-FTIR and Raman spectra, respectively), high dimensional output space (5 quantified 

components for each spectroscopy), and a limited sample space (48 and 66 samples, respectively). 

An investigation of correlations between outputs (concentration) was performed. The coefficient 

of determination (the square of correlation, commonly seen as r2) was used to account for large 

magnitude correlations. Fig. S9 shows the coefficient of determination of the components. An r2 

value of 1 is expected on the diagonal, because variables are perfectly correlated with themselves. 
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Figure S11. Coefficient of determination plots for five quantified insoluble species (a) and 

five quantified solution components (b).  

 

The heatmaps in Fig. S11 show the correlation between species for the dataset used in this 

work. To test the impact of data correlation, two PLSR models were constructed, one 

corresponding to quantified solids (kyanite, Wollastonite, olivine, silica, and zircon) and the other 

corresponding to quantified solution species (nitrate, nitrite, carbonate, sulfate, and borate). Each 

PLSR model was constructed so that four of the respective quantified species were used as model 

inputs, while the remaining component was quantified. This is structurally similar to the 

quantification performed in Sections 3.4 and 3.5 except that the input data is the concentrations of 

other species, rather than spectra. The two PLSR models of this section used four latent variables 

each, equal to the number maximum allowable with four input variables. This quantification 

isolates the effects of correlation between species: any prediction capability in Fig. S12 results 

from correlations in the dataset. If the model is quantifying based on artifacts in the dataset, we 

expect the quantification accuracy in Fig. S12 to match the quantification accuracy in Fig. 7 and 

Fig. 9. Fig S12 shows the parity plots for both the soluble species and insoluble species studied.  

From the results of the parity plots, it can be seen that a substantial amount of scatter exists 

for all the species when using other species as model inputs rather than spectra. This indicates that 

the PLSR models are quantifying the spectra and not making use of spurious correlations in the 

dataset to produce effective quantification. A weakly positive predictive ability exists for many 

species. However, this effect appears weak for most species. 
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Figure S12. Parity plots for both soluble and insoluble components when using the concentrations of 

the other species as independent variables. 

 

The high correlation/prediction accuracy of borate in Fig. S12 warrants additional 

discussion. Borate produces the best quantification of all the species when using concentrations of 

other species for quantification. This likely results from the manner in which boric acid was added 

to solutions. Additions were done in two steps: a soluble species addition and a GFC addition. The 

soluble species addition consisted of nitrate, nitrite, carbonate, and sulfate (in addition to 

phosphate, acetate, and oxalate as minor species). The GFC addition, however, contained soluble 

boric acid and lithium carbonate. Because of this, boric acid was added in specific concentrations 
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dictated by GFC composition rather than designed via pseudorandom uniform distribution like the 

other species. Despite this, the results in the manuscript with an R2 value of 0.998 are substantially 

better than could be achieved through the correlation in Fig. S12.  
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