Supplementary Materials *Molecular Biology of the Cell* Humphreys *et al*.

Hydrostatic Pressure Sensing by WNK Kinases

John M. Humphreys^a, Liliana R. Teixeira^a, Radha Akella^a, Haixia He^a, Ashari R. Kannangara^a, Kamil Sekulski^a, John Pleinis^b, Joanna Liwocha^a, Jenny Jiou^a, Kelly A. Servage^c, Kim Orth^c, Lukasz Joachimiak^d, Josep Rizo^a, Melanie H. Cobb^e, Chad A. Brautigam^{a,f}, Aylin R. Rodan^b, and Elizabeth J. Goldsmith^a*

^a Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.,^b Department of Internal Medicine, Division of Nephrology and Hypertension and Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City UT 84112, ^c Department of Molecular Biology, ^d Center for Alzheimer's and Neurodegenerative Diseases, ^e Department of Pharmacology , ^f Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390.

*Correspondence to: <u>Elizabeth.Goldsmith@UTSouthwestern.edu</u>

This file includes: Supplemental Figures S1-S5 Extended Data Tables S1-S6

Figure S1. Measuring WNK activity in vivo. (A) Scheme for applying pressure to MDAMB231 cells using N₂ gas. Western blots for tKCC2 and pKCC2 were conducted for the pressurized cells and the positive and negative controls. (B) WNK3 expressed in *D. melanogaster* Malpighian tubules. The GAL4/UAS system was used to knock down endogenous *Drosophila* WNK in the fly Malpighian (renal) tubule and replace it with full-length human WNK3. Kinase-dead SPAK/D219A was coexpressed using the cell-specific driver c42-GAL4. Tubules were isolated and pressure applied by centrifugation. SPAK phosphorylation was quantified by using anti-pSPAK and anti-tSPAK antibodies. Band intensities were quantified using ImageJ. The effect of temperature was controlled for by imposing similar temperature increase to control tubules in a PTC-100 Programmable Thermal Controller.

Error bars indicate s.e.m.

K3 WT 08 15 22Concentration pressure uWNK3 WT 081 22

Figure 3

Figure S5. Gel filtration standards. (A) 67 kDa Albumin. (B) 43 kDa ovalbumin. Chromatography on an Acta FPLC using a Superdex S75 column at 290 kPa. Data compared to the uWNK3 elution volume on the same column in Figure 4A (second panel).

,	
+Pressure	0.5M Sorbitol
1.000	1.000
2.062	2.218
3	3
t=10.90, df=2	t=3.997, df=2
0.0083	0.0573
**	ns
Yes	No
1.062	1.218
0.1687	0.5278
0.09738	0.3047
0.6425 to 1.481	-0.09309 to 2.529
0.9834	0.8887
	+Pressure 1.000 2.062 3 t=10.90, df=2 0.0083 ** Yes 1.062 0.1687 0.09738 0.6425 to 1.481 0.9834

 Table S1. Statistics for cellular assays in MDAMB231 cells

Unpaired t test	
P value	0.008
P value summary	*
Significantly different (P < 0.05)?	Yes
One- or two-tailed P value?	Two-tailed
t, df	t=3.997, df=4

```
Table S2. DynaFit script for autocatalytic autophosphorylation model
[task]
 data = progress
 task = fit
[mechanism]
 WNK3_u + WNK3_p --> WNK3_p + WNK3_p : kphos
[constants]
 kphos = 0.04 ??
[concentrations]
 WNK3_u = 5 ?? ; values used, 40, 20, 10, 5
 WNK3_p = 0.1 ??
[data]
      directory ./WNK3_Modeling_1/Data
       sheet data.csv
       column 2
       offset 1
      response WNK3_p = 1
[output]
 directory ./WNK3_Modelling_1/Output
[end]
```

Pressure	[uWNK3] (mg/ml)	MW (kDa)
SLS (Gravity)*	0.8-2.4	60-90
SEC-MALS	5.0	43-74
250 kPa		
AUC	0.8, 2.1	38.5
9-19 MPa		

Table S3. uWNK3 Oligomeric state by SLS, SEC-MALS and AUC

*Data presented in (Akella *et al*, 2021)

			-		
WNK3	Pressure	Elution Vol	Estimated	Standard	Ovalbumin
protein	(kPa)	(EV) (mL)	MW (kDa)	MW (kDa),	(43 kDa) EV
				EV (ml)	
uWNK3	Gravity	16.3	60	67, 16	17
uWNK3	280	70.0	40	67, 63.4	69.6
pWNK3	290	64.5	43	80, 56.6	64.5

Table S4. Apparent uWNK3 and pWNK3 molecular weights by gel filtration

Pentide 1	Pontido 2	Res. no Penti	Res. no. x-link Pentide A		Res. no. x-link	
		WNK3	WNK1	WNK3	WNK1	Jeone
FAEDTKLPTTENLY (tag)	AEDTKLPTTENLY (tag)	410	484	410	484	22.3
AEDTKLPTTENLY (tag)	KGLDTETW	410	484	163	237	21.1
AKSVIGTPEFMAPEMY	AEDTKLPTTENLY (tag)	307	381	410	484	20.1
AEDTKLPTTENLY (tag)	A <mark>K</mark> SVIGTPEF	410	484	307	381	17.1
FAEDTKLPTTENLY (tag)	FAEDTKLPTTENLY (tag)	410	484	410	484	15.5
DSWESIL <mark>K</mark> GKKCIVLVTELMTSGTLKTY	K TVYKGLDTETWVEVAW	218	292	159	233	14.7
AKSVIGTPEF	KGLDTETW	307	381	163	237	14.6
AEDTKLPTTENLYF (tag)	AEDTKLPTTENLY (tag)	410	484	410	484	12.5
KGLDTETW	KGLDTETW	163	237	163	237	12.4
RKVTSGIKPASF	RK VTSGIKPASF	360	434	360	434	11.7
KVXKP <mark>K</mark> VLRSW	KGLDTETW	248	322	163	237	10.4
AEDTKLPTTENLYF (tag)	CRQIL <mark>K</mark> GLQF	410	484	259	333	9.3
AKSVIGTPEFMAPEMY	L <mark>K</mark> FDIELGRGAFKTVY	307	381	148	222	9.2
LKFDIELGRGAF	CRQIL <mark>K</mark> GLQF	148	222	259	333	8.7
LKRF <mark>K</mark> VXKPKVLRSW	AEDTKLPTTENLYF (tag)	243	317	410	484	7.5
AKSVIGTPEFMAPEMYEEHY	K EEAEXLKGLQHPNIVRF	307	381	192	266	6.5
AKSVIGTPEFMAPEMY	AK SVIGTPEFXAPEMY	307	381	307	381	5.9
AKSVIGTPEFMAPEMYEEHY	LKFDIELGRGAF <mark>K</mark> TVY	307	381	159	233	4.1

 Table S5. DSS Crosslinks in uWNK3 without added pressure observed by mass spectrometry

Peptide 1	Peptide 2	P-site res. no. Peptide A		P-site res. no. Peptide B		Score	
		WNK3	WNK1	WNK3	WNK1		
KGLDTETW	KGLDTETW	163	237	163	237	29.5	
FAEDTKLPTTENLY (tag)	FAEDTKLPTTENLY (tag)	410	484	410	484	21.0	
AEDTKLPTTENLY (tag)	AKSVIGTPEF	410	484	307	381	20.3	
FAEDTKLPTTENLY (tag	AEDTKLPTTENLY (tag)	410	484	410	484	18.4	
AKSVIGTPEFMAPEMY	AEDTKLPTTENLY (tag)	307	381	410	484	18.2	
AEDTKLPTTENLY (tag)	KGLDTETW	410	484	163	237	16.4	
AEDTKLPTTENLY (tag)	AEDTKLPTTENLY (tag)	410	484	410	484	16.2	
KGLDTETWVEVAW	AKSVIGTPEF	163	237	307	381	14.8	
KEEAEXLKGLQHPNIVRFY	DIELGRGAF <mark>K</mark> TVY	192	266	159	233	13.3	
KEKNEKEMEEEAEXKAVATSPSGRF	CRQIL <mark>K</mark> GLQF	122	196	259	333	11.0	
KTVY <mark>K</mark> GLDTETW	RKVTSGIKPASF	163	237	360	434	10.6	
KGLDTETWVEVAW	KGLDTETW	163	237	163	237	10.1	
AEDTKLPTTENLYF (tag)	AEDTKLPTTENLYF (tag)	410	484	410	484	10.1	
AEDTKLPTTENLY (tag)	LKFDIELGRGAF	410	484	148	222	8.5	
DIELGRGAFKTVY	KVMKPKVLRSW	159	233	243	317	8.5	
DSWESILKGKKCIVLVTELMTSGTLKTY	CRQIL <mark>K</mark> GLQF	236	310	259	333	6.7	
CELQDRKLTKAEQQRFKEEAEMLKGLQHPNIVRF	KEEAEML <mark>K</mark> GLQHPNIVRFYDW	185	259	192	266	6.6	
SECQNAAQIYRKVTSGIKPASF	CRQIL <mark>K</mark> GLQ	360	434	259	333	5.9	
ESILKGKKCIVLVTELMTSGTLKTYLKRF	CRQIL <mark>K</mark> GLQF	221	295	259	333	5. 7	
AKSVIGTPEFMAPEMY	RKVTSGIKPASF	307	381	360	434	5.6	
AKSVIGTPEFMAPEXYEEHY	L <mark>K</mark> FDIELGRGAFKTVY	307	381	148	222	4.9	
ITGPTGSV <mark>K</mark> IGDLGLATLMRTSF	KTVY <mark>K</mark> GLDTETWVEVAW	291	365	163	237	4.4	
FAEDTKLPTTENLY (tag)	AKSVIGTPEF	410	484	307	381	3.9	
ESILKGKKCIVLVTELMTSGTLKTY	LKFDIELGRGAF	236	310	148	222	3.9	
ESILKGKKCIVLVTELMTSGTLKTY	DIELGRGAF <mark>K</mark> TVY	236	310	159	233	2.7	

Table S6. DSS Crosslinks in uWNK3 under 190 kPa observed by mass spectrometry

REFERENCES

Akella, R., Humphreys, J.M., Sekulski, K., He, H., Durbacz, M., Chakravarthy, S., Liwocha, J., Mohammed, Z.J., Brautigam, C.A., and Goldsmith, E.J. (2021). Osmosensing by WNK Kinases. Mol Biol Cell *32*, 1614-1623.