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NOTE S1. METHODS

Multiscale implementation

The multiscale simulation tool developed in this work is distributed as part of the open-source

MulSKIPS simulation package [1, 2]. This includes a core KMCsL code built on a peculiar super-

lattice framework which enables simultaneous modelling of cubic and hexagonal crystal phases in

the same simulation cell. Such a functionality is critical for LA simulations of multi-element systems

including non-ideal stacking and polymorphism. With the appropriate particle/event definition

and calibration, it can also simulate epitaxial growth by physical or chemical vapour deposition

[3]. The KMCsL model, coded in Fortran, is internally coupled to a FEM-based solver coded in

Python with the Dolfin interface of the FEniCS computing platform [4] (the same solver is used

for the benchmark 1D phase-field simulations). The PyMulSKIPS Python library, distributed

with MulSKIPS , manages all simulation workflows and includes an I/O interface coupling the

KMCsL simulator to the FEM solver and external Technology Computer-Aided Design (TCAD)

tools. In particular, ad-hoc Application Programming Interfaces are implemented to manage the

multi-process shared-memory execution of simulations via F2Py sockets [5, 6]. This ensures a

real-time communication of all relevant geometrical and physical information between the different

simulation frameworks. By allowing a single KMCsL process to run over the entire simulation, it

also enables a continuous tracking of species position and bonding configurations, which is crucial

for simulating the evolution of extended defects or polymorphic domains across consecutive FEM-
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KMCsL cycles (more details in Supplementary Note S2).

KMCsL model

The KMCsL model is defined on a dense cubic super-lattice able to accommodate both cubic and

hexagonal diamond lattices as sub-lattices. The super-lattice constant is aKMCsL ≡ a/12 ≡ l/
√

27,

with a the diamond lattice constant and l its nearest neighbour distance (0.543 nm and 0.235 nm

for Si, respectively). This definition makes it readily applicable to any elemental, compound and

alloy material with sp3 (tetrahedral) bond symmetry, such as Si, Ge or SiGe, including non-ideal

stacking configurations. Each super-lattice site is marked as either solid or liquid site and can

have coordination n ≤ 4 (for n = 4 they are marked as bulk). In case of Si1-xGex, the two atomic

species are randomly allocated in the lattice of the input structure, reflecting the user-defined Ge

fraction x. To reduce calibration parameters and memory consumption, thus improving scalability,

a real atomic occupancy is strictly considered only in the solid phase (the accuracy of this approach

was already demonstrated for Si LA simulations [7]). In case of SiGe alloys, while the solid-phase

Ge fraction can be described as a local time-dependent variable, xS ≡ xS(r, t), the liquid-phase

Ge fraction is averaged over the liquid volume at each ns-long KMCsL cycle xL ≡ xL(t) (more

details in Supplementary Note S4). In a partially-melted system, the kinetic evolution of the

liquid-solid interface is governed by the balance between solidification and melting events. These

are stochastically selected by a continuous time algorithm [7] and only involve under-coordinated

(n < 4) super-lattice sites. We note that no kinetics occurs in the bulk, no matter if solid or

liquid. Diffusion events are not explicitly defined in the KMCsL framework, but they can be

effectively reproduced by close melting/solidification events nearby the interface. The solidification

and melting event rates are thermally activated and therefore obey Arrhenius-like expressions, with

prefactors and exponents depending on temperature T and bond coordination n [7]. In the case of

SiGe alloys, they also explicitly depend on the fraction Xi of individual species in the liquid phase,

with Xi = xL for Ge and Xi = 1 − xL for Si. In particular, the solidification (melting) event rate

νiLS (νiSL) for species i = Si,Ge on a site with n = nSi + nGe solid neighbours is defined as:

νiLS = f i(T ) ·Xi · νi0 · exp

(
−

2Ei
LS(n)

kBT i
M

)
(S1)

νiSL = νi0 · exp

(
−
nEi

SL(nSi, nGe)

kBT

)
(S2)

where νi0 is a species-dependent constant prefactor, T i
M is the melting temperature of species i

and kB is the Boltzmann constant. The solidification rate increases with Xi and a damping term



S3

f i(T ) = 1/2[1 + erf((T − T i
0)/Ai)], with T i

0 and Ai adjustable parameters, effectively models the

reduction in solidification velocity under strong undercooling, as predicted by the Fulcher-Vogel

expression [8, 9]. Ei
LS(n) is the n-dependent solidification energy barrier for species i, whereas

Ei
SL(nSi, nGe) is the melting energy barrier, which is equivalent to a binding energy and hence

depends on the number and identity of nearest neighbours. We note that the event rates νiLS ≡

νiLS(t, r) and νiSL ≡ νiSL(t, r) vary with time t and lattice position r during the LA simulations.

This stems from the fact that T ≡ T (t, r) as well as Xi ≡ Xi(t) are evaluated at every FEM-

KMCsL cycle. All parameters in Equation (S1) are determined by calibrating pure Si and Ge

systems against their Fulcher-Vogel curves (see Figure 2a in the main text). The melting energy

barriers, Ei
SL(nSi, nGe), are determined by calibrating SiGe against its experimental lens-shaped

phase diagram (see Figure 2b in the main text). The precise expressions for the energy barriers

and the detailed procedure for calibration are reported in Supplementary Note S3.

Solidification at a one-coordinated site can either follow the stacking order dictated by its local

atomic environment or it can break it, according to a user-defined probability P ∈ [0, 1] (P = 1

(P = 0) means that only cubic (hexagonal) stacking is allowed) [2]. Processes where the interface

kinetics is such to destabilize higher-coordinated solid sites, in favor of lower-coordinated ones, are

more prone to the formation of stacking defects.

The occupancy, coordination and bonding configuration of any bulk solid site in the super-

lattice is constantly accessible in the shared-memory environment over successive FEM-KMCsL

cycles. This is crucial to keep track of the amount of solid and liquid species over time, which

in turn allows to compute xL(t) and xS(r, t), map the latter into the FEM solver, ensure mass

conservation and track the evolution of vacancies (KMCsL voids with n = 4 three-coordinated

solid neighbours) and stacking disorder throughout the simulation.

FEM model

Continuum modelling in this work consists in using finite element methods (FEM) to solve

the heat equation self-consistently with the time-harmonic solution of Maxwell’s equations on a

mesh, including phase, temperature and alloy-fraction-dependent material parameters [10]. In the

context of the multiscale methodology, the mesh is 3D and the solid/liquid phase changes and

species redistribution in the liquid and solid phases are modelled by means of KMCsL. In the

non-atomistic simulations carried out for consistency and validation analyses, the mesh is 1D and

a mixed enthalpy/phase-field formalism is adopted instead [10, 11]. The enthalpy formalism is
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used for T < TM (x), while the phase-field formalism is used for T > TM (x), with TM (x) being the

melting temperature expected from the phase diagram.

The mesh is always initialized from a TCAD geometry with size of ∼20 µm along the direction z

of irradiation and 10-30 nm along the lateral x and y (periodic) directions. A 200 nm-thick layer of

air is included above the initial surface. The KMCsL-coupled subregion typically includes the top

30-150 nm of the surface and a few-nm layer of air (2 to 10 nm), which needs to be thick enough

to accommodate possible resolidification of the material above the initial surface level. The mesh

resolution in the KMCsL-coupled subregion is 1-1.5 nm and gradually becomes coarser far from it,

until it reaches the mesh lateral size in the top and bottom of the mesh.

The optical and thermal parameters for Si and SiO2 are taken from Ref. [8], while those for

Ge are taken from Refs. [11]. The behavior of SiGe alloy is nearly ideal (Raoultian) [12], hence

most of its properties are well approximated by a linear interpolation of pure Si and Ge ones. We

recently found that the dielectric function of liquid and solid SiGe requires a more careful definition

to properly capture experimentally measured reflectivities [13]. In this work, only for the liquid

SiGe dielectric function, we choose for simplicity to use a linear interpolation between pure Si and

Ge weighted on xL, rescaled ad-hoc by a factor ai ≈ 1 to capture the reflectivity reported in [13].

The ai and corresponding reflectivity values are reported in Supplementary Table S4.

The models employed for relaxed and strained SiGe only differ in the initial Ge profile and

in the definition of solid-phase thermal conductivity. For strained SiGe we refer to the known

expression for pure silicon [8]. This is justified by the small thickness of SiGe layers compared to

the substrate’s in our simulations. For relaxed SiGe we use the expression reported in Ref. [14].

Experiments

Relaxed thick Si1-xGex samples were prepared from two 200 mm bulk Si(0 0 1) wafers (Czochral-

ski, p-type, 1–50 Ω cm). The epitaxy process was performed by Reduced Pressure Chemical Vapor

Deposition in a Centura 5200C chamber from Applied Materials. Prior to each SiGe layer epitaxy,

a H2 bake (1373 K, 2 min) was done to remove the native oxide. After the surface cleaning, a

graded SiGe buffer layer was grown on each wafer with a 10% / µm ramp (1173 K for one wafer

and 1123 K for the other, P = 20 Torr, precursors: SiH2Cl2 + GeH4). Then, 1.2 µm thick relaxed

and undoped SiGe layers were grown with a uniform Ge content, corresponding to that of the

buffer layer underneath. Thanks to the high temperature used during the process, the glide of the

threading arms of misfit dislocations (i.e. threading dislocations) was enhanced in such way that
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they remained mostly confined in the graded buffer layers, close to the SiGe/Si interface. As a

result, the threading dislocations density was significantly reduced in the SiGe top layers (∼105

cm2). Following the RPCVD process, the remaining cross-hatch patterns were removed using a

two steps (planarization and smoothing) Chemical-Mechanical Polishing process thanks to a Mirra

CMP system from Applied Materials, reducing the thickness of the SiGe top layers from 1.2 µm

to (∼0.7 µm). Nanosecond Laser Annealing was performed with a SCREEN-LASSE (LT-3100)

UV laser (λ = 308 nm, single pulse, pulse duration = 160 ns, 4 Hz repetition rate, < 3 % laser

beam uniformity, 10×10 mm2 laser beam) at room temperature and atmospheric pressure, with an

constant incident N2 flux to strongly limit the oxygen incorporation. The Ge composition of laser

irradiated SiGe layers was measured with well-calibrated [13] Energy Dispersive X-ray spectroscopy

(EDX) in a Transmission Electron Microscope JEM-ARM200F Cold FEG equipped with a EDX

SDD CENTURIO-X detector from JEOL. X-ray signals in selected areas have been quantified

via the Cliff and Lorimer factor method to extract Ge content profiles as function of depth. The

cross-section lamellas were fabricated by Focused Ion Beam in a Helios 450S Scanning Tunneling

Electron Microscope from FEI.

NOTE S2. TECHNICAL IMPLEMENTATION OF THE MULTISCALE METHOD

Here we report on the main software engineering tasks needed to enable nanosecond pulsed

laser annealing (LA) simulations for SiGe alloys. The means and importance of sharing of RAM

between Python and Fortran modules will be deployed. This gives the possibility to ensure mass

conservation during the LA process, enable solidification of the material above its as-grown sur-

face level, model extended defects during the process and track the kinetics and redistribution

of the various species composing the alloy. The major technical improvement of enabling shared

RAM, and thus efficient in-memory data transfers, between the Fortran kinetic monte carlo on

super-lattice and the Python continuum FEM environments for LA simulations was achieved by

integrating the so-called F2Py sockets [5] into the MulSKIPS code, exploiting some of the rou-

tines available in [6]. The workflow after full integration of F2Py functionalities in the Python

and Fortran modules is outlined in Figure S1. During a hybrid FEM-KMCsL LA simulation three

key data transfers are carried out between the Fortran and Python solvers, one at the beginning

of the simulation and the others at every time step ∆t of the FEM-KMCsL cycle. The first one

is a geometry transfer from Python to Fortran, occurring after interpolation of the relevant part

of mesh into the MulSKIPS superlattice formalism. The second one is the thermal field transfer
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FIG. S1. Technical flowchart of the hybrid atomistic-continuum tool. The required input parameters for

FEM and KMCsL models, listed on top, are all provided to a general Python control script. Green and blue

colours indicate Fortran and Python-based character of the invoked routines, respectively. Steps directly

involving F2Py routines are shown with a colour gradient ranging from green to blue, and vice-versa. The

control flags GeoFlag, FieldFlag, PhasesFlag and XGeSFlag are used in Fortran to signal the availability in

RAM of the relative data arrays and thus trigger the communications between Fortran and Python.

from Python to Fortran at every time step ∆t, which is used as input in MulSKIPS to determine

the KMCsL space- and time-dependent melting/solidification event probabilities. The third one is

the solid/liquid phases transfer from Fortran to Python at every time step ∆t, which is used to get

the phase-changed volume in the FEM model and compute the exchanged latent heat needed to

solve the Maxwell-Fourier self-consistent problem, and get an updated thermal field in the following

iteration. Without implementing F2Py sockets [7], such data (in the form of arrays with KMCsL
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superlattice dimension Lx × Ly × Lz) could only be transferred from Python to Fortran and vice

versa by means of hundreds of heavy write/read operations on disk, with obvious performance lim-

itations and demanding storage requirements. F2Py sockets allow performing such array transfers

directly in RAM.

From a more technical point of view, the operations involving F2Py sockets are performed

by ad-hoc “send” and “receive” routines implemented in both Fortran and Python environments,

whose execution is triggered in Fortran by proper combinations of the four control flags GeoFlag,

FieldFlag, PhasesFlag and XGeSFlag, each indicating the availability in RAM of the data arrays

describing occupancies, thermal field, phases and Ge local fraction, respectively. The initialization

of the F2Py socket and the MulSKIPS unique Fortran CPU process is carried out right after

setting up the LA simulation parameters in Python. At the beginning of the Fortran CPU process,

all flags are set to False, meaning that the KMCsL code is on standby and waiting for instructions

from Python. The Python module interpolates a local mesh region into a data array in the form of

superlattice sites occupations, issues a “send” command to communicate the geometry information

via the F2Py socket, and is put on standby. The “send” command in Python triggers a “receive”

command in Fortran, which reads the data array stored in RAM by Python, uses them to set

up the superlattice occupations, then sets the GeoFlag to True and is put in standby. In the

latter step, the original number of each atomic species is also stored, as a reference to ensure mass

conservation during solidification at the latest stages of the LA simulation. The Python module

enters the FEM cycle and heats up the system by simulating laser absorption until the maximum

temperature in the mesh reaches the trigger temperature melting temperature TM . At this point,

the thermal field is interpolated and sent to Fortran via F2Py sockets, which receive it and set

the FieldFlag to True. This last statement, combined with the True state of GeoFlag, triggers

the setup of KMCsL probabilities and marks the beginning of the first KMCsL cycle. Once the

KMCsL simulated time reaches ∆t, the solid/liquid state of each superlattice site and the Si/Ge

identities of all solid ones are stored in RAM, a “send” command is issued (this time in Fortran),

the PhasesFlag and XGeSflag are set to True and the FieldFlag is restored to False, ensuring that

the Fortran CPU process stays in standby until a new thermal field is transferred. Python reads

such data from RAM, uses it to update the S/L volumes in the mesh and the solid-phase local

Ge fraction, then recalculates the thermal field. As this sequence goes on, the number of liquid

and solid sites in the KMCsL superlattice is continuously tracked in the Fortran environment,

differentiating the various chemical species (e.g., Si and Ge in SiGe alloys). Once the original

number of solid species is recovered (or, equivalently, there are no more liquid sites) the backward
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communications to Python occur one last time and the F2Py connection is closed. At this point,

the FEM cooling cycle continues until the maximum simulation time tmax, set up at the beginning

of the LA simulation, is reached.

In addition to optimizing data exchange, an F2Py socket allows for the execution of a unique

KMCsL CPU process for the whole LA simulation (rather than a sequence of independent KMCsL

calculations reinitialized at every time step ∆t). This in turn means that the information about

KMCsL sites’ occupations and coordinations can be retained across subsequent KMCsL-FEM

communication cycles. In Ref. [7] this was unfeasible because MulSKIPS needed to be reinitialized

after every FEM step, causing an inevitable reset of MulSKIPS superlattice information.

Overall, RAM storage through F2Py sockets has the important advantages of unlocking the

simulation of defects in the irradiated material, which is a native characteristic feature of Mul-

SKIPS . It indeed allows preserving the information about vacancies positions in the KMCsL box

across subsequent KMCsL cycles, which would otherwise be lost if MulSKIPS is reinitialized from

scratch at every ∆t. It makes it possible to keep the information about stacking choices made for

all one-coordinated solid sites across subsequent KMCsL ∆t-long cycles, enabling the evolution of

extended stacking defects during the LA-induced resolidification. Furthermore, it allows tracking

the concentration and position of every solid species within the KMCsL box during the LA sim-

ulation, which is crucial to count solid sites at every instant of the simulation and ensure that

solidification ends whenever the original solid mass is recovered.
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NOTE S3. DETAILS ON KMCSL CALIBRATION

TABLE S1. Solidification energies for Si (left column) and Ge (right column). The energy values ESi
2 and

EGe
2 are obtained by calibrating the pure species.

Si Ge

ESi
LS(1) = (ESi

2 − δSi) EGe
LS (1) = (EGe

2 − δGe)

ESi
LS(2) = ESi

2 EGe
LS (2) = EGe

2

ESi
LS(3) = (ESi

2 + δSi) EGe
LS (3) = (EGe

2 + δGe)

TABLE S2. Melting energies Ei
SL(nSi, nGe) for i=Si (left column) and i=Ge (right column).

Si Ge

ESi
SL(1, 0) = ESi

2 EGe
SL (1, 0) = (1 + β)[EGe

2 + ESi
2 ]/2

ESi
SL(0, 1) = (1 − α)[ESi

2 + EGe
2 ]/2 EGe

SL (0, 1) = EGe
2

ESi
SL(1, 1) = (1 − α)[3ESi

2 + EGe
2 ]/4 EGe

SL (1, 1) = (1 + β)[3EGe
2 + ESi

2 ]/4

ESi
SL(2, 0) = ESi

2 EGe
SL (2, 0) = (1 + β)[EGe

2 + ESi
2 ]/2

ESi
SL(0, 2) = (1 − α)[ESi

2 + EGe
2 ]/2 EGe

SL (0, 2) = EGe
2

ESi
SL(2, 1) = (1 − α)[5ESi

2 + EGe
2 ]/6 EGe

SL (2, 1) = (1 + β)[2EGe
2 + ESi

2 ]/3

ESi
SL(1, 2) = (1 − α)[2ESi

2 + EGe
2 ]/3 EGe

SL (1, 2) = (1 + β)[5EGe
2 + ESi

2 ]/6

ESi
SL(3, 0) = ESi

2 EGe
SL (3, 0) = (1 + β)[EGe

2 + ESi
2 ]/2

ESi
SL(0, 3) = (1 − α)[ESi

2 + EGe
2 ]/2 EGe

SL (0, 3) = EGe
2

TABLE S3. KMCsL calibrated parameters for pure Ge and Si.

- Ge Si

n0 2.60 · 1016 1.33 · 1017

E2 [eV] 0.65 0.96

δ [eV] 0.02 0.03

T0 [K] 900 1080

A [K] 210 280

TM [K] 1210 1688

The expressions of the energy barriers appearing in Equation (S1) and Equation (S2) are re-

ported in Table S1 and Table S2 for solidification and melting events, respectively.

The calibration of Si-Ge mixtures is based on the single-species calibrations of pure Si and Ge.

All the parameters involved in Equation (S1) and Equation (S2), except for the melting energy
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barriers involving mixed bonds (i.e., ESi
SL(nSi, nGe ̸= 0) and EGe

SL (nSi ̸= 0, nGe)), were calibrated

against the Fulcher-Vogel relation for the pure (crystalline) species, which gives the temperature

dependence of the interface velocity [8, 9]. The results are reported in Table S3.

For SiGe, since a Fulcher-Vogel relation cannot be defined for alloys, we relied on the experi-

mental phase diagram of the material, expressing the temperature-dependent composition of the

solid and the liquid phases at equilibrium, when the melting/solidification process is operated at a

very slow speed [12]. The behavior of the alloy is very close to ideal (Raoultian), where enthalpic

contributions to the mixing energy are negligible and the lens shape of the diagram mostly de-

pends on the entropy of fusion of the component species (the larger the entropy, the broader the

shape). Under such assumption of ideal mixing, the energy Eij of a mixed bond can be estimated

as Eij = ((Eii + Ejj))/2. An initial guess for the values of Ei
SL(nSi, nGe) is therefore obtained

as linear combinations of the solidification energy barriers for pure Si and Ge, ESi
2 ≡ ESi

LS(2) and

EGe
2 ≡ EGe

LS (2) weighed on the number of Si and Ge nearest neighbors. The energy barriers for

mixed bonding states are perturbed (i.e., further decreased in the case of Si and increased in the

case of Ge) by a small amount to reproduce the experimental phase diagram of the alloy. The

resulting 18 energy parameters (9 for Si and 9 for Ge) take the form reported in Table S2. For

the sake of simplicity, the perturbation terms α and β were chosen to be the same for every co-

ordination state of Si and Ge, respectively, thus reducing the calibration to such two parameters

only. For calibration purposes, a few assumptions were made in the simulation set-up. The liquid

phase surmounting the solid material is assumed to have a fixed Ge fraction xL, meaning negligible

diffusion times of Si and Ge atoms within an infinite liquid reservoir. The temperature is kept con-

stant and uniform in the simulation box at every KMCsL run. We note that in the FEM-KMCsL

LA simulations the KMCsL event rates in Equation (S1) and Equation (S2) are functions of time

t and lattice position r. This is because the condition of fixed and uniform temperature in the

simulation box is dropped and the liquid-phase composition xL ≡ xL(t) (i.e., the parameter Xi)

becomes a time-dependent variable. The overall workflow of the calibration is described below:

• Set the calibration parameters α and β.

• Set the desired molar fraction of Ge in the liquid phase, xL, which is assumed to be fixed

during the KMCsL run and set to be equal to the initial solid seed (the latter assumption

is arbitrary, since the composition of the solidified bulk material will depend on xL and on

the KMCsL event probabilities).

• Run MulSKIPS in the temperature interval [T exp
M − 100, T exp

M + 100], where T exp
M is the
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FIG. S2. Some steps of the KMCsL calibration workflow for the case of xL = 0.8. (a) experimental phase

diagram of the SiGe mixture. The xL value on the liquidus curve is marked in blue, the expected xexp
S

value on the solidus curve (0.46 in this case) is marked in orange. (b) temperature-dependent interface

speed predicted from the KMCsL model (black dashed line). The expected equilibrium temperature T exp
M

at xL extracted from the phase diagram is shown as blue dotted line. The equilibrium temperature TKMCsL
M

interpolated from the KMCsL curve is 1415 K. (c) Evolution of the bulk Ge fraction obtained from the

KMCsL run at T run
M =1410K; the initial frames are discarded until the xKMCsL

S value stabilises around a

constant value. In this case, xKMCsL
S = 0.44, with standard deviation σ(xKMCsL

S ) = 0.04.

equilibrium temperature in phase diagram, corresponding to x = xL (see Figure S2a). The

equilibrium temperature, TKMCsL
M , is interpolated as the temperature corresponding to zero

interface velocity in the KMCsL runs (see Figure S2b).

• Run MulSKIPS at a constant temperature T run slightly lower than TKMCsL
M (by 5 K), to

ensure quasi-equilibrium solidification of the material.

• The Ge molar fraction of the solidified material, xKMCsL
S = nGe/(nSi+nGe), and the standard

deviation σ(xKMCsL
S ), are calculated by tracking the number of Si and Ge atoms solidified at

every time frame in the KMCsL cycle, and averaging the Ge fraction once the solidification
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is stabilized (see Figure S2c).

• Compare the KMCsL results to the experimental phase diagram. Repeat the steps above

with updated α and β, if necessary.

The calibration yielded α=0.06 and β=0.08, suggesting a small (less than 10%) perturbation

to the Raoultian behavior of the mixture.
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NOTE S4. DIFFERENCES BETWEEN PHASE-FIELD AND FEM-KMCSL

APPROACHES

Besides the trivial difference in dimensionality and in the modelling approach to phase tran-

sitions, other technical differences exist between the phase-field and the multiscale FEM-KMCsL

methodology, which are at the origin of the deviations observed in Figure 3 of the main text.

1. Melting in phase-field simulations occurs at T ≥ TM (xL), with TM (xL) being the liquidus

line of the phase diagram drawn in Figure 2 of the main text (dashed lines). In the FEM-

KMCsL simulations, local melting is governed by the balance between the well-calibrated

KMCsL melting and solidification events.

2. The interface smoothness within the phase-field formalism is user-defined. The melt front

evolution in planar samples is tracked by looking at the flex of the phase function as a

function of depth. Both this phase profile and the local Ge concentration profile in the mesh

are seamless and smooth step-like functions of depth, uniquely defined across solid and liquid

regions. In the KMCsL formalism the solid/liquid (S/L) interface is atomically sharp, with its

position in planar samples evaluated as the average z coordinate of all undercoordinated solid

atoms. This different smoothness is at the origin of the slightly higher ( 6 nm) maximum melt

depth found with FEM-KMCsL for 30nm strained SiGe irradiated with high energy density

(i.e., 1.9 J cm−2). Here there is an instant where the S/L interface falls below the initial

SiGe/Si junction. At this point, in the phase-field simulation, the Ge concentration drops to

zero in a gradual fashion. Instead, in the FEM-KMCsL simulation, a higher concentration

of Ge (i.e., lower TM ) exists in the liquid region right above the SLI (due to its much more

step-like Ge profile). The heat to be released to stop melting and initiate solidification is

therefore higher in the FEM-KMCsL than in phase-field simulations.

3. Atomic sites in the liquid phase are not explicitly implemented in the current KMCsL frame-

work, and neither are liquid-phase diffusion events. Si and Ge concentrations are computed

as averages, by direct subtraction of the number of Si and Ge solid sites from the respective

initial amounts. On one hand, this averaging is justified by the high value of Ge diffusivity

in liquid SiGe near melting temperature ( 10−4 cm2/s [8, 15]), which yields Ge diffusion

velocities 3-4 times higher than the typical solidification velocity in LA processes with ns

pulses ( 2-3 m/s) [16, 17]. In fact, melt depths and overall Ge segregation trends are well

reproduced. On the other hand, approximating as infinite such a high diffusivity leads to
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underestimated Ge trapping at the beginning of solidification, compared to phase-field. This

is evident from the different minima found in the post-anneal Ge profiles of Figure 3g-h of

the main text. In turn, FEM-KMCsL simulations always end with the solidification of a

pure Ge capping layer (x=1) with an energy density-dependent thickness, whereas phase-

field simulations provide a SiGe capping layer with energy density-dependent Ge content

and an almost constant thickness. The variation of capping layer thickness in FEM-KMCsL

simulations explains the the energy density-dependent plateaus found in the KMCsL melt

depth profiles. The variation in Ge content in the phase-field simulations explains the energy

density-dependent plateaus found in the phase-field Tmax profiles.

4. The purely continuum methodology presents numerical instabilities at the onset of melting

and at the end of solidification. For example, one may notice the abrupt melt depth variation

in the latest stage of solidification in Figure 3c of the main text. These instabilities are due

to the switching between enthalpy and phase-field continuum solvers occurring every time

T crosses TM (xL). A good convergence of the simulations needs to be achieved, by proper

adjustments of the time step ∆t, interface smoothness and threshold size for nucleation.

The only numerical instabilities affecting the FEM-KMCsL simulations concern temperature

oscillations, like the small ones observed at the onset of melting in Figure 3e of the main

text. These are due to the small ( 1.5 nm) but finite thickness of the liquid layer initially

defined at nucleation stage to stably initialize the melting phenomenon. Such oscillations

can be reduced by setting a smaller ∆t [7], as confirmed by the results for strained SiGe,

where ∆t = 0.25 ns was used, instead of 0.5 ns.
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NOTE S5. CORRECTION TO THE LIQUID SIGE DIELECTRIC CONSTANT

TABLE S4. Correction factors ai used in the linearly interpolated expression for the dielectric constant of

liquid SiGe, [ϵl,SiGe(xGe) = ϵl,Ge · xGe + ϵl,Si · (1 − xGe)] · ai, in order to reproduce the experimental melt

depths in Figure 4 of main text. The values of reflectivity are also reported, before (Rai
= 0) and after

(Rai
) the correction. ED stands for energy density.

Sample ∆tpulse [ns] ED [J cm−2 ] ai Rai Rai=0

Relaxed Si0.76Ge0.24 160 0.75 1.5627 0.815 0.778

160 1.10 1.4160 0.807 0.778

Relaxed Si0.42Ge0.58 160 0.90 1.3258 0.802 0.775

Strained Si0.8Ge0.2 146 1.80 1.1938 0.794 0.778

146 2.00 1.4073 0.807 0.778

Strained Si0.6Ge0.4 146 1.60 1.4073 0.769 0.768

146 1.81 1.2460 0.797 0.768
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NOTE S6. LA SIMULATION RESULTS FOR ADVANCED SIGE SYSTEMS

FIG. S3. (a-b) Same simulations of Figure 6 in main text, but with KMCsL snapshots not overlapped.

A 3 × 3 periodic repetition of the KMCsL interface at the end of melting and solidification stages in the

simulations in (a) is shown in (c) for P=1 and in (d) for P=0.995. For the simulations in (b), the KMCsL

cell is reported in (e) for P=1 and in (f) for P=0.9995.
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