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Peer Review File

Single-cell allele-specific expression analysis reveals dynamic
and cell-type-specific regulatory effects



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This paper proposes a differential ASE analysis tool that considers two elements not examined by 

existing approaches and I consider it to be a very fascinating method. Despite the authors' mention of 

data size as a limitation, I believe that the current trend of scRNA-seq becoming more cost-effective 

will result in widespread adoption of this tool. The tool enables numerous analyses based on covariate 

variables such as cell type and trajectory, thereby enhancing its significance. The paper is well-written, 

and the data demonstrate the method's validity. Overall, the manuscript is well-written and can be 

published with minor revisions. 

 

1) The perspective of the dispersion parameter was not discussed. In the case of single-cell RNA-seq, 

data quality issues such as zero-inflation can be considerable, and data quality is likely to influence the 

dispersion parameter. In general, sample size and variance parameter have an inverse relationship in 

terms of statistical power. I ask for comments on expected results regarding the data quality. For 

example, based on the simulation study, will glmm be superior when data quality is poor? 

 

2) Experimental species determine the appropriate sample size in experimental design. In the analysis 

of mouse data with low variance, a sample size of 5 is already substantial. From this perspective, it 

would be beneficial to include species-specific guidelines or comments for the method. 

 

3) In Figure 1 and 2, A) -> a), which is not consistent with Figure 4. a) 

4) In Figure 1, it would be better to relocate, either to top or bottom, the graph legend of c) and d). 

5) In Figure 3-f, count -> Count in y-axis. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript introduces a novel statistical method, DAESC, for differential allele-specific expression 

(ASE) analysis using single-cell RNA sequencing (scRNA-seq) data from multiple individuals. DAESC 

accounts for non-independence between cells from the same individual and incorporates implicit 

haplotype phasing. The method successfully identified dynamically regulated genes during endoderm 

differentiation and differentially regulated genes between type-2 diabetes patients and controls in 

pancreatic endocrine cells, providing new insights into gene regulation. 

 

Here are my comments: 

1. It would be beneficial to provide a comprehensive tutorial outlining the complete analytical pipeline 

of scRNA-seq ASE analysis, from raw data to DAESC analysis. This should include steps such as GATK, 

pseudo-bulk, etc. 

 

2. Although the authors demonstrated the robustness and superiority of DAESC over GLMM, the 

potential impact of preprocessing and upstream operations on their approach has not been evaluated. 

Factors such as different variant calling approaches, thresholds, scRNA-seq read depth, library size, 3' 

or 5', and platform differences should be systematically assessed and discussed. A systematic 

evaluation and an optimized, comprehensive analytical pipeline would be highly appreciated. 

 

3. The simulation study comparing DAESC to GLMM seems biased to me, as it employs the same 

distribution (beta-binomial) as the authors' model. It would be valuable to investigate whether DAESC 

can outperform (or at least be comparable to) GLMM in simpler binomial cases. 

 

4. The comparison to only a GLMM model is limited, as other scRNA-seq and bulk data-based models 

have been developed. The authors should compare DAESC to a broader range of approaches in an 



unbiased manner. 

 

5. Applying DAESC to cancer datasets, which typically exhibit more genomic changes and potential 

eQTLs, would demonstrate the versatility of the method and increase its relevance to the cancer 

research community. 

 

6. The authors model different cell types as independent variables. It would be interesting to explore 

whether a nested mixed model, with different cell types nested within individuals, could also be 

effective. 

 

7. Combining the DAESC-BB and DAESC-Mix models into a single function with an automatic switch or 

a hyperparameter for model selection could make the method more user-friendly and cohesive. 

 

8. The haplotype phasing in the DAESC-Mix model using EM is a novel aspect of the paper. However, 

the accuracy of the EM estimation and the validation of the results should be addressed. Additionally, 

the ratio of z=1 and z=-1 estimated in real-world datasets should be discussed (considering 1 could 

be more common than -1). 

 

9. In many simulation studies, DAESC-BB shows similar results to GLMM in PR curves. This 

observation should be discussed and explained. 

 

10. The authors should conduct a larger number of simulations and report error bars (or confidence 

intervals) for the performance metrics. 

 

11. The authors should investigate the computational time of DAESC across varying numbers of cells 

and patients in scRNA-seq data. 

 

12. The potential impact of single-cell data quality, library size, and batch effects on the analysis 

should be discussed. 

 

13. While the allelic imbalance findings across cell differentiation in Figure 4 are intriguing, the authors 

should provide related studies to validate their observations. 

 

14. Validation strategies for the identified genes and their roles in cell differentiation and disease 

development should be discussed, as well as the reliability and robustness of the results. 

 

15. To further support the findings from real-world data, the authors should compare their results to 

those obtained using other approaches, such as scDALI and airpart. This will help alleviate any 

concerns regarding the validity of the results. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In this paper, the authors present a novel computational method (DAESC) for performing differential 

allele specific expression analysis from single-cell RNA-seq data. The paper was a pleasure to read. 

The authors clearly articulate limitations of existing approaches and demonstrate how DAESC 

overcomes these limitation using both simulations and analysis of real data. I really appreciated the 

honest and straightforward reporting in the paper, for example when discussing the fact that type 1 

error was not always strictly controlled at the desired nominal level. The code and data presented in 

the paper have been clearly documented and I did not detect any major methodological errors or 

omissions. I believe that DAESC is a useful tool that will be widely used by future single cell allele-

specific expression studies. 

 



I have only two extremely minor comments: 

1. On lines 191-192 you state that "This indicates that cell-level variability, which is a special feature 

of single-cell ASE, could be important for implicit phasing". I think that this point is worth elaborating 

a bit more. Is it not possible to perform implicit phasing on bulk RNA-seq data, and if not, then why 

so? 

2. On line 353 in the Discussion you mention the lme4 R package. I think it would be helpful to also 

add a citation to their preprint (https://doi.org/10.48550/arXiv.1406.5823) or the R package itself. 



Response to Reviewer Comments 
 
Reviewer #1 (Remarks to the Author): 
 
This paper proposes a differential ASE analysis tool that considers two elements not examined by 
existing approaches and I consider it to be a very fascinating method. Despite the authors' mention of 
data size as a limitation, I believe that the current trend of scRNA-seq becoming more cost-effective 
will result in widespread adoption of this tool. The tool enables numerous analyses based on 
covariate variables such as cell type and trajectory, thereby enhancing its significance. The paper is 
well-written, and the data demonstrate the method's validity. Overall, the manuscript is well-written 
and can be published with minor revisions. 
 
We thank the reviewer for the positive comments. 
 
1) The perspective of the dispersion parameter was not discussed. In the case of single-cell RNA-
seq, data quality issues such as zero-inflation can be considerable, and data quality is likely to 
influence the dispersion parameter. In general, sample size and variance parameter have an inverse 
relationship in terms of statistical power. I ask for comments on expected results regarding the data 
quality. For example, based on the simulation study, will glmm be superior when data quality is poor? 
 
We conducted a new simulation study varying the overdispersion parameter 𝜙 and sequencing depth. 
We added the following text in Results (page 7 last paragraph): 
 
“Next, we investigate the performance of DAESC under varying data quality, which is reflected by 
overdispersion parameter (𝜙) and sequencing depth. DAESC-BB and DAESC-Mix outperforms 
GLMM across varying levels of overdispersion (Supplementary Figure 6). Although all methods 
have lower power under strong overdispersion (large 𝜙, low data quality), the advantage of DAESC of 
GLMM is also more pronounced (Supplementary Figure 6). We also observe that although DAESC-
Mix is developed for large N (e.g., N>20), it can also deliver strong performance under small N when 
the overdispersion is low (e.g., N=6 and 𝜙 = 0.5, Supplementary Figure 6), which is the case for 
many mouse datasets with low variance. In addition, we observe similar relative performance for 
DAESC-BB, DAESC-Mix and GLMM under 50%, 20%, and 10% sequencing depth of other 
scenarios, though all methods have lower power (Supplementary Figure 7).” 
 
2) Experimental species determine the appropriate sample size in experimental design. In the 
analysis of mouse data with low variance, a sample size of 5 is already substantial. From this 
perspective, it would be beneficial to include species-specific guidelines or comments for the method. 
 
In the new simulation study where we vary the overdispersion parameter (see response to comment 
1), we also investigate the scenario of smaller sample size (N=6). We observe that lower variance 
can compensate for small sample size. We added the following text in Results (page 8 paragraph 1): 
 
“We also observe that though DAESC-Mix is developed for large N (e.g., N>20), it can also deliver 
strong performance under small N when the overdispersion is low (e.g., N=6 and 𝜙 = 0.5, 
Supplementary Figure 6), which is the case for many mouse datasets with low variance.” 
 
3) In Figure 1 and 2, A) -> a), which is not consistent with Figure 4. a) 
We changed A) to a) in the legends of Figures 1 and 2. 
 
4) In Figure 1, it would be better to relocate, either to top or bottom, the graph legend of c) and d). 
We now relocated the legend to the bottom of Figure 1c. 



 
5) In Figure 3-f, count -> Count in y-axis. 
We changed “count” to “Count” in Figure 3f. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The manuscript introduces a novel statistical method, DAESC, for differential allele-specific 
expression (ASE) analysis using single-cell RNA sequencing (scRNA-seq) data from multiple 
individuals. DAESC accounts for non-independence between cells from the same individual and 
incorporates implicit haplotype phasing. The method successfully identified dynamically regulated 
genes during endoderm differentiation and differentially regulated genes between type-2 diabetes 
patients and controls in pancreatic endocrine cells, providing new insights into gene regulation. 
 
We thank the reviewer for their summary of our contributions. 
 
Here are my comments: 
1. It would be beneficial to provide a comprehensive tutorial outlining the complete analytical pipeline 
of scRNA-seq ASE analysis, from raw data to DAESC analysis. This should include steps such as 
GATK, pseudo-bulk, etc. 
 
We have created a detailed step-by-step tutorial for the analytical pipeline: 
https://github.com/gqi/DAESC/wiki. We also included this link in the Code Availability section. 
 
2. Although the authors demonstrated the robustness and superiority of DAESC over GLMM, the 
potential impact of preprocessing and upstream operations on their approach has not been 
evaluated. Factors such as different variant calling approaches, thresholds, scRNA-seq read depth, 
library size, 3' or 5', and platform differences should be systematically assessed and discussed. A 
systematic evaluation and an optimized, comprehensive analytical pipeline would be highly 
appreciated. 
 
In general, we follow the preprocessing pipelines recommended by previous literature: 
 
Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best 
practices for data processing in allelic expression analysis. Genome Biology 16, 195 (2015). 
 
Those include including alignment using STAR, variant calling and ASE read counting using GATK 
(https://gatk.broadinstitute.org), removing SNPs located in cross-mappable regions, and removing 
potential genotyping error. We evaluate the effects of A) read depth and B) removing genotyping error 
as follows. 
 
A.  Read depth. 
We simulate ASE data with 50%, 20%, and 10% read depth of the other simulation studies. We 
describe the results as follows in Results – Simulation studies (page 8 paragraph 1): 
 
“In addition, we observe similar relative performance for DAESC-BB, DAESC-Mix and GLMM under 
50%, 20%, and 10% sequencing depth as other scenarios, though all methods have lower power 
(Supplementary Figure 7).” 
 
B. Threshold for removing potential genotyping error 
We evaluate the effect of this step in the endoderm differentiation data (Cuomo et al). We added the 
following text in Results - Dynamic ASE during endoderm differentiation (page 9 paragraph 2): 



 
“We conduct two sensitivity analyses to evaluate the effects of analysis choices on the results. First, 
in the main analysis we remove SNPs with monoallelic expression to prevent false positives due to 
genotyping error. Here we repeat the same analysis with those SNPs included. We observe that 
removing SNPs with monoallelic expression (alt/total<0.02 or alt/total>0.98 in pseudobulk sample) 
have minimal effect on differential ASE except a small number of genes (<1% for both DAESC-BB 
and DAESC-Mix) that switches from significant to insignificant, or vice versa (Supplementary Figure 
12).” 
 
While we agree other factors such as variant calling approaches, 3’ or 5’, and platform differences 
may affect the results, their benchmarking is beyond the scope of this paper. Optimizing the 
preprocessing pipeline for ASE analysis overall is an important and complex topic that warrants a 
separate study. Our paper focuses on the statistical tests for post data processing. In addition, 
pipelines for obtaining even basic ASE estimates from 3’ or 5’ data are not well established. To avoid 
this issue, we choose to work with the full-length smart-seq2 data for our analysis. 
 
Our sensitivity analyses show that read depth and batch effects typically do not change the relative 
performance between methods. We added the following text in Discussion (page 15 paragraph 1): 
 
“Given the complexity of ASE data processing, other factors such as variant calling approaches, 
quality control thresholds, sequencing read depth and platform can also have effects on the results. A 
comprehensive evaluation of the factors and an optimized analysis pipeline is an important area of 
research. Though this is beyond the scope of the paper, we demonstrate through simulations that the 
relative ranks of the methods are robust to the change of overdispersion and read depth 
(Supplementary Figures 6 and 7), which are closely related to data quality.” 
 
3. The simulation study comparing DAESC to GLMM seems biased to me, as it employs the same 
distribution (beta-binomial) as the authors' model. It would be valuable to investigate whether DAESC 
can outperform (or at least be comparable to) GLMM in simpler binomial cases. 
 
We thank the reviewer for pointing this out. We have now conducted simulations using binomial 
GLMM (see Methods – Simulation studies for description of the setting), violating our models 
assumptions intentionally. We described the results as follows in Results – Simulation studies (page 8 
paragraph 2): 
 
“To evaluate the sensitivity of DAESC to model misspecification, we conduct another simulation study 
using binomial GLMM instead of beta-binomial (see Methods - Simulation studies). Theoretically, this 
scenario should give more advantage to the GLMM method. However, DAESC-BB and GLMM have 
nearly identical performance (Supplementary Figure 8). DAESC-Mix still leads to substantial power 
gain when there is low LD between the eQTL and the tSNP (Supplementary Figure 8).” 
 
4. The comparison to only a GLMM model is limited, as other scRNA-seq and bulk data-based 
models have been developed. The authors should compare DAESC to a broader range of 
approaches in an unbiased manner. 
 
We have now included other methods in the comparison. See Methods – Other methods for 
comparison (page 21-22) for description: 
 
“We compare DAESC-BB and DAESC-Mix to other methods: GLMM, apeglm, apeglm-adj, EAGLE, 
and EAGLE-PB.” 
 
“Apeglm is a fixed-effects beta-binomial regression: 



𝑦!"|𝑛!"~𝐵𝐵+𝑛!" , 𝜇!" , 𝜙., log 2
𝜇!"

1 − 𝜇!"
5 = 𝛽# + 𝛽$𝑥!" 

This model does not account for the sample repeat structure of single-cell ASE data. Therefore, we 
include a variation of apeglm (apeglm-adj) into the comparison, which further adjusts for donor IDs as 
fixed-effects covariates. Note that apeglm-adj can only be used for differential ASE with respect to a 
continuous variable but not binary case-control status, which is colinear with the one-hot encoding of 
donor IDs. 
 
EAGLE1 is another method developed for differential ASE analysis using bulk RNA-seq data. We first 
apply EAGLE directly to single-cell ASE data without accounting for the sample-repeat structure. For 
differential ASE across disease status, we further compare with EAGLE applied to pseudobulk data 
(EAGLE-PB). We aggregate cells from each individual into a pseudobulk sample by summing the 
alternative and total read counts. We then apply EAGLE to test for differential ASE using the 
pseudobulk samples.” 
 
We describe the results in Results – Simulation studies (page 6 paragraph 2): 
 
“In addition to GLMM, we compare DAESC with other methods, including beta-binomial regression 
implemented by apeglm1 (also used in airpart1), apeglm with donor IDs adjusted as covariates 
(apeglm-adj), EAGLE1, and EAGLE applied to pseudobulk data (EAGLE-PB). See Methods for 
details. We observe inflated type I error for the raw apeglm and EAGLE due to failure to account for 
the sample repeat structure (Supplementary Figure 3). Apeglm-adj used fixed effects to account for 
sample repeat structure and have nearly identical performance as DAESC-BB for continuous cell 
states (Supplementary Figure 3). However, it cannot be applied to case-control comparisons since 
the case-control variable is colinear with the one-hot encoding of donor IDs. EAGLE-PB, the 
pseudobulk-based method for case-control comparisons, is less powerful than DAESC-BB especially 
when r2=0.1 and 0.9 (Supplementary Figure 3). This shows the advantage of directly analyzing 
single-cell data over pseudobulk aggregation. EAGLE-PB assumes independent samples and is not 
applicable to the continuous-cell-state simulations shown in Figure 1c and Supplementary Figure 
3a. The precision-recall curves show that DAESC-Mix dominates the other methods when r2=0 and 
𝑁 ≥ 50 with varying significance thresholds (Supplementary Figure 4), especially in the simulations 
for continuous cell states. In addition, the curves for the GLMM tend to dip near low recall value 
(Supplementary Figure 4), i.e., when the significant threshold is stringent. This indicates potential 
issues with p-value calibration. Nevertheless, GLMM appears to be the most comparable to DAESC-
BB considering type I error and power, and its applicability to both continuous cell state and case-
control comparisons. We use GLMM as the main comparison for the rest of the simulation studies. 
” 
 
5. Applying DAESC to cancer datasets, which typically exhibit more genomic changes and potential 
eQTLs, would demonstrate the versatility of the method and increase its relevance to the cancer 
research community. 
 
Cancer cells have many somatic mutations which could violate the assumption of the model. For 
example, the implicit haplotype phasing provided by DAESC-Mix assumes all cells from a single 
individual have the same genotype. This assumption can be violated in cancer cells. Dealing with 
cancer datasets will require more sophisticated models which are beyond the scope of this paper. 
However, we discussed this issue in the Discussion section (page 15 paragraph 1): 
 
“Lastly, DAESC is not specifically developed for analyzing cancer datasets. In particular, the implicit 
phasing in DAESC-Mix assumes every cell from an individual share the same genotype. This 
assumption is violated for cancer cells due to many somatic mutations. Single-cell ASE analysis in 



cancer cells is also an intriguing future direction. ” 
 
6. The authors model different cell types as independent variables. It would be interesting to explore 
whether a nested mixed model, with different cell types nested within individuals, could also be 
effective. 
 
We thank the reviewer for this great suggestion. This is a fascinating direction that we would like to 
explore in the future. For this paper, however, we decided to restrict the scope to a simple comparison 
with respect to a pair of cells types, pseudotime, case-control status, etc. Due to the lack of statistical 
methods for single-cell differential ASE analysis, we believe this simple model still represents 
substantial progress from current literature. However, we agree with the reviewer a nested mixed 
model could be effective. We included the following comment in Discussion (page 15 paragraph 1): 
 
“A future direction is to combine the strengths of DAESC and scDALI or airpart to incorporate sample 
repeat structure, implicit haplotype phasing and integration of information across cell types. A 
potential approach is to include cell types within individuals in a nested mixed model.” 
 
7. Combining the DAESC-BB and DAESC-Mix models into a single function with an automatic switch 
or a hyperparameter for model selection could make the method more user-friendly and cohesive. 
 
We thank the reviewer for this suggestion. We added a function daesc that conducts automatic 
selection between DAESC-BB and DAESC-Mix based on the number of donors. The GitHub READE 
is updated with the following text: 
 
“For automatic selection between daesc_bb and daesc_mix, use 
function daesc. daesc implements daesc_bb when the number of donors (N) is less than 20, 
and daesc_mix when N>=20.” 
 
8. The haplotype phasing in the DAESC-Mix model using EM is a novel aspect of the paper. 
However, the accuracy of the EM estimation and the validation of the results should be addressed. 
Additionally, the ratio of z=1 and z=-1 estimated in real-world datasets should be discussed 
(considering 1 could be more common than -1). 
 
A. Evaluation of phasing accuracy in simulation studies. 
We conducted the same Fisher’s exact test of true vs. observed haplotype combinations for simulated 
data of 4,000 genes. True vs. observed phases are summarized by a contingency table like below for 
a gene, where each cell is the number of individuals in the category. 

 
We conducted the test for genes with at least two true phases and two observe phases. 
 
We included the follow text in Results – Simulation studies (page 6 paragraph 1): 
 
“This is likely due to the ability of DAESC-Mix to conduct implicit haplotype phasing, which was shown 
to be effective overall (Fisher’s exact test p-value <0.05 in 36.5% genes tested, Supplementary 
Figure 1).” 
 



B. Proportion of z=1 and z=-1 in real data 
We added the following text in Results - Dynamic ASE during endoderm differentiation (page 9 last 
paragraph). 
 
“For 48.4% of the genes that reach significance (FDR<0.05 by DAESC-Mix), DAESC-Mix learns two 
haplotype combinations with the minor haplotype including >10% individuals (Supplementary Figure 
13).” 
 
9. In many simulation studies, DAESC-BB shows similar results to GLMM in PR curves. This 
observation should be discussed and explained. 
 
DAESC-BB is formulated as  

𝑦!"|𝑛!"~𝐵𝐵(𝑛!" , 𝜇!" , 𝜙) 

log 2
𝜇!"

1 − 𝜇!"
5 = 𝛽# + 𝛽$𝑥!" + 𝑎! 

𝑎! ∼ 𝑁(0, 𝜎%&) 
GLMM is formulated as: 

𝑦!"|𝑛!"~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛!" , 𝑝!") 

log 2
𝑝!"

1 − 𝑝!"
5 = 𝛽# + 𝛽$𝑥!" + 𝑎! + 𝜖!" 

𝑎! ∼ 𝑁(0, 𝜎%&), 𝜖!" ∼ 𝑁(0, 𝜎'&) 
Both are binomial-based models that account for sample repeat structure and overdispersion. They 
main difference is that the beta-binomial model accounts for overdispersion by incorporating the beta 
prior, while GLMM does so by a cell-specific random effect (𝜖!"). Therefore, it can be expected that 
they would have similar PR curves in many scenarios.  
 
We added the following text to Discussion (page 14 paragraph 2): 
 
“In contrast, GLMM fitted by lme4 is more comparable to DAESC-BB than scDALI or airpart. Both 
GLMM and DAESC use random effects to model sample repeat structure but they account for 
overdispersion differently. Therefore, GLMM is used as the main reference method for benchmarking 
and has similar precision-recall curve to DAESC-BB in some of the scenarios (Supplementary 
Figure 4).” 
 
However, in simulation studies, DAESC-BB outperforms GLMM when the data are generated from 
beta-binomial (Figure 1), and perform similarly to GLMM when the data are generated from GLMM 
(Supplementary Figure 8). Hence DAESC-BB has better overall performance. 
 
10. The authors should conduct a larger number of simulations and report error bars (or confidence 
intervals) for the performance metrics. 
 
We have now conducted 5,000 simulations for the main scenarios of one eQTL per tSNP. We added 
the following text in Methods (page 19 last paragraph): 
 
“We repeat this procedure 10 times and obtain 5,000 simulations for each scenario (combination of N, 
r2, differential ASE status). We observe minimal variation of type I error and power across 10 
replications (Supplementary Figure 15). For the rest of the simulation studies, we conduct 400 
simulations for each scenario to save computational time.” 



 
11. The authors should investigate the computational time of DAESC across varying numbers of cells 
and patients in scRNA-seq data. 
 
We conduct another simulation study to investigate the computational time of DAESC across 
datasets of varying sizes: 

• Number of donors: 10,50,100,200. 
• Average number of cells per donor: 100, 200, 300, 400. 

 
We describe the results as follows in Results - Simulation studies (page 8 paragraph 2). 
 
“We observe that though DAESC is computationally intensive due to its EM iterations, it can be easily 
handled by a modern computing cluster (see Methods for details and Supplementary Figure 9 for 
results). For example, when analyzing a dataset of 200 individuals and on average 400 cells per 
individual (>2.5 times the size of the endoderm differentiation dataset in our application), DAESC-BB 
requires 3.3 hours to analyze 100 genes and DAESC-Mix requires 8.6 hours (Supplementary Figure 
9).” 
 
12. The potential impact of single-cell data quality, library size, and batch effects on the analysis 
should be discussed. 
 
We thank the reviewer for raising this important point.  
 
A. Batch effects 
ASE analysis, which compares the expression of two alleles within a sample, typically protects 
against batch effects better than total gene expression. Our analysis further protects against batch 
effects by accounting for donor ID as random effects. To investigate remaining batch effects, we 
adjust for the month when the experiment was conducted. We described the results as follows 
Results - Dynamic ASE during endoderm differentiation (page 9 paragraph 2): 
 
“Second, we evaluate whether additional batch effects may confound the analysis. After adjusting for 
the month when the experiment was conducted, the number of discoveries and the validation rate 
virtually remain the same (Supplementary Table 3).” 
 
B. Data quality and library size 
We added simulation studies to evaluate the effects. Please see our response to Comment 1 of 
Reviewer 1. 
 
We added the following text in Discussion (page 15 paragraph 1): 
 
“In addition, DAESC is focused on statistical analysis post data processing. Given the complexity of 
ASE data processing, other factors such as variant calling approaches, quality control thresholds, 
sequencing read depth and platform can also have effects on the results. A comprehensive evaluation 
of the factors and an optimized analysis pipeline is an important area of research. Though this is 
beyond the scope of the paper, we demonstrate through simulations that the relative ranks of the 
methods are robust to the change of overdispersion and read depth (Supplementary Figures 6 and 
7), which are closely related to data quality.” 
 
13. While the allelic imbalance findings across cell differentiation in Figure 4 are intriguing, the 
authors should provide related studies to validate their observations. 
 



We conducted literature review and described the results in Results - Patterns and mechanisms of 
dynamic ASE (page 11 last paragraph): 
 
“As a validation analysis, we examine whether our top 30 D-ASE genes (Figure 4c) have previously 
been reported to exhibit D-ASE, ASE, or other biological relevance in the literature. Moyerbrailean et 
al23 found that 23 out of the 30 genes have ASE in cell types including lymphoblastoid cell lines (LCL), 
smooth muscle cells (SMC), murine erythroleukemia cells, HUVECs, and PBMCs. Fan et al14 
reported 12 out of 30 genes have D-ASE in kidney, M0 macrophage cells, or M1 macrophage cells. 
Expression of some of the genes is tightly regulated in endodermic tissues. For example, DKK1 was 
reported to be carefully regulated during kidney development24; GSTO1 was shown to have ASE in 
mouse lung, liver, and brain25; and GNAS is a known imprinted gene in  endodermal tissues such as 
pituitary26, thyroid gland, and gonads27.” 
 
14. Validation strategies for the identified genes and their roles in cell differentiation and disease 
development should be discussed, as well as the reliability and robustness of the results. 
 
We added a subsection in Methods (page 23): 
 
“Validation of differential ASE genes 
 
The list of dynamic eGenes reported by Cuomo et al10 can be used to validate our dynamic ASE 
findings. Since dynamic ASE is aimed to capture dynamically regulation of gene expression, dynamic 
ASE genes should have substantial overlap with dynamic eGenes. Therefore, we compare the 
proportion of significant dynamic ASE (FDR<0.05) that overlap with dynamic eGenes. To alleviate any 
doubt that different validation rates are caused by different number of genes identified by the 
methods, we create a concordance-on-top plot to compare the same number of top genes for all 
methods, which is varied from 10 to 800.” 
 
The results are shown in Figure 3 and described in the Results (page 9 paragraph 1): 
 
“Since D-ASE can be driven by dynamic cis-regulatory effects, we use the overlap between our D-
ASE genes and dynamic eQTL genes reported by Cuomo et al10 as a validation criterion. Among the 
genes identified by DAESC-BB, 35.5% were reported by Cuomo et al, while among those identified 
by DAESC-Mix 27.5% were reported (Figure 3d). The GLMM identifies 19% fewer genes than 
DAESC-Mix (532 vs 657) and has a similar validation rate (Figure 3d). Comparing the same number 
of top genes (by smallest p-values) selected by each method, DAESC-Mix shows a higher validation 
rate than DAESC-BB or the GLMM across varying number of top genes (Figure 3e).” 
 
We further validate the findings by literature review on previous findings on the genes - please see 
our answer to Comment 13. In addition, we validate the findings by gene-set enrichment analyses 
and found that the top 30 genes to be enriched in multiple pathways related to development and 
differentiation. See Figure 4 for details. 
 
15. To further support the findings from real-world data, the authors should compare their results to 
those obtained using other approaches, such as scDALI and airpart. This will help alleviate any 
concerns regarding the validity of the results. 
 
We ran scDALi with 10 expression PCs as cell states and donor IDs as fixed-effects covariates. We 
included a Venn diagram showing the number of D-ASE genes and overlap with DAESC-Mix 
(Supplementary Figure 10). We added the following text in Results - Dynamic ASE during endoderm 
differentiation (page 9 paragraph 1): 
 



“scDALI finds 274 genes at FDR<0.05, 77% of which are also found by DAESC-BB (Supplementary 
Figure 10).” 
 
Reviewer #3 (Remarks to the Author): 
 
In this paper, the authors present a novel computational method (DAESC) for performing differential 
allele specific expression analysis from single-cell RNA-seq data. The paper was a pleasure to read. 
The authors clearly articulate limitations of existing approaches and demonstrate how DAESC 
overcomes these limitation using both simulations and analysis of real data. I really appreciated the 
honest and straightforward reporting in the paper, for example when discussing the fact that type 1 
error was not always strictly controlled at the desired nominal level. The code and data presented in 
the paper have been clearly documented and I did not detect any major methodological errors or 
omissions. I believe that DAESC is a useful tool that will be widely used by future single cell allele-
specific expression studies.  
 
We thank the reviewer for the positive comments. 
 
I have only two extremely minor comments: 
1. On lines 191-192 you state that "This indicates that cell-level variability, which is a special feature 
of single-cell ASE, could be important for implicit phasing". I think that this point is worth elaborating a 
bit more. Is it not possible to perform implicit phasing on bulk RNA-seq data, and if not, then why so? 
 
We apologize for the confusion. We have now deleted this sentence. 
 
2. On line 353 in the Discussion you mention the lme4 R package. I think it would be helpful to also 
add a citation to their preprint (https://doi.org/10.48550/arXiv.1406.5823) or the R package itself. 
 
We added the reference to lme4 to the sentence (page 14 paragraph 2) in the Discussion: 
“In contrast, GLMM fitted by lme431 is more comparable to DAESC-BB than scDALI or airpart.” 
 
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. 
arXiv.org https://arxiv.org/abs/1406.5823v1 (2014). 
 
Additional Changes: 
 
In the previous version, the GLMM used for analyzing endoderm differentiation data did not include 
cell-specific random effects for overdispersion. The GLMM for the simulation studies did include those 
random effects. To be consistent, we have now used the GLMM with those random effects (see 
Methods, page 21) to re-analyze the data and replaced the results in Figures 3 and 4. We also 
updated the description of these results in the text. The qualitative comparison remains consistent. 
 
We moved the type I error and power figures for the case-control simulation setting to Figure 1, and 
moved the precision-recall curve for the continuous-cell-state simulations to Supplementary Figure 4. 
 
 
 
 
 
 
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I thank the authors for addressing my comments, and I have no further questions. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I am pleased to note the thoroughness of the authors' revisions and the clarity in addressing my 

concerns. I have no more questions. Great work! 


	cover
	d1
	r1
	d2

