
Supplementary Figures 
 

 
 
Supplementary Figure 1. Accuracy of implicit haplotype phasing by DAESC-Mix in 
simulation studies. Allele-specific read counts are simulated from beta-binomial mixture 
model for assuming only one eQTL drives ASE at a tSNP. Simulated data consist of 4,000 
genes with varying LD between the eQTL SNP and the tSNP: r2 = 0, 0.1, 0.5, 0.9, 1 (800 genes 
each, 400 null and 400 non-null). See Methods for details of the simulation settings. Implicit 
phasing is conducted for differential ASE analysis along a continuous cell state. We test the 
association between the true phase (!!"#$) and estimated phase (!$%!) using a contingency 
table as shown above and Fisher’s exact test. Only genes with at least two true phases and 
two observe phases are tested.  



 
 

 
Supplementary Figure 2. Distribution of linkage disequilibrium (LD) coefficient between 
the top eQTL and top transcribed SNP (tSNP) of an eGene observed in GTEx v8 whole 
blood. The top tSNP is defined as the tSNP with highest allele-specific read depth. The top 
eQTL is defined as the one with smallest association p-value with the expression of the gene. 
The red dashed line is r2=0.1 and 56.7% eQTL-tSNP pairs have r2<0.1. 
 
  



 
Supplementary Figure 3. Type I error and power for all methods compared in simulation 
studies. Allele-specific read counts are simulated from beta-binomial mixture model under the 
scenario where only one eQTL drives the ASE of a transcribed SNP (tSNP, see Methods). The 
linkage disequilibrium between the eQTL and the tSNP is varied to "& = 0, 0.1, 0.9, and the 
sample size is varied N=10, 50, 100. For case-control comparisons, the number of cases and 
controls are both N/2. Blue dashed lines represent type I error = 0.05.   



 
Supplementary Figure 4. Precision-recall curve for all methods compared in 
simulation studies. Allele-specific read counts are simulated from beta-binomial mixture 
model under the scenario where only one eQTL drives the ASE of a transcribed SNP 
(tSNP, see Methods). The linkage disequilibrium between the eQTL and the tSNP is varied 
to "& = 0, 0.1, 0.9, and the sample size is varied N=10, 50, 100. For case-control 
comparisons, the number of cases and controls are both N/2. Dashed lines represent 
precision = 0.5. 



 
 
 

 
 

Supplementary Figure 5. Performance of four methods for differential ASE detection 
between disease cases and controls observed in simulation studies where multiple 
eQTLs drive ASE. (a) Type I error and power under significance threshold p<0.05 (dashed 
lines represent type I error = 0.05) and (b) precision-recall curves (dashed lines represent 
precision = 0.5). Allele-specific read counts are simulated from beta-binomial mixture model 
assuming multiple eQTLs drive the ASE of a tSNP. The sample size is varied to N=10, 50, 
100. The number of cases and controls are both N/2. 

 
  



 
 
Supplementary Figure 6. Simulations under different levels of overdispersion 
parameter. Allele-specific read counts are simulated from beta-binomial mixture model under 
the scenario where only one eQTL drives the ASE of a transcribed SNP (tSNP, see Methods). 
Differential ASE analysis is conducted along a continuous cell state. Overdispersion 
parameters () or phi) are obtained by scaling the original overdispersion parameter in the 
candidate coefficients ()' or phi, Supplementary Table 4). Scaling parameters (0.5, 2, or 4) 
reflect different levels of overdispersion. The linkage disequilibrium between the eQTL and the 
tSNP is varied to "& = 0, 0.9, and the sample size is varied N=6, 10, 50. Black dashed lines 
represent precision = 0.5. 
  



 
Supplementary Figure 7. Simulation studies with varying single-cell read depth. We vary 
the read depth to 50%, 20%, and 10% of that of the endoderm differentiation data. The original 
depth is 576k total reads and 27k allele-specific reads per cell. Allele-specific read counts are 
simulated from beta-binomial mixture model under the scenario where only one eQTL drives 
the ASE of a transcribed SNP (tSNP, see Methods). Differential ASE analysis is conducted 
along a continuous cell state. The linkage disequilibrium between the eQTL and the tSNP is 
varied to "& = 0, 0.1, 0.9, and the sample size is varied N=10, 50, 100. Blue dashed lines 
represent type I error = 0.05. 
 
 



 
Supplementary Figure 8. Simulation studies where ASE counts are generated from 
binomial GLMM. (a) Precision-recall curve. Black dashed lines represent precision = 0.5. 
(b) Type I error and power. Blue dashed lines represent type I error = 0.05. Allele-specific 
read counts are simulated from mixture of binomial GLMM with donor- and cell-specific 
random effects. Only one eQTL is assumed to drive the ASE of a transcribed SNP (tSNP, 
see Methods). Differential ASE analysis is conducted along a continuous cell state. The 
linkage disequilibrium between the eQTL and the tSNP is varied to "& = 0, 0.1, 0.9, and the 
sample size is varied N=10, 50, 100.  

 



 
 

 
 
Supplementary Figure 9. Computational time for DAESC analysis of 100 genes on JHU 
Rockfish Computing Cluster. Allele-specific read counts are simulated from beta-binomial 
mixture model under the scenario where only one eQTL drives the ASE of a transcribed SNP 
(tSNP, see Methods). Differential ASE analysis is conducted along a continuous cell state. 
 
 
  



 
 

 
 

Supplementary Figure 10. Number of D-ASE genes identified by DAESC-Mix vs scDALI 
for the endoderm differentiation data. scDALI is implemented with 10 PCs as cell states and 
donor IDs as fixed-effects covariates. 
 
  



 
 

 
Supplementary Figure 11. Change of total expression over pseudotime for D-ASE genes 
identified by DAESC-Mix and dynamic eGenes reported by Cuomo et al. Each row is a 
cluster of patterns identified by spectral clustering. Each grey line is the trajectory of one gene 
and red line is the average trajectory within the cluster. 
 
  



 
 
Supplementary Figure 12. DAESC p-values for the endoderm differentiation data with or 
without monoallelically expressed SNPs. We show all the genes in a) and c) and a zoomed-
in plot (0-10) in c) and d). 
 
  



 

 
 
Supplementary Figure 13. Proportion of donors in the z=1 cluster learned by DAESC-Mix 
in the endoderm differentiation data. The histogram only plots genes with DAESC-Mix 
FDR<0.05. Cluster labels z=1 and z=-1 are determined posterior probability >0.5.  



 
 

 
 
Supplementary Figure 14. Distribution of candidate simulation parameters. Exact 
parameters are provided in Supplementary Table 4. 
 
  



 
 

 
Supplementary Figure 15. The error bar of type I error and power observed in simulation 
studies. Allele-specific read counts are simulated from beta-binomial mixture model under the 
scenario where only one eQTL drives the ASE of a transcribed SNP (tSNP, see Methods). 
Differential ASE analysis is conducted along a continuous cell state. Error bars (black line 
segments) are computed across 10 replications (500 simulations each) as mean ±	SD. Colored 
bar plots represent average across 10 replications. 
 
  



Supplementary Notes

1 DAESC-BB model and inference

1.1 Model setup

For a gene or heterozygous transcribed SNP (tSNP), let yij be the alternative allele read count of individual

i and cell j, and nij be the total allele-specific read count. Here i = 1, 2, ..., N and j = 1, 2, ..., Ji. Let xij be

a length-p vector of independent variables. The DAESC-BB model is formulated as follows:

yij |nij ⇠ beta-binomial(nij , µij ,�) (1)

log(µij/(1� µij)) = xT
ij� + ai (2)

ai ⇠ N(0,�2
a) (3)

The beta-binomial distribution for yij is equivalent to yij ⇠ binomial(nij , pij), pij ⇠ beta(µij/�, (1 �
µij)/�). The fixed e↵ects � represents ASE and dynamic ASE e↵ects. The individual-specific random e↵ects

ai’s capture the sample repeat structure due to having multiple cells per individual.

1.2 Parameter estimation by variational EM algorithm

We use the variational EM algorithm (Wang and Blei, 2013; Blei et al, 2017) to estimate unknown parameters

in model (1)-(2), treating ai as missing data. Define yi = (yi1, ..., yiJi)
T
and �(x) = 1/(1 + exp(�x)) as the

sigmoid function.
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1.2.1 E-step

At iteration t, we approximate the conditional distribution P (ai | yi;�(t),�
2
a,(t),�(t)) by N(âi,(t), �̂

2
ai,(t)

).

See section 3 for derivation of the variational approximation.

Here �(t), �
2
a,(t) and �(t) are the current values at iteration t. The EM Q-function is expressed as

Q(�,�2
a,� | �(t),�

2
a,(t),�(t)) = EN(âi,(t),�̂

2
ai,(t)

)[logP (y1, a1, ...,yN , aN | �,�2
a,�) | y1, ...,yN ,�,�2

a,�].

The expectation does not have a closed-form solution. We use Gauss-Hermite quadrature to approximate

it. Hence the Q-function can be approximated by
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Here (zm, wm), m = 1, ...,M are the nodes and weights of a Gauss-Hermite quadrature for standard

normal distribution. In practice, we found M = 3 nodes is su�cient for approximating the Q function.

1.2.2 M-step

The update for �2
a has a closed form:

�2
a,(t+1) =

1

N

X

i

â2i,(t) + �̂2
ai,(t)

The update for � and � is obtained by maximizing the Q function using Newton-Raphson.

2 DAESC-Mix model and inference

2.1 Model setup

DAESC-Mix is an extension of DAESC-BB incorporating a latent variable �i for implicit haplotype phasing.

The model is formulated as follows:

yij |nij ⇠ beta-binomial(nij , µij ,�) (4)

log(µij/(1� µij)) = (2�i � 1)xT
ij� + ai (5)

ai ⇠ N(0,�2
a), �i ⇠ Bernoulli(⇡0) (6)

The variable �i models the scenario where ASE is caused by one regulatory SNP (rSNP). When �i = 1,

the alternative allele of the eQTL and the alternative allele of the tSNP are on the same haplotype, and the

reference alleles of the two SNPs are on the same haplotype. When �i = 0, the alternative allele of the eQTL

and the reference allele of the tSNP are on the same haplotype, and vice versa (Figure 1).
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2.2 Parameter estimation by variational EM algorithm

We treat ai and �i as missing data. The complete-data likelihood is
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The complete-data log-likelihood is
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2.2.1 E-step

At iteration t, we approximate the posterior distribution P (ai, �i | yi;�(t),�
2
a,(t),�(t),⇡0,(t)) using variational

inference (Blei et al, 2017). Using the mean-field approximation q(ai, �i) = q(ai)q(�i), we update q(�i) and

q(ai) iteratively as follows. The update for q(�i) is
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The integrals are approximated by Gauss-Hermite quadrature (see Section 1.2.1 for details). The resulting

distribution is a bernoulli distribution, denoted by Ber(⇡i,(t)). The variational update for ai is
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This update has no closed form, but we approximate by a normal distribution N(âi,(t), �̂
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), as in

Laplace variational inference (Wang and Blei, 2013). See section 3.2 for details.

2.2.2 M-step
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• Similar to section 1.2.2, update � and � by numerical maximization of Eq(�i,ai)[logP (y1, a1, �1, ...,yN , aN , �N |
�,�2

a,�,⇡0)], which is the complete data log likelihood integrated over variation distribution q(�i, ai).

The integration over q(ai) is conducted numerically using Gaussian-Hermite quadrature.
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Here µij = �(xT
ij� + ai). To approximate P (ai | yi;�,�

2
a,�), we derived the Taylor expansion of
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f 0
�,�2

a,�,Xi,yi,ni
(ai) =

X

j

h
 
⇣µij

�
+ yij

⌘
�  

⇣1� µij

�
+ nij � yij

⌘
�  

⇣µij

�

⌘
+  

⇣1� µij

�

⌘i
µij(1� µij)/��

ai
�2
a

f 00
�,�2

a,�,Xi,yi,ni
(ai) =

X

j

nh
 1

⇣µij

�
+ yij

⌘
+  1

⇣1� µij

�
+ nij � yij

⌘
�  1

⇣µij

�

⌘
�  1

⇣1� µij

�

⌘i
µ2
ij(1� µij)

2/�2+

h
 
⇣µij

�
+ yij

⌘
�  

⇣1� µij

�
+ nij � yij

⌘
�  

⇣µij

�

⌘
+  

⇣1� µij

�

⌘i
(1� 2µij)µij(1� µij)/�

o
�

1

�2
a

Here  (x) = d
dx log�(x) is the digamma function and  1(x) =

d2

dx2 log�(x) is the trigamma function. To

obtain âi, we use a modified Newton-Raphson method. At iteration k, we update ai as follows

ak+1
i = aki � ⌧f 0

(aki )/f
00
(aki )

By default, we set ⌧ = 0.9.

3.2 DAESC-Mix

In the E-step for DAESC-Mix, the log variational distribution for ai is

h(ai) = log q(ai)
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Here we dropped the subscript (t) for simpler notations. The derivatives can be computed as follows:
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Similar to section 3.1, we derive the maximum âi using Newton-Raphson updates
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i = aki � ⌧h0
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and q(ai) can be approximated by N(âi, �̂2
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), where �̂2
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= |h00
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. We choose ⌧ = 0.9.
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4 Simulate haplotype proportions

In the simulation studies, we vary the LD coe�cient (r2) between the eQTL and the tSNP. The simulation

model, however, does not directly use the LD coe�cient. Instead, it uses haplotype proportions determined

by r2 and the minor allele frequencies (MAF).

We start by introducing a few notations. Denote by gr1 the genotype of eQTL (regulatory SNP) in

haplotype 1 and gr2 the genotype of eQTL in haplotype 2. Similarly define ge1 and ge2 as the genotypes of

tSNP in haplotypes 1 and 2, respectively. Genotypes gr2, gr2, ge1, ge2 can takes values 0 or 1. Denote by ar

and ae the minor allele frequencies (MAF) of the eQTL and tSNP, respectively. We start by simulating ar

from a uniform distribution: ar ⇠ U [0.1, 0.5].

With a given r2, the possible values of ae are bounded by ar. We derive the bound by first deriving the

relationship among r2, MAFs and haplotype frequencies. Note that

r =
E(gr1 + gr2 � Egr1 � Egr2)(ge1 + ge2 � Ege1 � Ege2)p

var(gr1 + gr2)var(ge1 + ge2)

=
E(gr1 + gr2 � 2ar)(ge1 + ge2 � 2ae)p

4arae(1� ar)(1� ae)

=
E(gr1ge1) + E(gr2ge2)� 2araep

4arae(1� ar)(1� ae)

=
P (gr1 = 1, ge1 = 1)� araep

arae(1� ar)(1� ae)

Without loss of generality we assume r > 0. If r < 0 we can simply flip the reference and alternative

alleles of one of the SNPs to ensure r > 0. Define the following haplotype frequencies:

p11 = P (gr1 = 1, ge1 = 1), p10 = P (gr1 = 1, ge1 = 0)

p01 = P (gr1 = 0, ge1 = 1), p00 = P (gr1 = 0, ge1 = 0)

Hence p11 = arae + r
p
arae(1� ar)(1� ae). It needs to satisfy the restrictions p11 < ar and p11 < ae

since the haplotype frequency cannot exceed corresponding allele frequencies of individual SNPs. This is

equivalent to

r2
ae

1� ae
 ar

1� ar
, r2

ar
1� ar

 ae
1� ae

.

Hence we can derive the bounds for ae:

r2ar
1� ar + r2ar

 ae 
ar

r2(1� ar) + ar
.

We simulate ae by uniform distribution: ae ⇠ U [
r2ar

1�ar+r2ar
, ar
r2(1�ar)+ar

]. Finally, we calculate the hap-

lotype frequencies by

p11 =arae + r
p
arae(1� ar)(1� ae)

p01 =ae � p11, p10 = ar � p11, p00 = 1� p11 � p01 � p10.
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Hence the mixture probabilities are calculated by

⇡̃1 = 2p00p11, ⇡̃2 = 2p01p10, ⇡̃3 = 2p10p11 + 2p00p01.

These are the proportions of individuals for which the eQTL is heterozygous (⇡̃1, ⇡̃2) or homozygous (⇡̃3)

in the general population, regardless of whether the tSNP is heterozygous. However, we need to restrict to the

individuals for which the tSNP is heterozygous, since ASE cannot be measured for homozygous individuals.

Hence we normalize the probabilities to get the final mixture probabilities:

⇡k =
⇡̃k

⇡̃1 + ⇡̃2 + ⇡̃3
, k = 1, 2, 3.
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