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Methods: 

MSI Datasets  

AMP scores were constructed and validated using metabolomic MSI data from three previously 

published studies. These studies evaluated frozen human tissue sections using desorption 

electrospray ionization (DESI) MSI to characterize the molecular profile of the different 

phenotypes. 1-3  In this work, we considered a subset of features from negative ion mode data from 

each study, with each feature having an m/z value, associated signal intensity (abundance), and x 

and y coordinates, associated with the MS image. In total, 210 tissue samples were analyzed 

including: 20 follicular thyroid adenoma (FTA) (15,088 pixels), 20 papillary thyroid carcinoma 

(PTC) (13,554 pixels), 41 normal breast (NB) (1,674 pixels), 81 invasive ductal carcinoma breast 

cancer (IDC) (31,639 pixels), 1 heterogeneous NB/IDC (1,910 pixels), 15 normal ovarian (NO) 

(11,126 pixels), 14 borderline ovarian tumor (BOT) (3,759 pixels), 14 high grade serous carcinoma 

(HGSC) (9,965 pixels), and 2 heterogeneous NO/HGSC (7,304 pixels) samples. Five pairwise 

phenotype comparisons were then assessed in the study: (1) FTA vs. PTC samples from DeHoog 

et al., (2) NB vs. IDC samples from Porcari et al., and (3) NO vs. BOT, (4) NO vs. HGSC, and (5) 

BOT vs. HGSC from Sans et al. Further information on data collection can be found in their 

respective publications.1-3  

 

Data Pre-Processing 

For each pairwise comparison, data were filtered by first binning each m/z value to the nearest 

hundredth and removing m/z values that appear in fewer than 10% of pixels. For all thyroid and 

ovarian tissue samples, the m/z range was restricted to 100-1200. Breast tissue data was collected 

across multiple laboratories, and cosine similarity analyses of the full mass spectra obtained from 
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the different labs revealed that a higher m/z range was necessary to achieve high spectral similarity. 

The m/z value range for the breast tissue samples was thus restricted to 700-1200 as done in the 

original manuscript to maintain consistency.2 Once all unique features were identified, missing 

values were imputed using the minimum detected value in the dataset. Following filtering, 

normality was assessed using density plots, which revealed a strong right skew. Therefore, all 

abundances were log2 transformed and then normalized at the sample level by dividing by the 

feature with the highest signal intensity, or abundance, value. The data were then assessed for 

sample outliers and batch effects were then assessed using principal components analysis (PCA).  
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Figure S1: Venn diagrams showing the overlap of features selected by Lasso, random forest (RF) and 

support vector machine (SVM) for A) FTA vs. PTC samples, B) NB vs. BC samples, C) NO vs. BOT 

samples, D) NO vs. HGSC, and E) BOT vs. HGSC samples.    
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Figure S2: Receiver operator characteristic (ROC) 

curves for phenotype prediction performance of 

AMP scores for each pairwise comparison.  
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LDA Comparison:  

Introduction: 

Linear discriminant analysis (LDA) is a widely used statistical technique for classification 

tasks. It seeks to find an optimal linear combination of input features that maximizes the separation 

between classes of interest, enabling the prediction of class labels and estimation of associated 

posterior probabilities. In mass spectrometry imaging (MSI) analyses, LDA models are initially 

constructed using labeled pixels, and subsequently, unlabeled testing sets are projected onto the 

discriminant axes to facilitate classification.4 Analogous to AMP scores, the resulting posterior 

probabilities can be leveraged not only for pixel class prediction but also for the creation of 

probability heatmaps, enabling the visualization of tissue sections based on the likelihoods of 

different classes. Based on these similarities, we aim to assess how AMP scores compare to LDA 

output for both the classification of pixels and the visualization of tissue sections.  

 

Methods: 

Data were pre-processed and split into training and testing sets using the same steps used 

for AMP score analysis. LDA models were built using each of the respective training sets using 

the function ‘lda’ function from the MASS package in R (v4.2.1). These models were then used to 

make predictions on the testing data. A posterior probability threshold value of 0.5 was used, so 

that pixels with a probability less than 0.5 were predicted to be class 1, while pixels with 

probabilities greater than or equal to 0.5 were predicted to be class 2. Predicted phenotype labels 

were then compared to true pixel labels from pathology, and accuracy, sensitivity, and specificity 

were calculated using functions from the R package caret. Boxplots and AMP score heatmaps were 

then made in R using the package ggplot2 to compare results. 

Results and Discussion: 
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 In general, pixel classification with posterior probabilities resulting from LDA 

demonstrated high accuracy, sensitivity, and specificity. This trend was best seen in the healthy or 

benign versus diseased tissue sections, where performance measurements were above 99%, except 

for the sensitivity in the NB versus IDC comparison, which was 92.6%. These results were 

comparable to classification with AMP scores, which had all performance metrics above 97% for 

healthy or benign versus diseased tissue comparison, except for the sensitivity in the NB versus 

IDC comparison, which was 92.7%. The most notable disparity in performance was seen for the 

BOT versus HGSC comparison, where LDA had 91.5% accuracy, while AMP scores had 96.1% 

accuracy. This discrepancy is primarily due to LDA having difficulties classifying HGSC pixels, 

which is reflected in the lowered sensitivity of the model (79.1%). These results suggest that AMP 

scores may have an advantage when trying to distinguish pairwise disease phenotypes.  

 

 

 

 

 

 

 

 

 

 

 While prediction performance was similar between LDA and AMP scores, there were notable 

differences in the distribution of posterior probabilities and AMP scores. Boxplots depicting the LDA 

posterior probabilities revealed narrow interquartile ranges, indicating that the majority of predictions were 

clustered near 0 or 1. This is in contrast with the distribution of AMP scores, which were more normal in 

Table S1: Summary of LDA performance for each pairwise 

comparison. From top to bottom: Follicular thyroid adenoma 

(FTA) vs. papillary thyroid carcinoma (PTC), normal breast (NB) 

vs. invasive ductal carcinoma (IDC), normal ovarian (NO) vs. 

borderline ovarian tumor (BOT), NO vs. high grade serous 

carcinoma (HGSC), and BOT vs. HGSC.  
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shape and typically had a greater interquartile range. However, despite probabilities having a narrower 

interquartile range, they often resulted in more extreme misclassification. For example, while the highest 

class 1 score assigned to a pixel with AMP scores was 0.645, LDA assigned a probability of 1 to several 

class 1 pixels. This shows that LDA was more prone to assigning absolute probabilities for 

misclassifications, whereas AMP scores provided a wider range of scores for misclassified pixels. 
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Figure S3: LDA poster probabilities for A) FTA vs. PTC, B) NO vs. BOT, C) NO vs. HGSC, D) NB 

vs. BC, and E) BOT vs. HGSC.  Each individual box and whiskers plot shows the distribution of 

probabilities across all pixels within a sample. Outlier points are defined as observations more than 1.5 

times the interquartile range away from the upper or lower quartile.  
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 The tendency to only predict extreme values was further demonstrated when visualizing 

heterogeneous tissue sections. Rather than highlighting a transition region between phenotypes, plotted 

probabilities showed rigid borders between phenotypes. Further, several extreme misclassifications can be 

seen, particularly in panel B and C. These heatmaps also failed to line up as closely to pathology annotations 

as the AMP score heatmaps, which can be best seen in panel A where the probability heatmap classifies the 

bottom of the tissue as mostly cancerous, failing to capture that there are small normal regions throughout. 

In all, these results suggest that while LDA usually accurately classifies pixels, posterior probabilities do 

not identify subtle changes. This highlights the utility of AMP scores, which not only preserve high 

classification performance on homogeneous tissue sections, but also are able to capture gradual changes in 

heterogeneous tissues.  

  

Figure S4: Comparison of LDA probability heatmaps for heterogeneous tissues to 

annotated H&E slides for example HGSC tissue shown in A) and B), IDC tissue in C). 

On the H&E slides, tissue outlined in black corresponds to tumorous areas with 

healthy tissue in the other regions.  
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Phenotype Border Analysis: 

To investigate the molecular composition of the transition region between phenotypes, we present 

six mass spectra obtained from six adjacent pixels in a heterogeneous tissue section. These pixels originate 

from a normal region and transition into cancerous tissue. By examining the AMP scores of these pixels, it 

becomes evident that rather than a sharp change at the border, AMP scores progress gradually, with 

increases ranging from 0.048 to 0.123 between adjacent pixels (Figure S5). The differences in these scores 

can be traced back to both the raw mass spectra for these pixels, as well as filtered mass spectra, which 

present only the features that were selected and used in AMP score calculation. From the raw mass spectra, 

it can be seen that one characteristic that delineates the AMP scores is the number of features detected in 

the low mass range (100-500) (Figure S5). Pixels with lower AMP scores exhibit a high number of features 

in this range, with many of them having a considerable relative abundance. As we transition to pixels with 

intermediate AMP scores, the quantity of features in this range begins to decrease, accompanied by a decline 

in their relative abundance. This trend persists as the AMP scores assigned to a pixel increases, indicating 

that AMP scores correspond to distinct molecular profiles. In the presented filtered spectra, only features 

selected for AMP score modeling were used, and the color of these features in the presented spectra is based 

on the weight resulting from logistic regression in the AMP score pipeline (Figure S6). Features with a 

dark red color represent features whose increased abundance is strongly associated with cancerous tissue, 

and those in darker blue represent features whose increased abundance is strongly associated with normal 

tissue. In these plots, it can be seen that pixels with low AMP scores tend to have mainly normal associated 

features detected, while those with higher AMP scores have primarily cancer associated features detected. 

In all, we believe these spectra demonstrate that pixels with intermediate AMP scores share molecular 

characteristics with both normal and cancerous phenotypes. Thus, the localization of pixels with 

intermediate scores at phenotype borders suggests that biological differences between phenotypes occurs 

gradually.  
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Figure S5: Raw mass spectra of six adjacent pixels in a heterogeneous HGSC tissue section (Figure 7B) that 

span the transition region between normal and diseased tissue.  
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Figure S6: Filtered mass spectra of six adjacent pixels in a heterogeneous HGSC tissue section (Figure 7B) 

that span the transition region between normal and diseased tissue. This figure matches Figure S5, but only 

includes selected features. Intensities are colored according to the weight that feature had in AMP score 

calculation, with blue values indicating an association with normal tissue and red colors having an association 

with diseased tissue.  
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