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Supplementary Notes
Comparison between MSE and Wasserstein distance as discrepancy scores

In Supplementary Figure 1 below, we show an example data distribution, created with the make_classification function,
similar to the Simulated (N) dataset. We evaluate the MSE and Wasserstein Distance between true and imputed data for
(b) a method that optimises for MSE and (c) using MICE. It is clear that optimising for MSE leads to a poor distribution
reconstruction, however, MICE reflects the underlying distribution well. This simple example demonstrates how MSE is
insufficient for assessing imputation quality, as although MICE is clearly preferable in this case, it has a poor MSE.

(a) True Data Distribution (b) Imputation optimising mean
square error

(c) Imputation with the MICE
method

Mean Square Error = 0.9074 Mean Square Error = 1.6533
Wasserstein Distance = 2.68×10−4 Wasserstein Distance = 1.55×10−4

Supplementary Figure 1. Comparing imputation for MSE and MICE. In (a) we see a simulated dataset, (b) shows the
optimal imputation against the mean square error (MSE) and (c) shows the MICE imputation result. The MSE and Wasserstein
distances are quoted for each.

Dataset Description and Preprocessing Details

All of the datasets used in this study are publicly available (upon reasonable request for MIMIC-III and NHSX COVID-19).
Details for Synthetic (N) are included in the main paper. For the MIMIC-III and Breast Cancer datasets, we include some
details below for how the MIMIC-III and Breast Cancer datasets were preprocessed for use in this study. The code for
performing this preprocessing is also available in the codebase.

MIMIC-III. In preprocessing the MIMIC-III1 dataset, we only considered information for the first ICU admission of patients,
and restricted to patients who were over 15 years old, spent at least 3 days in the ICU in the data collection period and were
admitted as ‘Emergency’ or ‘Urgent’ cases (21 812 patients). We extracted data on seven clinical variables: blood pressure
(systolic, diastolic and mean), heart rate, oxygen saturation, respiratory rate and temperature; these were the only variables
recorded for over 50% of the patients. In our preprocessing of the dataset, we only considered data from the first 10 days in the
ICU (or the whole ICU stay if shorter), and excluded any patients who had fewer than 5 observations in any of aforementioned
variables. (169 patients were excluded in this way, about 0.8% of the total, leaving 21 643 patients.) We then calculated
the mean and standard deviation for each of these seven variables, giving a total of 14 numerical variables per patient (and
no missing data). The outcome variable we use is the survival of patients in the 30 days after admission to the ICU. Our



preprocessing code is based on MIMIC-Extract2 and is available at [shared upon publication]. Due to the size of the dataset
(and the number of computations we ultimately perform), we then select one third of the patients randomly, resulting in a
dataset with 7214 patients.

Breast Cancer. This dataset is derived from one collected at Memorial Sloan Kettering Cancer Center between April 2014
and March 20173. The biopsy samples were collected prior to, during or after treatment from different primary or metastatic
sites which leads to several samples for each patient. We only considered the first occurrence of the patients’ ID. The dataset,
consisting of 16 different features, is assembled using data stored in three different sub-datasets: data_clinical_sample,
data_clinical_patient and breast_msk_2018_clinical_data from Razavi et al.3. Specifically, the features
we consider are the ‘Fraction Genome Altered’ and ‘Mutation Count’, taken from breast_msk_2018_clinical_data,
‘ER Status of the Primary’, ‘Invasive Carcinoma Diagnosis Age’, ‘Oncotree Code’, ‘PR Status of the Primary’, ‘Overall Primary
Tumor Grade’ and ‘Stage At Diagnosis’, taken from data_clinical_sample and ‘Metastatic Disease at Last Follow-up’,
‘Metastatic Recurrence Time’, ‘M Stage’, ‘N Stage’, ‘T Stage’, ‘Overall Patient HER2 Status’, ‘Overall Patient HR Status’
and ‘Overall Patient Receptor Status’ from data_clinical_patient. The features of this dataset are of several different
types, ‘ER Status of the Primary’, ‘Metastatic Disease at Last Follow-up’, ‘M Stage’, ‘Overall Patient HER2 Status’, ‘Overall
Patient HR Status’ and ‘PR Status of the Primary’ are binary; ‘N Stage’, ‘T Stage’, ‘Stage At Diagnosis’ and ‘PR Status
of the Primary’ are ordinal; ‘Oncotree Code’ and ‘Overall Patient Receptor Status’ are multilevel categorical and ‘Fraction
Genome Altered’, ‘Invasive Carcinoma Diagnosis Age’, ‘Metastatic Recurrence Time’ and ‘Mutation Count’ are numerical.
The outcome variable we choose was ‘Overall Survival Status’ for the classification task. Moreover, features ‘N Stage’ and
‘T Stage’ are described with 14 and 15 different levels respectively where some of the levels only have one or two samples. To
ensure features are meaningfully represented, we only consider the parent family of each level which results in only 4 different
levels for each feature. All the ordinal variables are treated in the same manner as numeric variables if the imputation method
was not capable of addressing the ordinal variables. The majority of categorical variables are binary, or have only two options
(e.g. sex, death) and are simply encoded to zero and one and treated as numeric variables or binary (if the imputation method
was capable of modelling the binary variables).

Synthetic (N,C). This is a synthetic dataset created using the scikit-learn4 function make_classification, giving
a dataset with 1000 samples, 20 informative features and 5 useless features. Of the informative features, 10 are left as continuous
variables, 5 are converted into ordinal features with between 3 and 6 values, one is converted into a factor with four different
values and the remaining 4 are converted into binary factors. The useless features are handled similarly: 3 are left as continuous
variables, one is converted into an ordinal feature with 4 values and one is converted into a binary categorical variable. The
code to recreate this dataset can be found in our repository, along with the resulting dataset.

Descriptions of the imputation methods
Below, we give a detailed summary of each imputation method used in this paper, in particular, we detail how the categorical
variables are encoded for each method.

Mean Imputation is one of the simplest imputation methods, in which the missing values are replaced with the sample mean.
This is a single imputation method, as there is no stochasticity in its computation. Mean imputation was performed using
the SimpleImputer implementation in the Python package scikit-learn4. Mean imputation has no special treatment
for the multi-level categorical variables, therefore we one-hot encode all the multi-level categorical features as part of the
preprocessing.

MissForest is an iterative imputation method that employs a random forest (a non-parametric model) for non-linear modelling
of mixed data types. Therefore, MissForest is applicable for numerical, categorical and ordinal data, whilst making few
assumptions about the structure of the data5, 6. MissForest imputation works by initially training a random forest using the
observed (i.e. not missing) data values to predict the missing entries of a given variable. This procedure continues until either a
maximum number of iterations is reached or the out-of-bag error increases5, 7. MissForest imputation was performed using the
Python package missingpy8. In our implementation, the multi-level categorical variables in Breast Cancer are specified to
the algorithm.

Multivariate Imputation by Chained Equations (MICE), also known as ‘Fully Conditional Specification’9 or ‘Sequential
Regression Multivariate Imputation’10, is an imputation method which iteratively imputes the missing values of each variable
one at the time using a method based on the type of the corresponding variable (such as linear regression)7, 11, 12. In its
initialisation, MICE sets the missing values using values derived from the observed values, for example, the mean of the feature
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or a random observed value. Next, a model is fit which takes one feature as the output/target variable and all other features are
used as input variables. This model is then applied to predict the target variable and those which correspond to the missing
values are replaced. This process is repeated, updating all features in turn. This gives a dataset in which all missing values of
the features have been updated once. This whole process can be repeated many times until the imputed values converge to
within some error13–15. We perform our computation using the R package mice16. In our model, all the numerical variables are
initially imputed using predictive mean matching (pmm)16. In the Breast Cancer dataset, there are variables with multi-level
categorical values. These variables are one-hot encoded and imputed using logistic regression along with binary variables.
Finally, the ordinal variables are coded with numeric values and imputed using a proportional odds model.

Generative Adversarial Imputation Networks (GAIN)17 is an imputation method whose framework is based on generative
adversarial networks18. This approach adversarially trains a pair of neural networks, first a generator whose purpose is to
generate realistic samples from the development distribution and a discriminator which aims to identify whether a sample is
from the development distribution. Training in this adversarial manner ensures that the generator creates more realistic samples
as it tries to “fool” the discriminator. For the GAIN method, a binary mask is also provided to the generator function where
the zeros correspond to the missing values and ones indicate an observed value. A “hint” matrix is generated from this mask
for which some proportion of entries (decided by a parameter) are set to 0.5, i.e. for these entries we do not know if the value
is observed or missing. Initially, all missing values are replaced by random noise sampled from a normal distribution. The
generated dataset is input to the discriminator along with the hint matrix. The task of the discriminator is to predict the mask,
i.e. identify both the observed values and imputed values17, 19. For GAIN, the official implementation provided in the paper17 is
used. As GAIN cannot directly use multi-level categorical variables as input, in our implementation these are one-hot encoded
and the ordinal features are replaced with numerical values before imputation with GAIN.

Missing Data Importance-Weighted Autoencoder (MIWAE) is an imputation method proposed by Mattei and Frellsen20

which uses a deep latent variable model (DLVM)21, 22 for the imputation of the missing values in a given dataset. This method
builds upon the importance-weighted autoencoder (IWAE)23, which aims to maximise a lower bound of the log-likelihood
of the observed data. The lower bound of IWAE is a k-sample importance weighting estimate of the log-likelihood and is
a generalisation of the variational lower bound used in variational autoencoders21 (which corresponds to the case of k = 1).
In MIWAE, the lower bound of IWAE is further generalised to the case of incomplete data (and coincides with the IWAE
bound in the case of complete data). During training, the missing data is replaced with zeros before being passed into the
encoder network to obtain the latent codes. The codes are passed to the decoder network and the output is compared with
the observed data (only in non-missing dimensions) to compute the aforementioned lower bound. Once the model is trained,
multiple imputation is possible via sampling importance resampling (SIR) from the trained model. We used the official Python
implementation20 in our study. All the multi-level categorical variables are first one-hot encoded and the ordinal features are
coded with numerical values before imputation with MIWAE.

Hyperparameter selection for imputation methods
For GAIN and MIWAE imputation methods, there are several hyperparameters which must be tuned for optimal performance. In
our experimentation, we used the default parameters for both of these models after tuning of the imputation models and finding
that the changes in the loss values and imputed values were nominal. Therefore, we found it unjustifiable to jointly optimise
over the imputation and classification method’s hyperparameters as this would exponentially increase the computational (and
carbon) costs of our experiments without expected gains.

Descriptions of the classification methods
In the following, we briefly describe each of the classification methods used in this paper. Moreover, we detail the hyperparame-
ters, including the ranges of values, that are tuned in the benchmarking exercise for obtaining the optimal performing classifier.

Logistic Regression. This is a simple and efficient classification method with high prediction performance for datasets that
have linearly separable classes. This method use a logistic function 1

1+e−(mx+b) to generate a binary output, where x is the input

and m and b are learned24. We used the scikit-learn library implementation of the logistic regression classifier. The only
hyperparameter to tune is the maximum number of iterations used, we search over {50,100,150,200,250}.

Random Forest. This classifier is one of the most popular and successful algorithms. It was proposed by Breiman6 and
involves creating an ensemble of randomised decision trees whose predictions are aggregated to obtain the final results. In
training, for each tree m samples are randomly selected by bootstrapping. Then, this subset of the dataset is used to train a
randomised tree. This procedure is repeated k times. The Random Forest is the aggregation of these k decision trees25. For our
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study, we used the Random Forest implementation in open source scikit-learn library4 in Python. The Random Forest
can be applied to a variety of different prediction problems and few parameters need to be tuned. For the number of estimators,
we tried 8 different values in the range [20,90] with equal step width as 10. For the maximum depth, we limited our search to
{3,4}. For the minimum sample split and the minimum samples in each leaf, we search over the set {2,3,4}. This results in
144 different hyperparameter combinations.

XGBoost. This method, proposed by Chen and Guestrin26, is an efficient gradient tree boosting algorithm which builds a chain
of ‘weak learner’ trees to give a high-performing classification or regression model. In this method, a base model is constructed
by training an initial tree. Then, the second tree is obtained through combination with the initial tree. This procedure is repeated
until the maximum number of trees is reached. These additive trees are selected based on a greedy algorithm, in each step
adding the tree that most minimises the loss function. Therefore, the training of the model is in additive manner26. For the
implementation of XGBoost, we used the official xgboost Python package provided in26. For the maximum depth of trees,
we consider 3 different values {3,4,5} and for the number of subsamples we selected among 6 different values in the range
[0.5,1] with equal step size 0.1. The number of trees are selected from 8 different values, in the range [50,400] with equal step
size 50. This results in 144 different hyperparameter combinations.

NGBoost. This recent method, proposed by Duan et al.27, gives probabilistic predictions for the outcome variable y for input
x. It assumes there is an underlying probability distribution Pθ (y|x) with a parametric form, described by θ(x). This method
considers natural gradient boosting, by replacing the loss function with a scoring rule. This scoring rule, compares the estimated
probability distribution to the observed data, by using a predicted probability distribution P and the observed value y (outcome).
The proper scoring rule S returns the best score for the true distribution of the outcomes. The parameter that minimises the
value of the scoring rule is obtained through natural gradient descent28. For the implementation of the NGBoost method, we
used provided code on the official repository at https://github.com/stanfordmlgroup/ngboost. An NGBoost
model has three key hyperparameters which can be tuned, namely the learning rate, the minibatch fraction and the number of
estimators. For the learning rate we used 4 different values {0.0001,0.001,0.01,0.1}. For the minibatch fraction, we used 6
different values in the range [0.5,1] with equal step size 0.1. The number of the estimator is selected from 8 different values in
the range [50,400] with equal step size 50. This results in 192 different hyperparameter combinations.

(Artificial) Neural Network (NN). The artificial neural network we employ is a multi-layer perceptron (MLP)29 consisting of
layers of neurons. Each neuron is assigned a value, based on a weighted combination of the values for neurons in the previous
layer. Activation functions are employed to introduce non-linearities into the weighted sum calculations. The training of the
NN is through backpropagation30, where the weights of the edges between each neuron are adjusted to minimise the error
between the true labels and output. We use the ReLu31 activation function and the ADAM32 optimiser method with binary
cross-entropy as the loss function. We used the implementation in the open source scikit-learn library4 in Python. An
NN has three key hyperparameters which must be tuned, specifically, the initial learning rate for the optimiser, the number
of hidden layers and the number of neurons in each hidden layer. The initial learning rate selected from 3 different values
{0.001,0.01,0.1}, the number of the hidden layers is set to one of the 3 values {1,2,3}. 5 different values are considered for
the number of the neurons in each hidden layer from the range [20,100] with equal step size 20. This results in 45 different
hyperparameter combinations.

Data partitioning and hyperparameter selection
We partition each dataset at two levels as shown in Supplementary Figure 2. In the first level, we randomly partition the dataset
into three holdout sets, each consisting of one third of the samples. These are used for reporting the performance of each
imputation method and classifier. Each holdout set has a complementary development set and at the second level of partitioning,
we divide the development set into five non-overlapping cohorts. We use five-fold cross-validation on the development set
to select the optimal hyperparameters for each combination of imputation method and classifier using the mean area under
the receiver operating characteristic curve (AUC) over the five validation folds. In Table 1, we detail the hyperparameters
combinations considered for each of the classifiers.

Description of the ANOVA analysis
In our multi-factor ANOVA analysis, for the MIMIC-III dataset we included the missingness rate of the development data
and holdout data as separate factors to allow us to evaluate their individual effects. However, the Breast Cancer and NHSX
COVID-19 datasets are real datasets with their inherent missingness rates. Therefore, the missingness rate is introduced as a
factor (i.e. categorical 25%, 50%, inherent) to the ANOVA model.
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Supplementary Figure 2. A schematic illustrating the hierarchical dataset split. Key: H = Holdout, D = Development, V =
Validation.

Classifier (K) Tuned Hyperparameters

Random Forest (144)
Number of trees (8), maximum depth of trees (2), minimum sam-
ples needed for splits in each individual leaf (3), the minimum
number of samples in each leaf (3).

XGBoost (144)
Number of the trees (8), maximum depth of each tree (3), a
subsample of the training instances used in each iteration of
boosting (6).

NGBoost (192) Number of estimators (8), learning rate (4), a subsample of the
training instances used in each iteration of boosting (6).

Artificial Neural Network (45) Number of neurons per layer (5), number of hidden layers (3),
learning rate (3).

Supplementary Table 1. Each classifier is fit with the K hyperparameter combinations shown above. The key hyperparame-
ters for each model were identified and the number in brackets indicates how many values were tested for each hyperparameter.

Description of the sample-wise and feature-wise discrepancy measures
In this paper, we use nine statistics to measure the discrepancy between the imputed and true data. These fall into three classes;
class A are sample-wise, class B are feature-wise and class C are derived from the sliced Wasserstein distances. For measuring
all these discrepancies, after the imputation, both original and imputed data in the development and holdout sets are normalised
to mean zero and unit standard deviation (SD) using the development set mean and SD.

Sample-wise metrics and their implementation. We briefly describe the sample-wise statistics used in the paper, along
with giving details of the implementations used: Root MSE (RMSE). This is simply the square root of the mean square
error, which is the average of the squared discrepancy errors between imputed and original samples. In this paper, we use
the function mean_squared_error implemented in sklearn and take the square root of it. Mean absolute error
(MAE). This is the average absolute difference between the imputed and the original values. In this paper, we use the
function mean_absolute_error implemented in sklearn. R2. This is the coefficient of determination, implemented in
sklearn as r2_score, which measures the proportion of the variation in the imputed values that is predictable from the
original values. This is expressed as a percentage. Note that this is not a metric.
Feature-wise metrics and their implementation. We briefly describe the distribution comparison measures used in the paper,
along with giving details of the implementations used: Kullback-Leibler (KL). The KL divergence measures how different
two probability distributions are from one another. This is implemented in Python using the standard calculation shown in
kl.py in our codebase. Kolmogorov-Smirnov (KS). The KS test is used to assess whether two one-dimensional probability
distributions differ. We use the function ks_2samp in the Python package scipy.stats. Two-Wasserstein (2W). The
2W distance33 also measures the distance between two probability distributions using optimal transport. We use the function
emd2_1d in the POT package in Python.

An example for calculation of sliced Wasserstein distances
We present here a small example to show how the Wasserstein distance calculations work. Here is a dataset with N = 6 samples
and d = 4 features, one sample per row. The tables show the original dataset and the result of introducing missingness and
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performing imputation. For example, we see from the tables that x2 = (8,3,2,0) and x̂2 = (6,3,2,0).

i x(1) x(2) x(3) x(4)

1 3 2 5 1
2 8 3 2 0
3 5 5 3 2
4 1 9 4 1
5 3 0 3 3
6 4 5 6 3

i x̂(1) x̂(2) x̂(3) x̂(4)

1 3 1 6 1
2 6 3 2 0
3 5 5 3 2
4 1 7 4 2
5 6 4 3 3
6 4 5 6 2

Original data Imputed data (with differences highlighted)

We now step through the calculations performed when running the following code on this data. (The data can be found in
the tests directory of the Git repository.)

scripts/calculate_wasserstein.py --seed 20 --splits 4
--directions 3 --output test-distances tests/original-data.csv
tests/imputed-data.csv

The first step of the algorithm is to choose M random directions. We let M = 3 and the resulting directions are (rounded to
3 decimal places):

n1 = (−0.189,0.632,0.733,0.167)
n2 = (0.289,−0.341,−0.637,−0.628)
n3 = (−0.728,0.678,−0.041,0.094)

We also choose P random partitions of {1,2,3,4,5,6}. Letting P = 4 gives the following partitions:

I1 = {1,3,4} J1 = {2,5,6}
I2 = {3,4,6} J2 = {1,2,5}
I3 = {2,3,6} J3 = {1,4,5}
I4 = {2,3,4} J4 = {1,5,6}

Note that I1 and J1 together include all of {1,2,3,4,5,6} and similarly for the other pairs.
In step 2, we project all of the data onto the directions given by nr for each r. Each projection is one-dimensional, so is a

single number. For example, projecting x2 onto n3 gives

8× (−0.728)+3×0.678+2× (−0.041)+0×0.094 =−3.875

Performing this calculation for each sample and each direction gives the following pair of tables of N ×M = 6×3 = 18
values each:

direction
i n1 n2 n3
1 4.529 −3.631 −0.941
2 1.851 0.011 −3.875
3 4.747 −3.430 −0.188
4 8.596 −5.960 5.301
5 2.133 −2.929 −2.027
6 7.302 −6.258 0.510

direction
i n1 n2 n3
1 4.631 −3.927 −1.66
2 2.229 −0.566 −2.418
3 4.747 −3.430 −0.188
4 7.499 −5.905 4.039
5 4.093 −3.428 −1.501
6 7.136 −5.631 0.417

Projected original data Projected imputed data

Step 3 requires us to calculate the Wasserstein distances. We will do this for one example and then present a table of all the
results. We need to pick a pair (r, p) with r ∈ {1, . . . ,M} selecting the projection and p ∈ {1, . . . ,P} selecting the partition. Let
us choose r = 1 and p = 4.

The projection of the original data into the direction n1 is given by the first column of the above pair of tables and the
partition is I4 = {2,3,4} and J4 = {1,5,6}. The original data xi.nr for i ∈ Ip is therefore {1.851,4.747,8.596}. The standard
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deviation of this set of data is 2.763, so for the following Wasserstein distance calculations, we first normalise the data by
dividing by this. The original data for this direction thus becomes

{1.640,0.670,1.718,3.112,0.772,2.643}

and the imputed data becomes
{1.676,0.807,1.718,2.714,1.482,2.583}.

To find w(1,4), we find the 2-Wasserstein distance between the I4 terms and the J4 ones of the scaled original data,
that is between {0.670,1.718,3.112} and {1.640,0.772,2.643}. Using the Python Optimal Transport (POT) library function
emd2_1d, we find that this is 0.079. Similarly, to find ŵ(1,4), we find the 2-Wasserstein distance between the I4 terms of
the scaled original data and the J4 terms of the ones of the scaled imputed data, that is between {0.670,1.718,3.112} and
{1.676,1.482,2.583}, which is 0.313.

Doing this for all of the choices of r and p gives the following baseline distances and imputed distances:

direction (r)
p 1 2 3
1 1.498 3.142 1.505
2 6.733 5.785 3.303
3 0.121 0.445 2.426
4 0.079 0.488 0.632

direction (r)
p 1 2 3
1 0.750 2.112 1.196
2 4.219 4.152 3.133
3 0.341 0.619 1.719
4 0.313 0.678 0.715

Baseline Wasserstein distances w(r, p) Imputed data Wasserstein distances ŵ(r, p)

Outlier Analysis Details
To isolate whether the large variances are due to stochasticity in the algorithms, we now go back and consider the original
feature distributions, rather than the projected distributions. If an imputation algorithm occasionally imputes poorly in particular
features, it will be identified here. For each holdout and validation set, we compute the Wasserstein distance between the
imputed data and the true data for all features in the 10 repeats, i.e. for each feature we have 10 Wasserstein distances. We want
to understand how often these distances are very large relative to how often they are small. In Figure 8, we show the proportion
of the imputations that have Wasserstein distances above a threshold of 10−7 for each holdout set and validation set. The plots
for other thresholds are in Supplementary Figure 3. It can be seen that the mean imputation method leads to feature imputations
that always have relatively large distances from the true values. This is not surprising as it is the baseline model. It is surprising
that GAIN is often imputing with high distance (80% at 10−7 and 40% at 10−6), indicating some stochasticity in the imputation
method which causes poor imputations for some computations and better imputation for others. MIWAE demonstrates the same
stochasticity to a lesser extent, followed by MissForest. This highlights the importance of performing multiple imputation runs
for models which have stochasticity integral to them. For GAIN and MIWAE, this is particularly true as deep neural networks
will occasionally find local minima at their optimum and generative adversarial networks are liable to mode collapse34.

Interpretability
First, for each classifier, we find the top ten configurations of the validation set, holdout set and imputation methods that achieve
the best performance. We then rank these configurations by the distance ratio induced by the imputation method and take the
model with the smallest and largest induced distance ratio for the sliced Wasserstein distance. This gives us the two models
which are high performing but which are trained using data of different imputation quality (see Tables 7–9). The features that
are important for a model’s prediction can be found using many interpretability techniques. In this paper, we employ Shapley
values35 implemented in the Python package shap.
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Supplementary Figure 3. The proportion of repeated imputations that give outlier Wasserstein distances, at the thresholds
shown, for different imputation methods.

Random Forest XGBoost

NGBoost

Supplementary Figure 4. For each classifier, we give the absolute skew of the Shapley values for each feature for the
two candidate models identified. In the shap Python package used for calculating these values, the TreeExplainer
functionality is not implemented for the Neural Network and Logistic Regression classifiers.

Software version and imputation tools
All of these experiments are run within a Conda environment, and required Python packages can be installed by using the
requirement.txt file shared in our repository (available upon acceptance). Additionally, we used Python36 version 3.10.4,
RStudio37 version 4.2 (with the MICE R library38 version 3.14.0) and corrected implementations of GAIN and MIWAE which
can be found in our repository. The implementation of MissForest included in missingpy version 0.2.0 is adopted and the
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mean imputation is implemented by using the scikit-learn package4 version 1.1.1. For the classification methods, all
classifiers RandomForest, Logistic Regression, and Neural Network are implemented by using the scikit-learn package4

version 1.1.1. For XGBoost and NGBoost, versions 1.6.1 and 0.3.12 are used respectively.

9/46



Supplementary Figures
Additional performance metrics for the downstream classification task
In addition to exploring the AUC values for the downstream performance of classifiers, we also report the Accuracy, Brier
Score, Precision, Sensitivity and Specificity. These results are presented in Supplementary Figures 5–9.
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Supplementary Figure 5. Dependence of the classification accuracy on the (a) classification and (b) imputation methods.
The size of each marker indicates the standard deviation.
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Dependence of the Brier score
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(b) Imputation dependence

Supplementary Figure 6. Dependence of the classification Brier score on the (a) classification and (b) imputation methods.
The size of each marker indicates the standard deviation.
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Dependence of the precision
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(b) Imputation dependence

Supplementary Figure 7. Dependence of the classification precision on the (a) classification and (b) imputation methods.
The size of each marker indicates the standard deviation.
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Dependence of the sensitvity

Breast Cancer

NHSX COVID−19

MIMIC−III [ 0.5 / 0.5 ]

MIMIC−III [ 0.5 / 0.25 ]

MIMIC−III [ 0.25 / 0.5 ]

MIMIC−III [ 0.25 / 0.25 ]

MIMIC−III [ 0 / 0 ]

Simulated (N) [ 0.5 / 0.5 ]

Simulated (N) [ 0.5 / 0.25 ]

Simulated (N) [ 0.25 / 0.5 ]

Simulated (N) [ 0.25 / 0.25 ]

Simulated (N) [ 0 / 0 ]

Simulated (N,C) [ 0.5 / 0.5 ]

Simulated (N,C) [ 0.5 / 0.25 ]

Simulated (N,C) [ 0.25 / 0.5 ]

Simulated (N,C) [ 0.25 / 0.25 ]

Simulated (N,C) [ 0 / 0 ]

0.
25

0.
50

0.
75

1.
00

 

Classification Method Logistic Regression Neural Network NGBoost Random Forest XGBoost Standard Deviation 0.05 0.10 0.15

(a) Classifier dependence

Breast Cancer

NHSX COVID−19

MIMIC−III [ 0.5 / 0.5 ]

MIMIC−III [ 0.5 / 0.25 ]

MIMIC−III [ 0.25 / 0.5 ]

MIMIC−III [ 0.25 / 0.25 ]

Simulated (N) [ 0.5 / 0.5 ]

Simulated (N) [ 0.5 / 0.25 ]

Simulated (N) [ 0.25 / 0.5 ]

Simulated (N) [ 0.25 / 0.25 ]

Simulated (N,C) [ 0.5 / 0.5 ]

Simulated (N,C) [ 0.5 / 0.25 ]

Simulated (N,C) [ 0.25 / 0.5 ]

Simulated (N,C) [ 0.25 / 0.25 ]

0.
25

0.
50

0.
75

1.
00

 

Imputation Method GAIN Mean MICE MissForest MIWAE Standard Deviation 0.050 0.075 0.100 0.125

(b) Imputation dependence

Supplementary Figure 8. Dependence of the classification sensitivity on the (a) classification and (b) imputation methods.
The size of each marker indicates the standard deviation.
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Dependence of the specificity
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(b) Imputation dependence

Supplementary Figure 9. Dependence of the classification specificity on the (a) classification and (b) imputation methods.
The size of each marker indicates the standard deviation.
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Sample-wise discrepancy for the MIMIC-III dataset at different train and test missingness rates
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Supplementary Figure 10. The sample-wise statistics for the MIMIC-III dataset at the different train and test missingness
rates considered. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile range
from the median (horizontal line).
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Sample-wise discrepancy for the Simulated (N) dataset at different train and test missingness rates
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Supplementary Figure 11. The sample-wise statistics for the Simulated (N) dataset at the different train and test missingness
rates considered. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile range
from the median (horizontal line).
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Sample-wise discrepancy for the Simulated (N,C) dataset at different train and test missingness rates
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Supplementary Figure 12. The sample-wise statistics for the Simulated (N,C) dataset at the different train and test
missingness rates considered. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the
interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the MIMIC-III dataset at the respective train and test missingness rates of 25%
and 50%.
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Supplementary Figure 13. Feature-wise 25% train missingness and 50% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the MIMIC-III dataset at the respective train and test missingness rates of 50%
and 25%.
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Supplementary Figure 14. Feature-wise 50% train missingness and 25% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).

19/46



Feature-wise discrepancy for the MIMIC-III dataset at the respective train and test missingness rates of 50%
and 50%.
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Supplementary Figure 15. Feature-wise 50% train missingness and 50% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N) at the respective train and test missingness rates of 25%
and 25%.
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Supplementary Figure 16. Feature-wise 25% train missingness and 25% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N) dataset at the respective train and test missingness rates of
25% and 50%.
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Supplementary Figure 17. Feature-wise 25% train missingness and 50% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N) dataset at the respective train and test missingness rates of
50% and 25%.
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Supplementary Figure 18. Feature-wise 50% train missingness and 25% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N) dataset at the respective train and test missingness rates of
50% and 50%.

Minimum Median Maximum
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Supplementary Figure 19. Feature-wise 50% train missingness and 50% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N,C) dataset at the respective train and test missingness rates
of 25% and 25%.
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Supplementary Figure 20. Feature-wise 25% train missingness and 25% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N,C) dataset at the respective train and test missingness rates
of 25% and 50%.
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Supplementary Figure 21. Feature-wise 25% train missingness and 50% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N,C) dataset at the respective train and test missingness rates
of 50% and 25%.
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Supplementary Figure 22. Feature-wise 50% train missingness and 25% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Feature-wise discrepancy for the Simulated (N,C) dataset at the respective train and test missingness rates
of 50% and 50%.
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Supplementary Figure 23. Feature-wise 50% train missingness and 50% test missingness. Whiskers extend to the extreme
values, with outliers omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Sliced Wasserstein discrepancy for the MIMIC-III dataset at different train and test missingness rates

Kullback-Leibler Kolmogorov-Smirnoff Wasserstein

25
%

:2
5%

0.0

0.5

1.0

1.5

2.0

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

0.0

0.2

0.4

0.6

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

0.000

0.005

0.010

0.015

0.020

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

25
%

:2
5%

(L
og

)

−2.0

−1.5

−1.0

−0.5

0.0

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

−1.2

−0.8

−0.4

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

−3.5

−3.0

−2.5

−2.0

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

25
%

:5
0%

0

10

20

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

0.00

0.25

0.50

0.75

1.00

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

0.000

0.025

0.050

0.075

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

25
%

:5
0%

(L
og

)

−2

−1

0

1

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

−1.5

−1.0

−0.5

0.0

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

−3

−2

−1

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

Holdout set 0 1 2

Supplementary Figure 24. The class C discrepancies for the sliced Wasserstein distances of the MIMIC-III data at the
25% missingness rate for the development set along with 25% and 50% for the test set. The original values and logarithms are
shown for clarity. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile range
from the median (horizontal line).
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Sliced Wasserstein discrepancy for the MIMIC-III dataset at different train and test missingness rates
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Supplementary Figure 25. The class C discrepancies for the sliced Wasserstein distances of the MIMIC-III data at the
50% missingness rate for the development set along with 25% and 50% for the test set. The original values and logarithms are
shown for clarity. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile range
from the median (horizontal line).
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Sliced Wasserstein discrepancy for the Simulated (N) dataset at different train and test missingness rates
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Supplementary Figure 26. The class C discrepancies for the sliced Wasserstein distances of the Simulated (N) dataset with
25% missingness for the development set along with 25% and 50% for the test set. The original values and their logarithms are
shown for clarity. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile range
from the median (horizontal line).
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Sliced Wasserstein discrepancy for the Simulated (N) dataset at different train and test missingness rates
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Supplementary Figure 27. The class C discrepancies for the sliced Wasserstein distances of the Simulated (N) data with
50% missingness for the development set along with 25% and 50% for the test set. The original values and their logarithms are
shown for clarity. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile range
from the median (horizontal line).

32/46



Sliced Wasserstein discrepancy for the Simulated (N,C) dataset at different train and test missingness rates
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Supplementary Figure 28. The class C discrepancies for the sliced Wasserstein distances of the Simulated (N,C) data with
25% missingness for the development set along with 25% and 50% for the test set. The original values and their logarithms are
shown for clarity. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile range
from the median (horizontal line).

33/46



Sliced Wasserstein discrepancy for the Simulated (N,C) dataset at different train and test missingness rates

Kullback-Leibler Kolmogorov-Smirnoff Wasserstein

50
%

:2
5%

1.0

1.1

1.2

1.3

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

0.66

0.70

0.74

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

0.28

0.30

0.32

0.34

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

50
%

:2
5%

(L
og

)

0.00

0.05

0.10

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

−0.20

−0.18

−0.16

−0.14

−0.12

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

−0.54

−0.51

−0.48

−0.45

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

50
%

:5
0%

1.0

1.5

2.0

2.5

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

0.7

0.8

0.9

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

0.30

0.35

0.40

0.45

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

50
%

:5
0%

(L
og

)

0.0

0.1

0.2

0.3

0.4

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

−0.16

−0.12

−0.08

−0.04

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

−0.56

−0.54

−0.52

−0.50

−0.48

−0.46

G
AI
N

M
ea

n

M
IC

E

M
is
sF

or
es

t

M
IW

AE

 

 

Holdout set 0 1 2

Supplementary Figure 29. The class C discrepancies for the sliced Wasserstein distances of the Simulated (N,C) data
at the 50% missingness rate for the development set along with 25% and 50% for the test set. The original values and their
logarithms are shown for clarity. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the
interquartile range from the median (horizontal line).
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Link between quality and downstream classification performance
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Supplementary Figure 30. The different imputation discrepancy metrics from classes A, B and C are shown against the
downstream AUC value for the classification task of the Simulated (N) dataset. Trend lines are shown for 25% and 50% test
missingness separately.
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Link between quality and downstream classification performance
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Supplementary Figure 31. The different imputation discrepancy metrics from classes A, B and C are shown against the
downstream AUC value for the classification task of the Simulated (N,C) dataset. Trend lines are shown for 25% and 50% test
missingness separately.
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Additional Distance Ratio Figures
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Supplementary Figure 32. Ratio of the Wasserstein distance for the imputed data compared to the original data for the
MIMIC-III dataset at different train and test missingness rates. Whiskers extend to the extreme values, with outliers omitted
that are above 1.5 times the interquartile range from the median (horizontal line).
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Supplementary Figure 33. Ratio of the Wasserstein distance for the imputed data compared to the original data for the
Simulated (N) dataset at different train and test missingness rates. Whiskers extend to the extreme values, with outliers omitted
that are above 1.5 times the interquartile range from the median (horizontal line).
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Supplementary Figure 34. Ratio of the Wasserstein distance for the imputed data compared to the original data for the
Simulated (N,C) dataset at different train and test missingness rates. Whiskers extend to the extreme values, with outliers
omitted that are above 1.5 times the interquartile range from the median (horizontal line).
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Correlation between discrepancy statistics for the Simulated (N) and Simulated (N,C) datasets.
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Supplementary Figure 35. Correlation heatmap for all discrepancy metrics considered in this paper for (a) the Simulated (N)
dataset and (b) the Simulated (N,C) dataset.
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Supplementary Tables
ANOVA Results for the Breast Cancer, NHSX COVID-19 and MIMIC-III datasets

Variables Estimate Std. Error t value Pr(> |t|)
classifier choice LogisticReg 1.0824 0.0188 57.50 <2e-16 ***
classifier choice NeuralNetwork 0.9841 0.0184 53.52 <2e-16 ***
classifier choice NGBoost 1.0046 0.0185 54.37 <2e-16 ***
classifier choice RandomForest 1.0475 0.0187 56.12 <2e-16 ***
classifier choice XGBoost 1.0419 0.0186 55.90 <2e-16 ***

Supplementary Table 2. Table of parameter coefficients for the Breast Cancer dataset.

Variables Estimate Std. Error t value Pr(> |t|)
imputation choice GAIN 1.1323 0.0340 33.33 <2e-16 ***
imputation choice Mean 1.1689 0.0342 34.22 <2e-16 ***
imputation choice MICE 1.1299 0.0340 33.27 <2e-16 ***
imputation choice MissForest 1.0688 0.0337 31.74 <2e-16 ***
imputation choice MIWAE 1.1764 0.0342 34.40 <2e-16 ***
classifier choice Neural Network -0.0959 0.0354 -2.71 0.0085 **
classifier choice NGBoost 0.0357 0.0360 0.99 0.3239
classifier choice Random Forest 0.0305 0.0359 0.85 0.3989
classifier choice XGBoost 0.0749 0.0361 2.07 0.0423 *

Supplementary Table 3. Table of parameter coefficients for the NHSX COVID-19 dataset

Variables Estimate Std. Error t value Pr(> |t|)
imputation choice GAIN 1.0530 0.0130 81.03 <2e-16 ***
imputation choice Mean 1.0119 0.0129 78.21 <2e-16 ***
imputation choice MICE 1.0721 0.0130 82.33 <2e-16 ***
imputation choice MissForest 1.0467 0.0130 80.60 <2e-16 ***
imputation choice MIWAE 1.0661 0.0130 81.92 <2e-16 ***
classifier choice Neural Network 0.0237 0.0123 1.93 0.0548 .
classifier choice NGBoost 0.0963 0.0124 7.78 1.3e-13 ***
classifier choice RandomForest 0.0610 0.0123 4.94 1.3e-06 ***
classifier choice XGBoost 0.1321 0.0124 10.62 <2e-16 ***
train percentage 0.5 -0.0175 0.0079 -2.23 0.0268 *
test percentage 0.5 -0.1531 0.0079 -19.47 <2e-16 ***

Supplementary Table 4. Table of parameter coefficients for the MIMIC-III dataset.
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ANOVA results for the Simulated (N) dataset

Variables Estimate Std. Error t value Pr(> |t|)
imputation choice GAIN 1.6777 0.0306 54.79 <2e-16 ***
imputation choice Mean 1.6191 0.0302 53.61 <2e-16 ***
imputation choice MICE 1.6253 0.0302 53.74 <2e-16 ***
imputation choice MissForest 1.6552 0.0302 54.85 <2e-16 ***
imputation choice MIWAE 1.7848 0.0313 57.01 <2e-16 ***
classifier choice Neural Network 0.9962 0.0459 21.69 <2e-16 ***
classifier choice NGBoost -0.0190 0.0387 -0.49 0.6241
classifier choice Random Forest -0.0482 0.0385 -1.25 0.2112
classifier choice XGBoost 0.2913 0.0404 7.22 6.31e-12 ***
train percentage 0.5 -0.1057 0.0330 -3.21 0.0015 **
test percentage 0.5 -0.4593 0.0320 -14.34 <2e-16 ***
imputation choice Mean:train percentage 0.5 0.0130 0.0269 0.48 0.6285
imputation choice MICE:train percentage 0.5 -0.0301 0.0271 -1.11 0.2675
imputation choice MissForest:train percentage 0.5 -0.0334 0.0266 -1.26 0.2105
imputation choice MIWAE:train percentage 0.5 -0.0671 0.0276 -2.43 0.0157 *
imputation choice Mean:classifier choice Neural Network -0.0534 0.0456 -1.17 0.2429
imputation choice MICE:classifier choice Neural Network -0.0842 0.0453 -1.86 0.0642 .
imputation choice MissForest:classifier choice Neural Network -0.2190 0.0445 -4.92 1.58e-06 ***
imputation choice MIWAE:classifier choice Neural Network -0.0732 0.0464 -1.58 0.1159
imputation choice Mean:classifier choice NGBoost -0.0507 0.0410 -1.23 0.2182
imputation choice MICE:classifier choice NGBoost 0.0408 0.0411 0.99 0.3226
imputation choice MissForest:classifier choice NGBoost -0.0666 0.0407 -1.64 0.1030
imputation choice MIWAE:classifier choice NGBoost -0.0090 0.0419 -0.22 0.8298
imputation choice Mean:classifier choice RandomForest -0.1012 0.0408 -2.48 0.0137 *
imputation choice MICE:classifier choice RandomForest 0.0109 0.0409 0.27 0.7907
imputation choice MissForest:classifier choice RandomForest -0.1162 0.0405 -2.87 0.0044 **
imputation choice MIWAE:classifier choice RandomForest -0.0416 0.0417 -1.00 0.3196
imputation choice Mean:classifier choice XGBoost -0.1364 0.0420 -3.25 0.0013 **
imputation choice MICE:classifier choice XGBoost 0.0125 0.0423 0.29 0.7684
imputation choice MissForest:classifier choice XGBoost -0.1325 0.0417 -3.18 0.0017 **
imputation choice MIWAE:classifier choice XGBoost -0.0124 0.0432 -0.29 0.7743
classifier choice NeuralNetwork:train percentage 0.5 -0.4091 0.0466 -8.79 2.40e-16 ***
classifier choice NGBoost:train percentage 0.5 -0.0428 0.0394 -1.09 0.2786
classifier choice RandomForest:train percentage 0.5 -0.0728 0.0389 -1.87 0.0626 .
classifier choice XGBoost:train percentage 0.5 -0.1845 0.0409 -4.52 9.70e-06 ***
imputation choice Mean:test percentage 0.5 0.0415 0.0272 1.52 0.1286
imputation choice MICE:test percentage 0.5 0.0186 0.0274 0.68 0.4966
imputation choice MissForest:test percentage 0.5 -0.0984 0.0269 -3.65 0.0003 ***
imputation choice MIWAE:test percentage 0.5 0.0305 0.0279 1.09 0.2753
classifier choice Neural Network:test percentage 0.5 -0.5158 0.0442 -11.67 <2e-16 ***
classifier choice NGBoost:test percentage 0.5 -0.0235 0.0378 -0.62 0.5335
classifier choice RandomForest:test percentage 0.5 0.0170 0.0375 0.45 0.6513
classifier choice XGBoost:test percentage 0.5 -0.1445 0.0392 -3.69 0.0003 ***
train percentage 0.5:test percentage 0.5 0.0569 0.0374 1.52 0.1292
classifier choice Neural Network:train percentage 0.5:test percentage 0.5 0.1876 0.0591 3.17 0.0017 **
classifier choice NGBoost:train percentage 0.5:test percentage 0.5 0.0169 0.0524 0.32 0.7468
classifier choice RandomForest:train percentage 0.5:test percentage 0.5 0.0260 0.0520 0.50 0.6172
classifier choice XGBoost:train percentage 0.5:test percentage 0.5 0.0778 0.0539 1.44 0.1501

Supplementary Table 5. Table of parameter coefficients for Simulated (N) dataset.
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ANOVA results for the Simulated (N,C) dataset

Variables Estimate Std. Error t value Pr(> |t|)
imputation choice GAIN 1.6643 0.0330 50.48 <2e-16 ***
imputation choice Mean 1.7395 0.0332 52.45 <2e-16 ***
imputation choice MICE 1.6787 0.0330 50.86 <2e-16 ***
imputation choice MissForest 1.6214 0.0329 49.33 <2e-16 ***
imputation choice MIWAE 1.7386 0.0332 52.43 <2e-16 ***
classifier choice NeuralNetwork 0.2492 0.0419 5.95 8.02e-09 ***
classifier choice NGBoost 0.1131 0.0411 2.75 0.0062 **
classifier choice RandomForest 0.1018 0.0410 2.48 0.0136 *
classifier choice XGBoost 0.2143 0.0417 5.13 5.30e-07 ***
train percentage 0.5 -0.1369 0.0352 -3.89 0.0001 ***
test percentage 0.5 -0.3711 0.0349 -10.64 <2e-16 ***
classifier choice NeuralNetwork:train percentage 0.5 -0.1274 0.0452 -2.82 0.0052 **
classifier choice NGBoost:train percentage 0.5 -0.0125 0.0448 -0.28 0.7814
classifier choice RandomForest:train percentage 0.5 -0.0465 0.0448 -1.04 0.3001
classifier choice XGBoost:train percentage 0.5 -0.0766 0.0453 -1.69 0.0923 .
classifier choice NeuralNetwork:test percentage 0.5 -0.1441 0.0455 -3.16 0.0017 **
classifier choice NGBoost:test percentage 0.5 -0.0877 0.0451 -1.94 0.0529 .
classifier choice RandomForest:test percentage 0.5 -0.0488 0.0450 -1.08 0.2793
classifier choice XGBoost:test percentage 0.5 -0.0954 0.0456 -2.09 0.0373 *
train percentage 0.5:test percentage 0.5 0.0994 0.0290 3.43 0.0007 ***

Supplementary Table 6. Table of parameter coefficients for Simulated (N,C) dataset.
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