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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Rural O3 exposure is �10 ppb higher than that of adjacent urban areas in China.

- Excess cardiopulmonary deaths rise from 299,500 in 1990 to 373,500 in 2019.

- Premature cardiovascular deaths due to long-term O3 exposure are overlooked.

- Urban migration reduces population-weighted O3 exposure and associated mortality.
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Ever-increasing ambient ozone (O3) pollution in China has been exacer-
bating cardiopulmonary premature deaths. However, the urban-rural expo-
sure inequity has seldom been explored. Here, we assess population-scale
O3 exposure and mortality burdens between 1990 and 2019 based on inte-
grated pollution tracking and epidemiological evidence. We find Chinese
population have been suffering from climbing O3 exposure by 4.3 ± 2.8
ppb per decade as a result of rapid urbanization and growing prosperity of
socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1
ppb higher ambient O3 than the adjacent urban citizens, and thus urbaniza-
tion-oriented migration compromises the exposure-associated mortality on
total population. Cardiopulmonary excess premature deaths attributable to
long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600–
510,900) in 2019, is underestimated in previous studies due to ignorance
of cardiovascular causes. Future O3 pollution policy should focus more on
rural population who are facing an aggravating threat of mortality risks to
ameliorate environmental health injustice.

INTRODUCTION
Photochemical smog events of Los Angeles in the 1940s aroused public

awareness to surface ozone (O3) pollution for the first time. As a secondary
air pollutant, O3 is formed from a collection of precursor chemicals including
NOX (NO2 and NO), carbon monoxide, and volatile organic compounds
(VOCs), through complex photochemical reactions and NOX-ROX (RO and
RO2) cycles.

1 Anthropogenic emissions from vehicles, petrochemical indus-
tries, coal-fired power plants, and other types of incomplete combustions
exacerbate the O3 pollution.

2,3 While deforestation decreases biogenic activ-
ities, global warming enhances biogenic emissions of VOCs (e.g., isoprene),
which also adds on to the surface O3 burden.

4 High ambient O3 pollution has
been causing significant population health issues. Epidemiological studies
show that short-term high-concentration exposure to ambient O3 can cause
asthma exacerbation,5 respiratory symptoms,6 myocardial infarction,7 or
even cardiac arrest,8 and long-term O3 exposure can even increase the mor-
tality risks of chronic respiratory diseases (CRDs) and cardiovascular
diseases (CVDs).9 Hence, understanding the spatiotemporal pattern of

ambient O3 will be of incontrovertible significance for public health
protection.
The TOAR (Tropospheric Ozone Assessment Report) collaborative network10

and CNEMC (China National Environmental Monitoring Center)11 have been
archiving in situ ambient O3 observations, but the selective spatial representative-
ness will hamper the credibility of exposure assessment for populations residing
distant frommonitoring sites. Chemical reanalysis12 and satellite-based remote-
sensing measurements13 have been playing an irreplaceable role in ambient O3

tracking. Besides the conventional chemical transport models (CTMs),14 the
state-of-the-art coupled Earth systemmodels with interactive chemistry-climate
feedback collated by CMIP6 (Coupled Model Intercomparison Project Phase 6)
provide long-timescale full coverage global ambient O3 numerical simulation
ensemble.15 The booming of artificial intelligence algorithms makes it feasible
to fuse these seamless products and the scattered observations, yielding high-
quality fused databases.16-20 Due to the rapid photochemical and radical-
involved kinetic reactions, ambient O3 is of high geographical variability. Rural en-
vironments are observed to be of higher ambient O3 pollution,21,22 a key point
omitted in many large-scale population health impact assessment studies, and
thus the urban-rural environmental injustice has long been overlooked.We herein
synthesizemultiple well-developed ambient O3 concentration databases with ur-
ban-rural differentiation to better characterize the population exposure levels re-
stricting biases or errors from any single sources.
Previous O3-mortality estimation studies only considered premature deaths

caused by chronic obstructive pulmonary disease (COPD) due to the limited
epidemiological evidence.23 We accomplish a systematic review to collect up-
to-date O3-mortality associations from cohort studies on long-term O3 expo-
sure-associated multi-cause mortality, and conduct meta-analysis to pool the
estimated exposure-response association strengths (i.e., relative risks).9 With
the help of the China Statistical Yearbook series, we calibrated the Chinese pop-
ulation, and then linked the ambientO3 exposure and exposure-response relation-
ships to estimate the excess mortalities among Chinese population during
1990–2019. Cohort-based relative risks are estimated using Cox regression,
assuming relative hazard keeps constant along with the time series. Therefore,
cross-sectional urban-rural distinguished populations are sufficient for mortality
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estimation, and there is no need to consider accumulative exposure or individual-
level rural-to-urban migration history.

Throughout this study, we aim to underscore the urban-rural disparity of
ambient O3 pollution across China, and emphasize the severity of cardiopulmo-
nary mortalities attributable to O3 exposure. Urbanization refers to the phenom-
enon that the originally low-population density settlements become a city due to
the gradual gathering of population and frequentialized economic activities, lead-
ing to a social structure change that rural population are gradually transformed
into urban residents. We thus define rural-to-urban migration and rural residents
whose habitations are urbanized both as urbanization-orientedpopulationmigra-
tion to distinguish the urban and rural residents, as reflected in the cross-
sectional population density offered by United Nations World Population Pros-
pects.24 Rural residents contribute much lower anthropogenic emissions of O3

precursors (especially NOX by vehicles) than urban citizens, but are unfairly
exposed to higher O3 pollution. Thosemoving to cities can reduce their exposure
level, while there is always a certain proportion of rural residents (e.g., living
relying on farming) lacking willingness or capability to migrate. In this sense,
we underline the higher rural O3 exposure, and highlight the antagonism effect
between the gradually increasing ambient O3 concentrations and the population
migration to assist in understanding the dynamics of total O3 exposure-associ-
ated excess mortality. We intend to inform the policymakers to be aware of
the urban-rural environmental justice in terms of ambient O3 exposure, echoing
the Sustainable Development Goals advocated by the United Nations (e.g., SDG
3) to ensure healthy lives and promote well-being for the whole population.

RESULTS
Spatiotemporal patterns of urban-rural differentiated ambient ozone

We fuse four well-established data products calibrated by in situ obser-
vations (see Methods S1 and S2) to quantify the urban and rural popula-

tion exposure to ambient O3 scaled in 6 months (April to September) using
the ozone-season daily 8-h maximum average (OSDMA8) metric (see
geographical mapping of starting year 1990 and endpoint year 2019 aggre-
gated by prefecture-level cities in Figures 1A–1D, and province-level statis-
tics in Table S1). Rural O3 pollution was generally more severe, as 9.8 ± 4.1
ppb higher than the adjacent urban O3 concentrations, averaging over 30
studied years.
Higher O3 pollution mainly clustered in Jing-Jin-Ji and adjacent areas (i.e.,

Shanxi, Henan, Shandong, Anhui, and Jiangsu Province), where the highest
climbing rates concurrently occurred (Figures 1E and 1F). In 1990, the nation-
wide ambient O3 exposure was 40.4 ± 8.1 ppb for all urban citizens, and
54.0 ± 5.7 ppb for rural residents. In 2019, rural O3 rose to 67.6 ± 10.2 ppb by
an increasing rate of around 3.9 ± 2.7 ppb per decade, and urban O3 climbed
to 59.2 ± 12.6 ppb by a more prominent increasing speed of approximately
6.2 ± 3.4 ppb per decade.
We present the country-level and region-specific (seven administrative

geographical divisions and four megalopolises, see definitions in Methods S3
and Figure S1) longitudinal trends of urban, rural, and population-weighted expo-
sure (PWE) to ambient O3 in Figure S2. Among the seven geographical divisions,
the highest O3 pollution exacerbation rates were observed in East China (7.6 ppb
per decade), followed by South (6.1 ppb per decade) and Central China (5.9 ppb
per decade). Fourmegalopolises suffered rapid deterioration, especially the Jing-
Jin-Ji urban agglomeration (9.2 ppb per decade). The lowest population O3 expo-
sure increases occurred in Northwest China (2.3 ppb per decade). PWE also re-
flects the relative proportions of urban-rural residents in the studied areas, that in
less-urbanized regions (e.g., Northwest China), PWE is closer to the rural expo-
sure levels, and vice versa. The rural–urban differences were shrinking over
the three decades, 1990–2019, but this is due to the faster urban O3 growth
instead of the rural air pollution decline.

Figure 1. Mapping of prefecture-city-level ambient ozone and temporal trends (A and B) Peak ambient ozone concentrations with urban-rural differentiation for 1990 by metric of
6-month (April to September) ozone-season daily 8-h maximum average (OSDMA8, ppb). (C and D) Peak ambient ozone concentrations for 2019 by OSDMA8. (E and F) Thirty-year
annual average change rates. Upper panels (A, C, and E) are distinguished for urban residential environments, and lower panels (B, D, and F) for rural living environments. Ambient
ozone concentrations in 10-km spatial resolution are predicted by fusion of multiple downscaled data products (see Methods S1 and S2) and are averaged for mapping in prefecture-
level cities. Urban and rural temporal change rates for each prefectural city are estimated by generalized linear model. Province-level statistics for 1990 and 2019 are listed in Table S1.
Base-map of China credits to Ministry of Natural Resources, PRC.
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Hierarchical mortality cause identification attributable to ozone exposure
Previous long-term O3 exposure-associated mortality (i.e., excess mortality)

estimation studies did not consider cardiovascular deaths,25,26 since relevant
epidemiological studies exploring the risk association between O3 exposure
and cardiovascular mortality were rather rare, and contradiction existed among
the sparse evidence.27-30 However, after updating the systematic literature re-
view to includemore recent research intometa-analysis, we find a growing num-
ber of studies tending to take a stand that long-term O3 exposure is also associ-
ated with additional premature death risks of ischemic heart disease (IHD) (RR =
1.021; 95% confidence interval [CI], 1.008–1.033) and total CVDs (RR = 1.024;
95% CI, 1.015–1.033). Newly published relevant cohort studies also update the
mortality risks of COPD, all CRDs, and all non-communicable diseases (NCDs)
(see Method S4 and Figures S3–S8). Therefore, we extend estimations onto
tier-stratified multi-cause (tier 1: NCDs, tier 2: CRDs and CVDs, tier 3: COPD
and IHD) O3-induced excess deaths using optimized exposure-response curved
relationships (see Method S5 and Figure S9), with three hierarchical mortality
proportions calculated (Figure S10).

In 1990, COPD-induced mortality associated with long-term ambient O3 expo-
sure occupied 97.7% (95% UI: 95.6%–99.8%) of all-type CRD excess deaths, and
the proportions remained constant over the 30 studied years (97.4%, 95% UI:
95.2%–99.5% in 2019). This verifies the coherency of the exposure-response
risk associations for COPD and CRD mortalities, and indicates that COPD is
themain cause of respiratorymortality—this is alsowhy theGlobal Burden of Dis-
ease (GBD) 2019 study attributes all O3 exposure-associated premature deaths
to COPD.23 Contrarily, IHD excess deaths accounted for 56.6% (53.8%–59.5%) of
all-type cardiovascular deaths attributable to O3 exposure in 1990, ascending
monotonously to 90.9% (87.3%–94.7%) in 2019. This suggests thatmore cardio-
vascular mortality causes other than IHD can also be associated with long-term
O3 exposure (e.g., congestive heart failure

31), and that IHDmortality rates soared
disproportionally with these non-IHD CVDs, especially since 2000, resulting in
such longitudinal cross-tier heterogeneity. Considering the high uncertainty in
relative risks of IHDmortality drawn from limited cohort-based studies and other
cardiovascular mortality causes potentially associated with O3 exposure, we
hence choose CVD excess mortality estimation as our main analysis.

Total CRD and CVD excess deaths made up 70.9% (95% UI: 68.7%–73.1%) of
the proportion of NCD mortality attributable to long-term O3 exposure in 2019,
and it is noteworthy that the fraction in 1990 even erroneously exceeded
100%, indicating that the meta-estimated exposure-response relationships
based on currently available evidencemight not be sufficiently consistent across
causes. The declining trend of the proportion reveals that mortality by other
NCDs not associated with O3 exposure (e.g., cancer) still increased, and thus es-
timations for long-term ambient O3 exposure-associated NCD deaths might
bring in unnecessary overestimation and unidentified uncertainties. Therefore,

we decided to report the total excess cardiopulmonary mortality (specifically
for CVDs and COPD) as ourmain results for the sake of full-scalemortality cause
inclusion together with uncertainty restriction.

Excess cardiopulmonary mortality associated with ozone exposure
Wemap the excess cardiopulmonary deaths due to long-term O3 exposure in

2019 aggregated by prefecture-level cities in Figure 2 (gridded mortality in Fig-
ure S11). The geographical distribution of the mortality approximately delineates
Hu’s Line (also known as the Heihe-Tengchong Line) dividing Southeast and
Northwest China. Urban mortality clusters mainly in the metropolises and popu-
lous provinces with high ambient O3 pollution (e.g., Shandong, Henan, Jiangsu),
while rural mortalities are geographically distributedmore evenly. In 2019, a total
of 373.5 (95%UI: 240.6–510.9) thousand cardiopulmonary deathswere ascribed
to long-term ambient O3 exposure, among which urban excess mortality was
200.0 (128.9–273.6) thousand, and rural excess mortality was 173.5 (111.7–
237.4) thousand (Table 1). The COPD excess mortality was 177.1 (120.4–
239.5) thousand, and excess deaths induced from all-type CVDs were 196.4
(120.2–271.4) thousand. Mortalities in East China occupy around a third of the
total deaths across the whole nation.
The O3-attributable excess cardiopulmonary deaths accounted for 3.5%

(2.3%–4.8%) of the overall Chinese mortality in 2019. In 1990, the total excess
cardiopulmonary mortality was 292.0 (188.5–402.1) thousand, consisting of
3.5% (2.2%–4.8%) of the total mortality. Rural mortality was 209.900 (135.6–
288.7) thousand, exceeding the urban O3-attributable deaths by 127.8 (82.7–
175.3) thousand (Table S2). Categorized by region, residence location, and mor-
tality cause, the temporal trends of the estimated cardiopulmonary excess
deaths associated with long-term O3 exposure are shown in Figure 3. Total
excess deaths increased by 3.3 (2.1–4.5) thousand per year, among which ur-
ban mortality climbed by 4.7 (3.0–6.4) thousand per year, while rural mortality
shrank by 1.4 (0.9–1.9) thousand per year (Table S3). COPD mortality shows a
decreasing trend by 1.0 (0.7–1.4) thousand per year due to the steady decline
of cross-sectional mortality rates (Table S4), while the CVD mortality surged by
4.3 (2.8–6.0) thousand per year. Highest growths are observed in East and
Central China while, in contrast, rates of change in Northwest China are
insignificant.
Besides the number of excess deaths, which are strongly dependent on the

population density, we also report the mortality rates adjusting the population
to highlight the risks attributable to ambient O3 exposure (Table 1). The average
cardiopulmonary mortality rate over the Chinese population was 26.7 (17.2–
36.5) per 100,000 in 2019. Specifically, urban population mortality rate was
23.6 (15.2–32.3) per 100,000, while rural mortality rate was higher at 31.4
(20.3–43.0) per 100,000. In earlier years, urban-rural divergences were greater.
In most regions of China, rural residents suffer greater excess cardiopulmonary

Figure 2. Mapping of ozone exposure-associated cardiopulmonary deaths in 2019 Excess cardiopulmonary mortalities are defined as the total deaths caused by chronic
obstructive pulmonary disease and all-type cardiovascular diseases (COPD + CVDs). Numbers of premature deaths differentiate (A) urban, (B) rural, and (C) total population, and are
aggregated to prefecture-level cities for mapping. Exposure-response curved relationships for COPD and cardiovascular mortality (see Figure S9) are estimated by exposure re-
sampled meta-regression (see Method S5) considering 29 cohort-based epidemiological studies (see Table S9) identified from up-to-date systematic review. Color scale intervals are
divided by Jenks natural breaks due to non-Gaussian and multi-peak mortality distribution. Regional statistics with multiple mortality metrics (death number, mortality rate, years of
life lost) for 2019 are listed in Table 1, and statistics for 1990 are summarized in Table S2.
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mortality risks. Years of life lost (YLLs) (equal to the disability-adjusted life years
when focusing merely on mortality) attributed to O3 exposure was 6.78 (4.28–
9.35) million in 2019, and specifically 2.91 (1.84–4.01) million years for urban
population and 3.87 (2.44–5.34) million years for rural population. YLLs show
a descending trend by 0.06 (0.04–0.09) million years per decade, even given
the increase of excess mortality, as the life expectancy of Chinese population
has significantly prolonged in the past three decades owing to the substantial
improvement of the medical care system.32

Regulations are being made and revised to protect public health. The Na-
tional Ambient Air Quality Standards (GB3095-2012) enacted by The Minis-
try of Environmental Protection of China (MEPC) since 2012 stipulate the
Level-I standard as 100 mg/m3 (equivalent to �51.0 ppb), which is in accor-
dance with the previous version of WHO Air Quality Guidelines (AQG2005),33

and Level-II transitional standard as 160 mg/m3 (equivalent to �81.6 ppb).
Taking 2019 as an example, if all regions suffering O3 higher than Level-II
were set to be exposed to 81.6 ppb, then only 14.2% of the excess premature
deaths could have been avoided; while realizing Level-I standard could have
effectively reduced 75.3% of the excess mortality, among which rural mortal-
ity could have been prevented by 84.1%, emphasizing the importance of
achieving the planned O3 control target. The stricter provision on warm-sea-
son peak O3 pollution level, 60 mg/m3 (equivalent to �30.6 ppb) is added in
AQG2021 for the first time,33 based on the new evidence of long-term effects
on all-cause and respiratory mortality. Realization of this ultimate goal can
theoretically prevent all excess mortalities induced by long-term O3 expo-
sure, as the standard is below the threshold level (40–50 ppb, see Figure S9)
synthesized from currently available epidemiological evidence.

Insights on driving factors of mortality change
Figure 4 sorts the provinces (including the municipalities) by O3 exposure-

associated excess cardiopulmonary deaths. For urban mortality (Figure 4A),
the top 5 provinces, Shandong, Henan, Jiangsu, Hebei, and Anhui, have prevailed
over the 30 years due to the dense urban population. Comparatively, ranking of
rural mortality attributable to ambient O3 exposure shows more of a shuffled
pattern (Figure 4B). Multiple factors can influence the O3-associated mortality

change, as illustrated in Figure 5, decomposing the excess mortality change be-
tween 1990 and 2019 down to O3 exposure change, population growth, popula-
tion aging, overall cross-sectional mortality rate change, and urbanization-ori-
ented population migration. The increments in ambient O3 exposure (32.4%),
total population (24.6%), and the vulnerable population proportion defined as
the fraction of age R25 (13.4%) add on to the mortality increase, which are
compromised by the declines in overall cross-sectional mortality rates
(�11.2%), and populationmigration from rural to urban residence (�34.5%), lead-
ing to the overall mortality increasing rate by 24.7% for the entire population.
It is noteworthy that contributions from urbanization-oriented population

migration act as a significant role in mortality change, which is overlooked in
previous studies. Given that ambient O3 pollution is generally lower in urban
environments, population-weighted O3 exposure can be reduced when a
large proportion of rural residents migrate to cities, resulting in a reduction
of total mortality. The effect of population migration takes the predominant
role in moderately developed regions, such as Northwest provinces, while
deterioration of ambient O3 pollution and population growth carried the deci-
sive weight in highly developed areas, such as Beijing, Shanghai, and Guang-
dong (Figure 5).
The antagonism between the growing ambient O3 and population migration

reveals the blind spot of using the PWE metric to quantify the population expo-
sure that some regions specifically show low increasing or even decreasing ten-
dencyof PWE (Figure S12) should not be ascribed to the alleviation of ambient O3

pollution, but the population migration to cities, even if both the urban and rural
O3 pollutions are elevating (e.g., Sanya in Hainan Province, urban O3 rose from
46.7 to 50.3 ppb and rural O3 climbed from 61.1 to 63.2 ppb, but the rural popu-
lation proportion nose-dived from 70.3% to 17.7%, causing �5.9 ppb change in
PWE). Such a phenomenon is mainly observed in vast territory cities in remote
areas with lower annual pollution increasing rates but significant urbanization
progress. In a nutshell, we aim to highlight the urban-rural O3 exposure injustice
for environmental policymakers—rural populations are persistently suffering
from higher and ever-increasing O3 exposure, despite the fact that rural-to-urban
migration has been decreasing the ascending rate of overall exposure-associ-
ated excess mortality risks.

Table 1. Regional and nationwide cardiopulmonary mortality metrics associated with long-term ozone exposure in 2019

Region

Excess deaths (thousands) Mortality rates (per 100,000) YLLs (million years)

Urban Rural Total Urban Rural Total Urban Rural Total

Northeast China 9.5 17.3 26.9 19.6 27.8 24.2 0.38 0.49 0.87

(6.1–13.1) (11.1–23.8) (17.3–36.9) (12.6–26.9) (17.9–38.2) (15.6–33.2) (0.24–0.53) (0.32–0.68) (0.55–1.22)

North China 34.6 25.5 60.1 30.7 39.2 33.8 0.60 0.70 1.30

(22.4–47.1) (16.5–34.7) (38.9–81.8) (19.8–41.8) (25.3–53.3) (21.8–46.0) (0.39–0.83) (0.44–0.96) (0.82–1.77)

East China 83.0 38.9 121.9 26.0 35.1 28.3 0.51 0.62 1.13

(53.6–113.4) (25.1–53.1) (78.7–166.6) (16.8–35.5) (22.6–47.9) (18.3–38.7) (0.32–0.70) (0.39–0.86) (0.72–1.56)

Central China 41.0 30.3 71.2 27.6 34.4 30.1 0.54 0.61 1.15

(26.4–55.9) (19.5–41.3) (45.9–97.2) (17.8–37.7) (22.2–46.9) (19.4–41.1) (0.34–0.75) (0.39–0.84) (0.72–1.58)

South China 14.2 15.2 29.4 14.6 24.9 18.6 0.29 0.45 0.74

(9.1–19.7) (9.7–20.9) (18.8–40.6) (9.3–20.2) (16.0–34.3) (11.9–25.6) (0.18–0.40) (0.27–0.61) (0.46–1.02)

Northwest China 4.7 17.0 21.6 15.2 28.4 23.9 0.30 0.51 0.81

(3.0–6.4) (10.9–23.3) (13.9–29.7) (9.7–20.9) (18.3–39.0) (15.4–32.9) (0.19–0.41) (0.32–0.70) (0.51–1.11)

Southwest China 13.0 29.3 42.3 14.6 28.0 21.8 0.29 0.49 0.78

(8.3–17.9) (18.8–40.2) (27.1–58.2) (9.3–20.1) (18.0–38.5) (14.0–30.0) (0.18–0.40) (0.31–0.69) (0.49–1.09)

Nationwide 200.0 173.5 373.5 23.6 31.4 26.7 2.91 3.87 6.78

(128.9–273.6) (111.7–237.4) (240.6–510.9) (15.2–32.3) (20.3–43.0) (17.2–36.5) (1.84–4.01) (2.44–5.34) (4.28–9.35)

Threemortalitymetrics are estimated as (1) the number of excess deaths in thousands, (2) age-standardizedmortality rate per 100,000, and (3) years of life lost (YLLs)
in million years. We only regard premature deaths as health outcomes from long-term ozone exposure in our study, so that disability-adjusted life years (DALYs) are
equal to YLLs, for years of healthy life lost due to disability (YLDs) are considered constantly to be 0 (DALYs = YLLs + YLDs). Estimates are summarized bymedianwith
95% uncertainty intervals (UIs) from 1,000-times Monte Carlo bootstrap simulation. Estimations of 1990 mortality metrics are summarized in Table S2.
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DISCUSSION
To the best of our knowledge, this is the first study systematically assessing

the long-term O3 exposure-associated multi-cause (especially cardiopulmonary)
excess mortality in China over the 30 historical years (1990–2019). We use a
high-spatial-resolution ambient O3 concentration dataset to quantify population
O3 exposure, andmachine learning-based data fusion supervised by in situ obser-
vation can effectively reduce the O3 estimation biases.16-19 The urban-rural differ-
entiation can more precisely characterize the environmental inequality that rural
residents contribute less anthropogenic emissions of O3 precursors, but suffer
from higher O3 exposure. We collect, review, and pool themost up-to-date epide-
miological evidence on cause-specificmortality risks, including cohort studies on
Chinese population to constrain bias from ethnical heterogeneity.34,35 Synthe-
sized fromall qualified evidence,we conclude that long-termO3 exposure is asso-
ciated with both respiratory and cardiovascular mortality, while conventional
mortality estimation studies, such as the GBD 2019 report,23 overlooked the
chronic respiratory risk, which might have severely underestimated the factual
premature deaths (e.g., cardiovascular premature deaths occupied over half of
total cardiopulmonary mortality in 2019). We highlight these blind points to
arouse public attention that ambient O3 hazards might have been underrated,
and rural residents should be more aware of their O3 exposure.

There are four major causes leading to higher rural O3 pollution beyond the ur-
ban NOX transporting to rural communities. First, it is important to note that NOX

emissions are more pronounced in urban environments, leading to increased O3

scavenging by NO from traffic emissions, a phenomenon often referred to as the
“NOX titration trap.” Second, urban areas tend to have higher aerosol concentra-
tions, which can hinder solar radiation and thus limit photolytic reactions; addi-
tionally, these aerosols can serve as a sink for HOx radicals and HNO3, effectively
suppressing O3 formation.36,37 Third, rural regions typically experience elevated
biogenic VOC emissions due to the greater expanse of vegetation.4 Finally, rural
areas exhibit higher COemissions, primarily due to the incomplete combustion of
solid fuels, which are commonly used in China. This increased CO emission con-
tributes to the generation of radicals that facilitate the oxidation of NO, thereby

further augmenting O3 formation.38 Spatial patterns of the localized rural-urban
O3 differences (i.e., contrasting the rural ambient O3 concentration with the adja-
cent urban O3 level) are associated with a collection of sociodemographic and
ecological features (Table S5), coinciding with the proved mechanisms.
Pre-existing studies only considered excess respiratory mortality associated

with O3 exposure because earlier evidences on cardiovascular mortality risk
were contradictive. For instance, studies on ACS CPS II cohort estimated a pro-
tective effect on ischemic heart disease,28which neutralized the risks reportedby
other studies.29 As a precursor of O3, NO2 concentrations are found to be anti-
correlated with O3, and such collinearity can erroneously misconceive the O3-
mortality relationship in multivariate regression analysis. We thus do not include
studies in which mortality risks due to O3 exposure are concealed by adjusting
NO2 exposure into meta-analysis.39 In the Integrated Science Assessment for
Ozone and Related Photochemical Oxidants (referred to as ISA2020, EPA/600/
R-20/012) released by the US EPA in 2020, it is concluded that “the body of ev-
idence is suggestive of, but not sufficient to infer, a causal relationship between
long-term O3 exposure and total mortality” based on evidence published by
March 2018.40 However, after reviewing the latest epidemiological evidence,
we have decided to act as whistleblowers to push the envelope and emphasize
the potential additional risk of long-termO3 exposure on cardiovascularmortality.
As outlined in the Clean Air Act, ISAs are scheduled to be updated every 5 years
due to the evolving nature of science (https://www.epa.gov/air-research/
research-health-effects-air-pollution). We have taken a step ahead of the US
EPA in conducting evidence evaluations of the long-term O3 exposure induced
cardiovascular mortality risks at the epidemiological level.
The O3 exposure-cardiovascular mortality association is pathologically plau-

sible as verified in previous studies. InhaledO3 can trigger systemic inflammatory
responses in the circulatory system,41 provoke coagulation, platelet dysfunction,
and endothelial injury,42 elevate oxidative stress of the cardiovascular system,43

and induce progressive thickening of the carotid arteries to restrict blood circula-
tion.44 In addition, short-termepidemiological studies focusing on acute O3 expo-
sure revealed strong association with a variety of cardiopulmonary symptoms,5

Figure 3. Thirty-year trends of national and regional urban-rural disaggregated excess cardiopulmonary deaths associated with long-term ozone exposure Total premature death
numbers, aggregated for nationwide and seven geographical regions, are presented by piling up of mortality causes: COPD and all-type cardiovascular diseases. The upper part above
the baseline in each subplot indicates urban population mortalities, and the lower part represents premature deaths on rural residents. Thirty-year longitudinal change rates with 95%
confidence intervals (CIs) (1,000 deaths per decade) for 4 mortality indices (i.e., urban COPD, urban CVD, rural COPD, and rural CVD) as inserted are estimated by log-linear meta-
regression models considering the central mortality estimates together with uncertainties derived from Monte Carlo bootstrap simulation. See Table S3 for detailed statistics of
temporal trends of multiple mortality metrics.
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and thus it is sufficiently reasonable to assume that O3 exposure increases the
cardiovascular mortality risk.

We show that ambient O3 pollution in China manifests a steadily climbing
tendency, even given that the landmark National Air Quality Action Plan
came into force in 2013.45 This can be ascribed to the nonlinear relation-
ships between the O3 budget and emissions of precursors and the side ef-
fect of controlling particulate matter. Previous studies have verified that
high-O3 pollution cities follow the VOC-limited regime, indicating that
reducing VOC will be more effective in abating O3 pollution than controlling
NOX emission.46 In addition, the effective control of aerosols could have
increased solar radiation, and consequently accelerated tropospheric
photolysis to boost O3 formation.47 But, fortunately, O3-NOX-VOC relation-
ships have been approaching the transitional regime in metropolises such
as Beijing as the relevant policies have been consistently implemented,48,49

and hence we anticipate ambient O3 pollution will decline in the near future.
We highlight the urban-rural environmental injustice in terms of ambient O3

exposure, and also stress the antagonism between the climbing pollution levels
and urbanization-oriented populationmigration on total populationmortality. Our
findings emphasize that, although high-speed urbanization has been pursued,
government policymakers should never be blinded by the moderated growing
rate of total population excess deaths attributable to long-term O3 exposure,
as rural residents suffer from ever-growingmortality risks due to higher air pollu-
tion exposure. Besides, exposure to particulate matter is also of urban-rural
inequality among the Chinese population, as solid fuels have been widely used
among rural residents during the past several decades, which can generate addi-
tional household exposure.50 China has launched a rural clean heating campaign
to reduce particulate matter pollution,51 but there are still no policies specifically
focusing on rural O3 control. Therefore, special attention is urgently needed for
rural residents to promote their environmental health equality. We strongly

recommend that cities in which a substantial population of rural inhabitants
reside in the downwind areas of urbanized districts, adopt strictmeasures to con-
trol diurnal anthropogenic NOx emissions to curtail the urban-to-rural transfer of
precursors. In addition, meteorological factors should be considered to enhance
the efficacy of O3 pollution control measures.
We encourage future research on four important areas. First, overall cause-

specific mortality rates are highly affected by regional socioeconomic status,
resulting in un-neglectable urban-rural divergence and geographical vari-
ability. In this study, we make a compromise to use country-level metrics pro-
vided in the GBD 2019 report due to the unavailability of province-level statis-
tics throughout the 30 studied years. However, China CDC is endeavoring to
release localized statistics, and relevant studies can be enhanced in the near
future. Second, residential attribution is actually not simply as binary, as there
are more sophisticated categorizations (e.g., urban, suburban, peri-urban,
and rural). We analyzed the localized urban-rural O3 discrepancy benefiting
from urban-rural classified in situ observations and population distribution,
and we need more precise classification to update the habitation-differenti-
ated estimations and evaluate the effect on regional environmental health.
Third, it will be valuable to keep tracking the ambient air pollution. We hanker
after high-quality ambient air pollution databases from satellite-based
remote-sensing measurements and CTM simulations, and more competitive
data fusion algorithms to capture the population exposure with higher cred-
ibility are always appreciated. Finally, we need more nationwide cohort
studies for multi-cause mortality risk estimation, so as to strengthen the
representativeness of the pooled risk associations on Chinese population.
The association between cardiovascular mortality risk and long-term
ambient O3 exposure is still in need of justification by follow-up studies. Pro-
spective cohort studies in China are thriving in recent years, which can fill the
literature gap and promote multi-region health studies.

A

B

Figure 4. Leading 10 provinces and ranking changes of excess cardiopulmonary deaths from 1990 to 2019 Provinces altogether with municipalities are ranked in descending order
separately for urban (A) and rural (B) populations according to the numbers of excess cardiopulmonary deaths (scaled in thousands with 95% UIs estimated byMonte Carlo bootstrap
simulation) attributable to long-term ambient ozone exposure.
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MATERIALS AND METHODS
Urban-rural differentiated ambient O3 tracking

The core basis ambient O3 concentration tracking database with urban-rural distin-

guishment was developed by a two-stage space-time Bayesian neural network frame-

work, consisting of first-stage multi-model ensembler (BayNNE)16 and second-stage

downscaler (BayNND).17 BayNNE integrated eight fully coupled free-running simula-

tions from CMIP6-endorsed Earth system models with interactive chemistry and

chemistry-climate feedbacks, assisted with over 40 auxiliary predictors including soci-

odemographic, ecological, and emission features,17 improved from the previously pub-

lished version (see details in Method S1). The target spatial resolution was set at 1� 3
1� , capturing the cell-average ambient O3 concentrations with intra-cell variabilities

smoothed. Predictions of cell-average concentrations (C) followed Equation 1, which

were the basis for further downscaling. In the equation, MðiÞ refer to simulations by

different models, and subscripts loc and t represent spatial locations (by coordinates)

and temporal nodes (by month), respectively.

Cloc;t =
X

a
ðiÞ
loc;t$M

ðiÞ
loc;t +bloc;t + sloc;t (Equation 1)

BayNND predicted ambient O3 concentrations from BayNNE-generated cell-level aver-

ages concentrations in 1/8� 3 1/8� spatial resolution with stacked urban-rural differentia-

tion. The “stacked” downscaling algorithm encapsulated urban- and rural-averaged ambient

O3 concentrations into each spatial cell, assigning all urban (or rural) population in each cell

uniformlywith a cell-specific urban (or rural) prediction (seeFigure S13 for visual illustration).

The schematic diagram of two-stage Bayesian neural network algorithms was conceptual-

ized in Figure S14, and mathematical forms of BayNND are demonstrated in Equations 2

and 3, where BayNN represents Bayesian neural network regressor, e for Bayesian estima-

tion ensemble member, res for urban/rural classification, si for three spatial indicators, ti for

three temporal indicators, and a for auxiliary predictors. The parameter family q including ai ,

b, s, k, and dwere predicted from ensemble averages byMarkov-chainMonte Carlomethod

for Bayesian neural network.

CðresÞ
loc;t = kðresÞloc;t Cloc;t + d

ðresÞ
loc;t (Equation 2)

q
ðresÞ
loc;t;e = BayNNðresÞ

e ðs1; s2; s3; t1; t2; t3; a1; a2;/Þ (Equation 3)

Data fusion
Besides the BayNND, we fused three additional peer-reviewed high-quality data prod-

ucts18-20 to realize an enhanced 30-year historical monthly averaged ambient O3 concentra-

tion database spanning 1990–2019. The first 0.1� 3 0.1� elemental dataset was developed

by M3Fusion (multi-scale, multi-modal, and multi-temporal fusion) machine learning algo-

rithm and the conventional Bayesian maximum entropy statistical method in sequence

(M3-BME) to assimilate nine observation-nudged CTM simulations.20 Covering 30 years,

the calibration-observation accuracy is high to R2 = 0.81, RMSE = 4.0 ppb after space-

time correction.

One ambient O3 product was constructed using a cluster-enhanced ensemble ma-

chine learning (CEML), training region-exclusive algorithms to retain the geographical

variability.18 CEML mixed the results from chemistry reanalysis and remote sensing,

with over 80 supplemental geographical and meteorological features, to realize

0.5� 3 0.5� monthly resolved ambient O3 concentrations across 2003–2019, with over-

all accuracy R2 = 0.92, RMSE = 4.1 ppb.

The last base dataset supported by the team of Tracking Air Pollution in China (TAP), was

produced by random forest regressor with stochastic spatial auto-correlation signal

compensation.19 TAP utilized CTMsimulations and satellite remote-sensingmeasurements

to realize near real-time 0.1� 3 0.1� daily prediction since 2013, achieving accuracy as

Figure 5. Contribution decomposition of nationwide and province-level relative changes in long-term ozone exposure-associated excess deaths from 1990 to 2019 Five
contribution components are considered to be responsible for relative mortality changes as changes in (1) warm-season ambient ozone exposure levels, (2) total population, (3)
population structure (e.g., aging), (4) cross-sectional overall mortality rates of COPD and cardiovascular diseases, and (5) urbanization. Urbanization is approximated by population
fractions of urban residents. Independent contributions from each factor are dissociated by step-by-step feature substitutionmethod, as shown by the stacked bars for the nationwide
average and each province ormunicipality. Circlesmark the overall relative change percentages of total cardiopulmonarymortalities from 1990 to 2019, which are equal to the sum of
five influencing factors. Hong Kong andMacao are not analyzed as these two special administrative regions have fully accomplished urbanization since 1990 and thence effects from
population migration cannot be dissociated.
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R2 = 0.70, RMSE = 13.3 ppb. All three data products measured the ambient O3 in metric of

daily maximum 8-h average. Detailed procedures were precisely delineated in the original

literature.18-20

Fusingmultiple databases supervised by in situobservations can restrict biases fromany

single approach. As all four ambient O3 tracking products had achieved high consistency

with the observations, we used an elastic net regressor to fuse BayNND, M3-BME, CEML,

and TAP, assisted with three spatial and three temporal indicators,17 to avoid overfitting.

Detailed phased procedures for data fusion were illustrated in Method S2. Finally, by high-

lighting the peak exposure (April to September), 6-month ozone-season daily maximum

8-h average (OSDMA8) was calculated for mortality estimation. The Bayesian neural net-

works were constructed on Python-package TensorFlow (version 2.3.1), and elastic net re-

gressions were performed by scikit-learn (version 0.23.2).

Ground-level observations for supervised training and validation
Weused stationary observations as labels for all-stage supervisedmodel training and ac-

curacy evaluation. The urban-rural distinguished in situ observationswere obtained from the

TOAR archives10 and CNEMC.11 TOAR recognized 3,610 urban and 3,206 rural sites based

on population density by remote sensing; CNEMC identified 1,777 urban and 245 suburban

sites by administrative district division, whereas 245 suburban-labeled sites were reclassi-

fied as rural sites throughout this study, as (1) the observed “suburban”-labeled ambient

O3 concentrations were closer to the predicted rural concentrations (R2 = 0.81, normalized

mean bias, NMB = 2.8%) than urban predictions (R2 = 0.48, NMB = �11.6%, details in Fig-

ure S15), and (2) the projected population density of 2019 of the suburban-labeled sites

were way lower than 1,500 people per km2, the urbanization standard (Content S1).

In the first-stage multi-model fusion, 1� 3 1� gridded cell-average concentrations

including all available sites excluding CNEMC stations (cell-average levels could be urban-

biased due to disproportional deployment in urban and rural environments) were used as

supervision labels for model training. The global-scale overall fitting accuracy was

R2 = 0.94, RMSE = 2.6 ppb bymetric of monthly averaged daily 8-h maximum, and the eval-

uation of 10-fold cross-validation test showed R2 = 0.90.

In the second-stage 1/8� 3 1/8� gridded downscaling with urban-rural differentiation and
third-stage data fusion, we used urban- and rural-labeled observations for model training.

Throughout the studied 30 years globally, accuracy of urban predictions was R2 = 0.90,

RMSE = 3.8 ppb (cross-validationR2 = 0.85), andR2 = 0.92, RMSE = 5.6 ppb (cross-validation

R2 = 0.88) for rural predictions in the second-stage BayNND.

For the latest 6 years (2014–2019), prediction accuracies were evaluated with observa-

tions in China, as R2 = 0.91, RMSE = 4.2 ppb (cross-validation R2 = 0.82) for urban, and

R2 = 0.89, RMSE = 5.2 ppb (cross-validationR2 = 0.86) for rural predictions by the third-stage

data fusion algorithm. The 10-fold methodological cross-validation tests on Chinese sites

during 2014–2019 revealed R2 R 0.82, RMSE% 7.0 ppb, and 30-year global overall accu-

racy of the final dataset was R2 = 0.92, RMSE = 4.4 ppb (Table S6). Spatiotemporal gener-

alizability kept satisfactory across all designed tests (Method S8 and Table S7).

Risk association quantification
We updated the latest published systematic review9 up to October 2022 to collect all

recently published cohort-based epidemiological evidence on risk association between

long-term O3 exposure and multi-cause mortalities. We searched four additional qualified

studies,34,35,52,53 and by Quality Assessment Tool of Observational Cohort and Cross-

Sectional Studies developed by NIH (Table S8), all these newly added studies were catego-

rized as “Good” (Table S9).

We applied the Hunter-Schmidt meta-analysis estimator to pool the relative risk values

reported by multiple studies, based on which mortality causes with significant positive

pooled risks were then considered for further mortality estimation in this study. We finally

identified NCDs (RR = 1.016; 95% CI, 1.011–1.021), CRDs (RR = 1.020; 95% CI, 1.006–

1.035), together with COPD (RR = 1.056; 95% CI, 1.029–1.084) as a subordinate respiratory

disease, and CVDs (RR = 1.024; 95% CI, 1.015–1.033) with its subset, IHD (RR = 1.021; 95%

CI, 1.008–1.033), asmortality causes associatedwith long-term O3 exposure, bymeta-anal-

ysis (see Method S4 and Figures S3–S7 for details). The meta-analysis results were as-

sessed to be of “High” credibility by the Grading of Recommendations Assessment, Devel-

opment, and Evaluation system (Tables S10–S14).54

To capture the potential nonlinear trends of exposure-mortality associations more pre-

cisely, the concentration-response curves for the five identified mortality causes were con-

structed by meta-regression enhanced with exposure range resampling (see Method S5).9

Concentration-response curves provided by the original literature were preferred in priority,

while for studies not reporting the curves, linear trendswere presumed by setting the lowest

5th percentile exposure concentration as the theoretical minimum risk exposure level for re-

sampling (seeTable S15).55 Thecause-specific curve-based relative risk valuesasa function

of exposure concentration (RRx , see Figure S9) are adopted for O3 exposure-attributable

excess mortality estimation as main analysis.

Population gridding and calibration
We integrated the population products included by the Socioeconomic Data and Applica-

tions Center (SEDAC) and China Statistical Yearbook series (1999–2020) released by Na-

tional BureauofStatistics to generate thecalibrated griddedChinese population dataset dur-

ing 1990–2019. We applied a cubic spline model to extrapolate the two fundamental

datasets, Gridded Population of the World (GPW) (version 4.11) and Population Dynamics

with urban-rural specification (version 1.01), to the 30 consecutive study years for each

grid. Next, we linearly calibrated the province-level populations aligning with the China Sta-

tistical Yearbook. The demographic age statistics were downloaded from GBD Population

Estimates 1950–201956 and The China Statistical Yearbook series 2004–2019, with which

the age-stratified risked population (age R25) were estimated. Grid-level male and female

populations were additionally split according to the province-level gender ratio reported in

the China Statistical Yearbook for further sensitivity analysis.

The urban-rural binary classification for each cell residedwith habitantswas basedon the

population density of each 3000 3 3000 fine cell: >1,500 people per km2 as urban and<1,500

people per km2 as rural. When upscaling to 1/8� 3 1/8� coarser cell, the urban and rural res-
idents were summed up separately and stacked in each coarse cell. The reason for gridded

population upscaling is the spatial resolution limitation of ambient O3 tracking (approxi-

mately 10 3 10 km2). A schematic illustration for urban-rural stacked upscaling is shown

in Figure S16. The ultimate annually resolved population dataset with 1/8� 3 1/8� spatial

resolution encapsulated four counts of population in each grid: (1) rural male, (2) rural fe-

male, (3) urbanmale, and (4) urban female. Detailed procedures are explained in theMethod

S6 and Figure S17.

The definition of urbanization throughout the study is cell-level proportion of urban resi-

dents among all population. Due to data unavailability, we did not track the individual-level

migration behavior, whereby rural-to-urban population migration was reflected in a cross-

sectional level by change of the urban-rural population structure, as illustrated in Figure S18.

A demonstrative diagram for stacked population exposure assignment (i.e., cell-based con-

centration-population projection) is given in Figure S19. The cell-level PWE from ambient O3

concentration of x was calculated by Equation 4, suitable for urban, rural, and total

populations.

PWE =

P
res
xres$PopresP
res
Popres

(Equation 4)

Excess mortality estimation
We estimated the O3 exposure-attributable excessmortalities by linking ambient O3, con-

centration-response association, population, and cross-sectional mortalities together. For

the population at risk (i.e., age R25), the population attributable fraction (AF) at specific

ambient O3 concentration of x followed

AF =
RRx � 1

RRx
(Equation 5)

with which the cell-level excess deaths, DMort, and attributable YLLs, DYLLs, were esti-

mated as

DMort =
X
res

X
age

y0age$AFres$Popage;res (Equation 6)

DYLLs =
X
res

X
age

YLLs0age$AFres$Popage;res (Equation 7)

where y0 and YLLs0 are the cause-specific cross-sectional mortality rate and rate of YLLs

(per 100,000), respectively; and Pop is the cell-level population at risk. Subscript age refers

to the age-stratified group by 5-year intervals from25 toR95 (i.e., 25–29, 30–34,., 90–94,

andR95) corresponding to the estimates of mortality rate provided by Institute for Health

Metrics andEvaluation (IHME), anddue to dataunavailability, age structure is assumed to be

the same for urban and rural populations; AFres is calculated from urban-rural distinguished

ambient O3 concentrations. The cross-sectional annual age- and gender-standardized mor-

tality statistics of the five studied causes were collected from the GBD Results portal. The

cell-level estimations were specified for urban and rural residents, given distinguished

ambient O3 exposure and population.

Mortalities were estimated by 1,000 realization Monte Carlo bootstrap, accomplished in

Python (version 3.8.0). Considering the skewed distribution, medians are extracted to
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represent the central levels other than the arithmetic means, together with 95% UIs. Global

distributions of the results were mapped via QGIS (version 3.26). Sensitivity analyses were

enclosed in Method S7.

Other involved analysis
Grid-level results were aggregated into seven administrative geographical divisions

(Northeast, North, East, Central, South, Southwest, and Northwest China) and four world-

class megalopolises (Jing-Jin-Ji, Cheng-Yu, Yangtze River Delta, and the Greater Bay

Area) for statistics and interpretation. Further descriptions were expounded in Method S8

and Figure S1. Longitudinal trends of O3 concentrations were calculated by generalized

linear model, and trends of estimated mortality metrics with 95% UIs were calculated by

log-linear meta-regression with a random-effects estimator, conducted in R packagemeta-

for. Association assessment of driving factors on rural-urban ambient O3 disparity was real-

ized by generalizedmultivariate linear regressionmodel, and feature screeningwasconduct-

ed by forward stepwise selection setting significant threshold as p < 0.2. Literature-based

external validations on the urban-rural differentiated ambient O3 predictions were presented

in Figure S20 and Content S2.

Source apportionments for the 1990–2019 mortality change rates were accomplished

by controlling the relevant factors each-by-each, following the piling-up decomposition

approach suggested by GBD 2015.57 For each province, we calculated the percentage con-

tributions of change rates in excess deaths from five independent factors: (1) effect of

change in urban and rural ambient O3 pollution level, (2) effect of population growth, (3) ef-

fect of population aging, leading to greater risked population, (4) effect of change in baseline

mortality rate (i.e., cross-sectional mortality rate reported by IHME), and (5) effect of urban-

ization-oriented urban-rural population structure change (i.e., Chinese rural populations are

migrating to urban living environments), among which the last factor is extended from pre-

vious studies. We added special treatment on the urban-rural exposure differentiation, as to-

tal excess mortality burdens in 1990 (year 1 as noted in the superscript) and 2019 (year 2)

were calculated as demonstrated below.

DMortð1Þ =
X
age

X
res

 X
age

Popð1Þ
age;res 3

Popð1Þ
ageP

Popð1Þ
age

3 y0ð1Þage 3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!
(Equation 8)

DMortð2Þ =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0ð2Þage 3
Popð2Þ

res 3AFð2Þ
resP

Popð2Þ
res

!
(Equation 9)

We then defined the modified excess mortalities by substituting the influencing features

step by step, as presented below.

A =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð1Þ
ageP

Popð1Þ
age

3 y0 ð1Þage 3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!
(Equation 10)

B =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0ð1Þage 3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!
(Equation 11)

C =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0 ð2Þage 3
1 � AFð2Þ

res

1 � AFð1Þ
res

3
Popð1Þ

res 3AFð1Þ
resP

Popð1Þ
res

!

(Equation 12)

D =
X
age

X
res

 X
age

Popð2Þ
age;res 3

Popð2Þ
ageP

Popð2Þ
age

3 y0 ð2Þage 3
Popð1Þ

res 3AFð2Þ
resP

Popð1Þ
res

!
(Equation 13)

From DMortð1Þ to A, we only changed the total population but maintained the age demo-

graphic and urban-rural structure, so that the dissociated contribution of population growth

was calculated by Equation 14. We then replaced the age structure to observe the effect of

population aging (Equation 15). Next, the baseline mortality rate was updated, where we

should introduce a correction factor (Equation 12, the fourth term in the bracket), that the

2019 baseline mortality rate contains the part of contribution from changed O3 exposure,

from which we calculated the effect of baseline mortality rate change (Equation 16). Finally,

the exposure-determined AFswere aligned to 2019 level, and we thus calculated the contri-

bution from exposure change (Equation 17) and the remained urbanization-oriented popu-

lation migration (Equation 18).

Population growth effect ð%Þ =
�
A � DMortð1Þ

�.
DMortð1Þ (Equation 14)

Population ageing effect ð%Þ = ðB � AÞ=A (Equation 15)

Baseline mortality rate change effect ð%Þ = ðC � BÞ=B (Equation 16)

Exposure change effect ð%Þ = ðD � CÞ=C (Equation 17)

Population migration effect ð%Þ =
�
DMortð2Þ � D

�.
D (Equation 18)
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SUPPLEMENTARY METHODS  

 

Method S1 | Multi-model Fusion and Downscaling  

The initial version of ambient O3 concentration dataset developed by space-time Bayesian neural network downscaler 

(BayNNDv1) followed two major steps: i) multi-model fusion1, and ii) urban-rural distinguished downscaling2. During multi-

model fusion, a total of 10 CMIP6 historical simulations were selected as inputs for 1990–2014, and 6 SSP2-RCP4.5 scenario 

projections for 2015–20192. The imbalanced model numbers between the 2 phases (Phase 1: 1990–2014, Phase 2: 2015–

2019) introduced additional heterogeneities. The cross-scenario divergences were way lower than the cross-model discrep-

ancies, and thus we replaced SSP2-RCP4.5 with SSP3-RCP7.0 to reach homogeneity with the maximum number of models 

between the two Phases. We fused 8 coupled earth system models with interactive chemistry as i) BCC-ESM1, ii) CESM2-

WACCM, iii) EC-Earth3-AerChem, iv) GFDL-ESM4, v) GISS-E2-1, vi) MRI-ESM2-0, vii) UKESM1-0-LL, and viii) CCMI, an av-

erage of 2 earlier generation atmospheric models, CESM1-WACCM and CMAM3-10. All the involved CMIP6 model simulation 

outputs are downloaded from Earth System Grid Federation repository platform: https://esgf-node.llnl.gov/search/cmip6.  

Following the established methodology with replacement of data sources and adding in situ observations during 2014–

2019 provided by China National Environmental Monitoring Centre (CNEMC), we improved the accuracy of BayNNDv1. The 

optimised product BayNNDv2 is of higher global overall accuracy R2=0.91, RMSE=4.5 ppb for urban, and R2=0.89, RMSE=5.2 

ppb for rural sites.  

 

Method S2 | Phased Data Fusion  

As the base ambient O3 products were of different temporal coverage, time-period phased data fusion was conducted. 

For Phase I (Roman numerals were used here to avoid confusion with the aforementioned Phase 1) during 1990–2002, fusion 

with calibration were conducted on BayNNDv2 and M3-BME. Due to the lack of systematic observations in China during this 

period, we trained the supervised deep learning model merely based on the observation archives from Tropospheric Ozone 

Assessment Report (TOAR) project11, and predicted the ambient O3 for China assisted with geographic and sociodemographic 

features as a compromised choice. For Phase II of 2003–2012, BayNNDv2, M3-BME and CEML were blended after unification 

into 1/8°×1/8° spatial resolution. Still, no Chinese localised observations were involved, but satellite-based remote-sensing 

measurements were included to increase the reliability in capturing the spatiotemporal pattern. For Phase III of 2013–2019, 

we mixed all four base databases nested in China territory, supervised by in situ observations from China National Environ-

mental Monitoring Centre (CNEMC). The urban-rural distinguishment was inherited from BayNNDv2, and data fusions were 

performed for urban and rural concentrations separately.  

All ground-level site-based observations were aggregated into 1/8°×1/8° as supervised training labels. The fusion pro-

cesses can be expressed as follows:  

 Phase I: "#$%&'( = *(,-.//0$%&'(, 2#–,24, 56, 57, 5#, 86, 87, 8#),  

  "#%$%': = *(,-.//0%$%': , 2#–,24, 56, 57, 5#, 86, 87, 8#),  

 Phase II: "#$%&'( = *(,-.//0$%&'(, 2#–,24, ;42<, 56, 57, 5#, 86, 87, 8#),  

  "#%$%': = *(,-.//0%$%': , 2#–,24, ;42<, 56, 57, 5#, 86, 87, 8#),  

 Phase III: "#$%&'( = *(,-.//0$%&'(, 2#–,24, ;42<, =>?, 56, 57, 5#, 86, 87, 8#),  

  "#%$%': = *(,-.//0%$%': , 2#–,24, ;42<, =>?, 56, 57, 5#, 86, 87, 8#),  
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where	*	stands for the trained elastic net linear regressor,	56, 57, 5#	refer to the spatial geometric coordinates, and	86, 87, 8#	are 

temporal periodical and sequential indicators as listed below12. Cross-validation test results and overall performance evalua-

tions were summarised in Table S6.  

  56 = AB5 C2E :F(GHI$JK
#LM

N AB5 C2E :'IHI$JK
6OM

N,  

  57 = AB5 C2E :F(GHI$JK
#LM

N 5PQ C2E :'IHI$JK
6OM

N,  

  5# = 5PQ C2E :F(GHI$JK
#LM

N,  

  86 = AB5 C2E RF(IS
67

N,  

  87 = 5PQ C2E RF(IS
67

N,  

  8# =
RF(IS
#LM

.  

It should be furtherly noted that the BayNNDv2 urban-rural downscaled dataset was treated fully as a core basis dataset, 

and then 3 other well-developed datasets (M3-BME, CEML and TAP) were fused using elastic net regressor rather than being 

incorporated as auxiliary predictors for Bayesian neural network downscaler. We selected such design for the purpose of 

maintaining the temporal homogeneity, as the elastic net regressor would “respect” the source dataset closest to the labels 

for supervision (i.e. observations), and regard the other two datasets as a strategy of “belt and braces (double insurance)” in 

case the Bayesian neural network “missed” any information that had been captured by M3-BME, CEML or TAP. The elastic 

net regressor (instead of other base machine learners like random forest or gradient boosting decision tree) would not sub-

stantially destroy the spatiotemporal pattern of the very input dataset closet to the observations, and tune with the rest input 

datasets if necessary. It can effectively avoid causing “fractures” in the “junction” year of different datasets (e.g. CEML starts 

from 2003, and hence 2003 is a junction year that the temporal fracture will be inclined to occur). When calculating the 

importance features of Phase III (2013–2019), the core dataset BayNNDv2 occupied 96.8% and 94.1% weights for urban and 

rural predictions, respectively, justifying the necessity and credibility of long-term global-scale space-time integrated training.  

 

Method S3 | Detailed specification of Chinese administrative divisions  

We used 7-division scheme in this study. This scheme of Chinese Administrative Geographical Division considers ge-

ography, history, culture, and ethnicity into comprehensively. The municipalities directly under Chinese Central Government 

and Autonomous Regions are all of provincial executive level. Northeast China includes 3 provinces: Heilongjiang, Jilin, and 

Liaoning. North China includes 3 provinces: Hebei, Shanxi, Inner Mongolia Autonomous Region; and 2 direct-administered 

municipalities: Beijing and Tianjin. East China includes 7 provinces: Shandong, Jiangsu, Anhui, Zhejiang, Jiangxi, Fujian, and 

Taiwan; and a direct-administered municipality: Shanghai. Central China includes 3 provinces: Henan, Hubei, and Hunan. 

South China includes 3 provinces: Guangxi Zhuang Autonomous Region, Guangdong, and Hainan; and 2 Special Administra-

tive Regions (SAR): Hong Kong SAR and Macao SAR. Southwest China includes 4 provinces: Tibet Autonomous Region, Yun-

nan, Sichuan, and Guizhou; and a direct-administered municipality: Chongqing. Northwest China includes 5 provinces: Xinjiang 

Uygur Autonomous Region, Qinghai, Gansu, Ningxia Hui Autonomous Region, and Shaanxi. Jing-Jin-Ji (JJJ) urban agglomer-

ation consists of Beijing, Tianjin, 11 prefecture-level cities (Shijiazhuang, Baoding, Tangshan, Langfang, Qinhuangdao, Zhang-
jiakou, Chengde, Cangzhou, Hengshui, Xingtai, Handan) in Hebei Province, and Anyang in Henan Province. “Ji” (“冀”, pro-

nounced as jì) is the ancient name of Hebei Province. Some schools abbreviate the megalopolis as BTH (Beijing, Tianjin, and 

Hebei). Cheng-Yu (CY) urban agglomeration consists of Sichuan Province (excluding Liangshan, Panzhihua, Aba, Ganzi, Guang-

yuan, Bazhong) and Chongqing (excluding Qianjiang, Pengshui, Youyang, Xiushan, Chengkou, Wushan, Wuxi, Fengjie). The 
alternative historical name of Chongqing is “Yu” (“渝”, pronounced as yú), and hence for the phonological harmony, Chengdu-

Chongqing district is more commonly shorted as Cheng-Yu rather than Cheng-Chong. Yangtze River Delta (YRD) urban ag-

glomeration consists of Jiangsu Province, Anhui Province, Zhejiang Province, and Shanghai. The China Greater Bay Area (GBA) 
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circumscribes Hong Kong SAR, Macao SAR, and 9 prefecture-level cities in Guangdong Province (Guangzhou, Shenzhen, 

Foshan, Dongguan, Zhongshan, Jiangmen, Huizhou, Zhuhai, Zhaoqing), which is alternatively entitled as the Guangdong–

Hong Kong–Macao Greater Bay Area. The 9 cities in Guangdong Province are collectively named as Pearl River Delta (PRD) 

Economic Zone. The 7 Chinese administrative divisions and 4 megalopolises were mapped in Figure S1.  

 

Method S4 | Identification of mortality causes  

 Meta-analyses were performed on the extracted cohort-based epidemiological evidences (e.g. hazard ratio, HR) relevant 

to long-term O3 exposure from systematic review updated until October 2022. All reported mortality causes were included 

for meta-analysis extended from the latest relevant systematic reviews13,14, and the causes with pooled positive relative risks 

were considered for mortality estimation. Applying the Hunter-Schmidt estimator, 6 mortality causes (might not be mutually 

exclusive due to hierarchically overlapping) were identified to be of positive relative risks: non-accidental causes, chronic 

respiratory diseases, chronic obstructive pulmonary disease, cardiovascular diseases, ischaemic heart diseases, and conges-

tive heart failure, as plotted in Supplementary Figures 3–7, and potential publication biases were tested by trim-and-fill 

method (Figure S8).  

 In terms of mortality estimation, the non-accidental cause mortalities were narrowed to mortalities of non-communica-

ble diseases (NCDs), as it is reasonable to assume the non-accidental causes other than NCDs (e.g. communicable, maternal, 

neonatal, and nutritional diseases, injuries, suicide and homicide, etc.) are of no association with ambient O3 exposure. In 

addition, mortality estimations in this study did not include the congestive heart failure which was not listed as an individual 

mortality cause in the GBD 2019 Study15. Therefore, further explorations on the nonlinear exposure-response relationships 

and excess mortality estimations only involve i) NCDs, ii) chronic respiratory diseases (CRDs), iii) chronic obstructive pulmo-

nary disease (COPD), iv) cardiovascular diseases (CVDs), and v) ischaemic heart disease (IHD).  

 

Method S5 | Construction of exposure-response curve  

 As the exposure-response association strengths may not necessarily follow the linear pattern, curved trends were ex-

plored by meta-regression enhanced by exposure-range resampling for the sake of more accurate risk estimation14,16,17. Most 

of the pre-existing studies were conducted on the North American and European countries where ambient O3 pollution has 

been effectively constrained in the past decades, and thus the averaged exposure levels of the cohort participants were lower 

than the Chinese population. Under this circumstance, multi-cause mortality relative risks for Chinese residents estimated by 

conventional meta-regression method would rely on exposure extrapolation, leading to high uncertainties. To address this 

issue, exposure-range resampling would make full use of the literature-reported population exposure levels rather than the 

study-specific averaged exposure concentrations, so as to cover the exposure range as wide as possible and thus increase 

the estimation robustness.  

 The concentration-response curves were adopted in priority if reported in the literature. We queried the authors of the 

published studies providing the non-linear concentration-response relationships for the detailed values of the curves; and as 

for the studies we did not receive responses by October 2022, we recovered the values directly from the figure by mean of 

geometric measurement in Microsoft Visio. If the original studies did not explore the concentration-response trends, linear 

relative risk models were assumed across the reported exposure range, with the theoretical minimum risk exposure level 

(TMREL) presumed to be a random value uniformly distributed between the minimum and lowest 5th percentile following a 

previous study18. The statistical approach to reproduce the lowest 5th percentile was described in a prior systematic review14, 
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and the resampled/imputed distribution statistics were listed in Table S15. The estimated concentration-response curves for 

mortality risks of NCDs, chronic respiratory diseases, COPD, cardiovascular diseases, and ischaemic heart disease were pre-

sented in Figure S9.  

 The exposure range resampling reproduced the exposure level (OSDMA8 in ppb) by every 1 ppb increment between 

the literature-reported minimum and maximum exposure level as	T. In linear-model presumed relative risk recovering, for 

each resampled exposure concentration	T, the corresponding effective exposure “dose”	∆T is defined as  

∆T = VW<X{T − [\]^_}, 

where ReLU is the rectified linear unit choosing the greater value between 0 and	T − [\]^_. Given the reported risk associ-

ation (i.e. HR) with 95% confidence interval (CI) as HRLB to HRUB by every	∆.	incremental exposure, the relative risk with 95% 

CI at exposure concentration	T	can be calculated as  

 a]T = W:(bc∙∆T/∆f;  

 a]gh,T = W:(bcij∙∆T/∆f;  

 a]kh,T = W:(bclj∙∆T/∆f.  

 Following the procedures illustrated above leads to an exposure-response sequence	for each study that did not report 

the concentration-response curve; the fully resampled sequences undergo MR-BRT multi-study pooling with the literature-

reported exposure-response curves.  

Several previous studies have provided estimations on O3-associated excess COPD mortality. Taking 2017 as an example, 

the GBD report estimated the COPD mortality as 113 (95% Uncertainty Interval, UI: 53–178) thousand17, which is lower 

than our results (183, 95% UI: 125–245 thousand), as GBD applied undersized RR values19. Yin et al. reported 178 (95% UI: 

68–286) thousand COPD deaths attributable to O3 exposure20, which is more coherent with our result in terms of central 

estimate. This is because the RR value they used (RR=1.040, 95% CI: 1.013–1.067) from a single cohort study21 is close to 

the multi-study pooled RR by our meta-analysis (RR=1.056, 95% CI: 1.029–1.084); but their result is still of greater estimation 

uncertainty. Contrarily, Malley et al. used oversized risk association strength (RR=1.12, 95% CI: 1.08–1.16) and reported 316 

(95% UI: 230–403) thousand respiratory deaths for 201022, which is substantially higher than our estimates (179, 95% UI: 

122–241 thousand). The unneglectable cross-study divergences and great estimation uncertainties reveal the insufficiency 

of epidemiological evidences. Furthermore, leaving out cardiovascular mortality risks leads to dubious conservative overall 

estimations. We consider cardiopulmonary beyond respiratory mortality for the first time and thus provide an aggressive 

estimation to update the literature.  

 

Method S6 | Construction procedures of gridded population dataset  

The step-by-step procedures to construct the gridded Chinese population dataset are illustrated in the flowchart (Figure 

S17), in which the rounded rectangles indicate procedural semi-manufactures, rectangles refer to the initial input and final 

output datasets, and the number-marked arrows represent operations.  

Starting point: UN WPP-adjusted GPWv4. The Gridded Population of the World with adjustment from United Nation 

World Population Prospects23 (version 4.11) was set as the footstone, as it is the latest global population distribution product 

with the finest spatial resolution (30’’×30’’) and densest temporal coverage (2000–2019).  
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Step 1: Spatial re-gridding. The spatial resolution of finally enhanced ambient O3 concentration dataset with urban-rural 

distinguishment is 1/8°×1/8°, based on which the population exposure levels were assessed. By averaging the 15×15 adja-

cent grids (1/8°=30’’×15), the raw 30’’×30’’ dataset was re-gridded into 1/8°×1/8°.  

Step 2: Temporal extrapolation. The GPWv4 dataset covers 20 studied years: 2000–2019. For each re-gridded 1/8°×1/8° 

cell, the restricted cubic spline regression model with 3 knots was applied to the cell-level population against year, so as to 

extrapolate the temporal coverage onto the complete study years: 1990–2019, following previous studies1,24.  

Step 3: China localisation. The global longitude-latitude-based grids were geographically projected onto the map of China 

provided by the Ministry of Natural Resources of People’s Republic of China, and all grids belonging to China territory were 

extracted for further processing. Geographical mapping and administrative division projection (i.e. country, provinces, and 

prefecture-level cities) were performed in QGIS (version 3.26.10).  

Step 4: Urban-rural distinguishment. The Population Dynamics dataset (version 1.01), identifying urban and rural popu-

lation counts for each 1/8°×1/8° grid25, was extrapolated onto 30 consecutive years by mean of restricted cubic spline 

model2, based on which the urban and rural population fractions were calculated. The cell-specific fractions were then mul-

tiplied onto the 30-year extrapolated GPWv4 China gridded population dataset (i.e. procedural semi-manufactures of Step 

3), to update the urban-rural distinguished population distribution. The consensus has been widely accepted that GPWv4 

datasets reporting 20 consecutive years were more reliable than interpolated data products.  

Step 5: Urban-rural calibration. The China Statistical Yearbook series reported the numbers of urban and rural residents 

for each year, with which the estimated values were linearly aligned. For an instance, if the predicted total count of urban 
residents of a certain province (Step 4) was	?Bmn%KJ	while the factual count provided by the China Statistical Yearbook 

was		?BmoI'I, the urban population count for each grid was then multiplied by a coefficient of	?Bmn%KJ/?BmoI'I	. Province-level 

calibrations were performed for 2005–2019 in accordance with the Yearbook precision, while nation-level calibrations were 

conducted for 1990–2004 as a compromise given the data unavailability.  

Step 6: Age group specification. Fractions of population aged above 25 were retrieved from GBD Population Estimates 

1950–2019,26 and the China Statistical Yearbook series 2004–201927. Values provided by the China Statistical Yearbook 

series were adopted in priority for 2004–2019, while for the earlier years 1990–2003 when the China Statistical Yearbook 

did not archive the population pyramid, the GBD Population Estimates were used as a compromise. The nation-level year-

specific fractions were multiplied onto each grid to identify the counts of population age ≥25. After this step, the enhanced 

gridded population age ≥25 differentiated with urban and rural residence was used as the capstone dataset for main analysis.  

Step 7: Gender group specification. Genders were furtherly specified for sensitivity analysis. Province-level gender pro-

portions for 2000–2019 and nation-level gender proportions for 1990–1999 were obtained from the China Statistical Year-

book series 1990–201927. The province- or nation-level male and female proportions were uniformly applied onto each grid 

circumscribed inside the corresponding province or the whole country territory, respectively.  

Step 8: Dataset encapsulation. After all the aforementioned data processing, the gridded population was structured into 

the meta-dataset: 1/8°×1/8° spatial resolution; yearly resolved spanning 1990–2019; each grid encapsulating 4 population 

counts as: i) urban male age ≥25, ii) urban female age ≥25, iii) rural male age ≥25, and iv) rural female age ≥25.  

 

Method S7 | Sensitivity analyses  

Long-term ambient O3 tracking covers earlier years beyond the satellite-based remote sensing measurements or chem-

ical reanalysis (i.e. 1990–2002), indicating predictions would merely relied on the CMIP6 numerical simulations for this period. 
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We therefore extended a sensitivity analysis for the first-stage space-time Bayesian neural network-based data assimilation 

during 2003–2019 under two scenarios, as fusing eight CMIP6 models with (ScA) and without (ScB) a machine-learning-

calibrated remote-sensing measurements and chemical reanalysis outputs28, assisted with over 40 auxiliary features2.  

We then evaluated the accuracies of 10-fold cross-validation tests by random split (70% dataset matched with obser-

vations), external validation tests (the rest 30%), and overall fitting, as summarized in Table S16. We compared the developed 

ambient O3 datasets under the two scenarios by coefficient of variation (CoV): standard deviation divided by the arithmetic 

mean. We concluded that the deep-learning-based prediction accuracies by solely using CMIP6 simulations were as compet-

itive as fusing additional measurements, and no substantial discrepancies were observed between ScA and ScB (CoV=1.0%, 

spatiotemporal 5–95th%ile: 0.1–2.8%).  

We furtherly split the full dataset manually for cross-validation tests under ScB, maintaining the temporal coherence: i) 

2003–2012 for training and 2013–2019 for testing; ii) 2003–2007 and 2015–2019 for training and 2008–2014 for testing; 

and iii) 2010–2019 for training and 2003–2009 for testing. All three temporally staged cross-validation tests had revealed 

good performances (R2=0.90, 0.92, 0.92; RMSE=2.86, 2.71, 2.70 ppb, respectively for the three tests). The constrained cross-

scenario divergences and stable temporal generalizability verified the credibility of model-based ambient O3 tracking in the 

earlier years.  

Parallel with the curved risk model, the linear risk model was adopted for attributable mortality estimation as reference, 

which assumed that relative risks change linearly with the exposure level	T	following  

VVp = W:(cc∙
∆p
∆f 

where RR is the multi-study pooled value scaled in each	∆.	incremental exposure, and	∆q	is the effective dose above the 

TMREL.  

We performed a series of further sensitivity analyses on the estimation for 2017 as an example. The exposure-response 

relationships might be the major source of estimation uncertainty, and thus we applied the multi-study pooled RRs onto the 

simplest log-linear model parallel to the curved model as presented in the main results. The threshold (also known as TMREL 

or low-concentration cut-off) for long-term O3 exposure-associated mortality risk was also contentious, and thence we tested 

several values as directed in literature: i) the global lowest 5th percentile PWE in 2017 by BayNND, 42.6 ppb (Scenario 1, 

Sc1); ii) the 30-year global lowest 5th percentile PWE by BayNND, 40.8 ppb (Sc2); and iii) the maximum of literature-reported 

lowest 5th percentile exposure levels from studies included for meta-analysis, 44.0 ppb (Sc3). We used the grid-averaged 

ambient O3 concentrations to quantify population exposure, supposing the ambient O3 exposure levels were not distin-

guished for urban and rural environments, as Sc4. Gender-specified mortality metrics other than the gender-standardized 

estimates reported by IHME, were used as Sc5. Province-specific mortality metrics for 2017 provided by China CDC were 

applied as Sc629. In Sc7, we replaced the O3 tracking dataset with M3-BME solely, which was used in the GBD 2019 study. 

In Sc8, we adopted cardiovascular mortality risk association (RR=1.227, 95% CI: 1.108–1.359, p-value=0.79) pooled from 2 

cohort studies on Chinese population reporting higher RRs30,31.  

Estimations for excess deaths differentiating the designed schemes were summarized in Table S17. The cross-scheme 

discrepancies were constrained not to exceed 10%, and therefore sensitivity analyses validated the robustness of our mor-

tality estimations, verified the coherence of the data sources, and justified the rationality of innovations in our study design.  
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Method S8 | Cross-validation for spatiotemporal generalizability  

Since China lacked systematic ground-level measurements in earlier years before 2013, and the observation sites de-

ployed in urban and rural environments were disproportional. We therefore decided to train the model at global scale with 

sufficient supervision by observations, and conducted strengthened rigorous cross-validation tests on the spatiotemporal 

extrapolation reliability to verify the generalizability of the deep learning downscaling algorithm. Besides the cross-validation 

and external validation tests by random split, we extended region-clustered cross-validation tests on spatial extrapolation 

capability (cvs1: training on North America, testing on Europe; cvs2: training on Europe, testing on North America; cvs3: train-

ing on North America and Europe, testing on Asia; and cvs4: training on locations outside China, testing on China), and staged 

cross-validation tests on global-scale temporal generalization (cvt1: training on 1990–2013, testing on 2014–2019; cvt2: 

training on 1990–2007 and 2014–2019, testing on 2008–2013; cvt3: training on 1990–2001 and 2008–2019, testing on 

2002–2007; cvt4: training on 1990–1995 and 2002–2019, testing on 1996–2001; cvt5: training on 1996–2019, testing on 

1990–1995) for the second-stage urban-rural differentiated downscaling. Spatiotemporal generalizability tests are summa-

rized in Table S7.  
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Supplementary Tables  

 
Table S1 | Province-level average of ambient ozone concentrations in 1990 and 2019.  

Urban, rural and population-weighted exposure (PWE) concentrations are scaled as 6-month (April to September) ozone-season daily 8-hour 
maximum average (OSDMA8) in ppb for either year. Statistics include the regional median and spatial 5-95th percentile range. Hong Kong 
SAR and Macao SAR have realised full urbanisation before 1990, and thus rural concentrations are not considered.  

Region 
Year 1990 Year 2019 

Urban Rural PWE Urban Rural PWE 

Nationwide 40.2  (20.7–48.7)  54.2 (44.2–62.8)  49.0  (39.1–57.2)  59.5  (46.1–91.9)  67.9 (56.0–93.2)  63.3  (52.4–87.3)  

Northeast China 34.6  (31.4–43.4)  47.6 (40.6–58.3)  44.1  (36.8–53.8)  49.0  (40.2–74.5)  59.7 (47.0–78.5)  55.6  (43.8–69.9)  

Heilongjiang 32.5  (30.3–36.7)  46.9 (39.3–48.1)  42.3  (36.4–44.5)  39.4  (34.0–48.5)  49.6 (43.9–56.5)  43.4  (37.9–51.6)  
Jilin 36.3  (31.8–42.1)  48.7 (46.9–58.3)  44.9  (42.1–53.2)  42.9  (41.6–59.7)  56.4 (50.5–67.1)  48.5  (45.3–62.8)  
Liaoning 40.7  (39.2–44.4)  56.5 (54.4–58.6)  51.0  (49.1–53.7)  61.8  (54.1–76.5)  67.1 (63.4–81.0)  63.5  (57.0–77.9)  

North China 38.2  (30.9–45.5)  51.1 (45.5–59.3)  46.5  (41.6–53.4)  58.3  (42.1–93.2)  65.7 (54.3–95.7)  61.4  (50.0–87.1)  

Inner Mongolia 37.9  (30.5–40.6)  49.3 (45.5–53.6)  45.9  (41.1–49.8)  54.7  (41.8–86.6)  59.8 (52.7–87.5)  56.6  (45.8–86.9)  
Beijing 44.6  (40.0–45.3)  56.2 (54.0–58.1)  50.4  (47.0–51.7)  96.1  (84.7–96.1)  96.5 (89.8–96.5)  96.2  (85.4–96.2)  
Tianjin 45.3  (45.1–45.3)  58.1 (57.6–58.1)  52.4  (52.0–52.4)  87.2  (87.2–90.2)  90.5 (90.5–92.0)  87.8  (87.8–90.5)  
Hebei 44.4  (40.0–45.5)  56.2 (54.0–59.8)  53.4  (50.7–56.4)  89.8  (87.1–99.0)  91.8 (89.2–96.5)  90.7  (88.0–98.0)  
Shanxi 38.4  (35.5–52.2)  57.5 (52.0–66.7)  52.5  (47.8–63.0)  90.3  (80.2–92.0)  91.6 (87.9–96.3)  90.8  (83.3–93.7)  

East China 37.1  (16.3–44.9)  52.2 (37.9–56.5)  46.2  (36.0–54.6)  65.1  (49.7–90.8)  71.3 (62.2–96.4)  67.9  (55.6–91.8)  

Shandong 43.8  (39.9–47.4)  56.1 (54.6–60.2)  52.7  (50.5–56.7)  79.2  (75.3–96.5)  88.3 (85.2–101.0)  82.7  (79.1–98.3)  
Jiangsu 38.4  (37.7–44.9)  53.4 (50.9–56.5)  48.7  (46.8–52.9)  75.1  (63.0–85.7)  82.5 (70.7–91.6)  77.3  (65.3–87.5)  
Shanghai 38.0  (38.0–38.0)  50.9 (50.9–50.9)  44.2  (44.2–44.2)  63.0  (63.0–63.0)  70.7 (70.7–70.7)  63.9  (63.9–63.9)  
Anhui 38.4  (29.6–41.3)  53.2 (47.0–56.5)  49.9  (43.1–53.1)  78.2  (50.8–83.0)  86.6 (68.4–91.6)  81.9  (58.6–86.8)  
Jiangxi 29.4  (20.3–31.2)  43.9 (37.9–46.5)  39.6  (32.8–41.7)  51.7  (49.7–65.1)  65.1 (62.2–71.3)  57.4  (55.0–67.7)  
Zhejiang 36.6  (21.4–40.5)  50.9 (39.2–56.5)  46.1  (33.2–51.1)  61.3  (50.9–85.7)  67.5 (63.1–91.6)  63.2  (54.6–87.5)  
Fujian 21.4  (20.1–38.6)  44.5 (43.5–57.2)  37.9  (36.8–51.9)  49.7  (48.1–56.4)  63.1 (61.1–68.1)  54.2  (52.5–60.3)  
Taiwan 37.4  (37.4–37.5)  54.7 (50.7–54.7)  44.4  (42.8–44.5)  56.6  (53.1–56.6)  68.8 (65.3–68.8)  59.3  (55.7–59.3)  

Central China 40.0  (26.1–69.2)  52.7 (44.8–70.0)  48.1  (38.9–56.6)  61.5  (49.8–86.4)  67.5 (60.5–87.6)  64.5  (54.0–83.9)  

Henan 51.1  (42.4–57.5)  60.6 (54.2–70.0)  58.7  (51.8–67.5)  76.8  (62.6–82.6)  83.0 (66.8–87.3)  79.7  (64.5–84.8)  
Hubei 47.6  (27.0–55.2)  53.5 (43.9–60.0)  52.0  (39.5–58.7)  62.6  (51.8–86.4)  68.9 (62.9–87.6)  65.0  (56.1–86.8)  
Hunan 36.6  (25.9–40.0)  48.4 (42.1–52.7)  45.6  (38.2–49.7)  50.1  (49.6–61.2)  62.3 (58.0–67.5)  55.3  (53.1–63.9)  

South China 32.3  (18.2–55.8)  47.3 (43.2–56.9)  41.3  (25.1–50.5)  57.5  (52.5–66.5)  63.1 (59.3–69.8)  60.2  (51.6–66.7)  

Guangxi 32.2  (26.9–55.8)  46.8 (44.9–56.9)  43.7  (41.1–56.7)  57.5  (53.7–60.5)  63.1 (59.3–69.4)  60.3  (56.4–64.9)  
Guangdong 32.3  (18.2–56.0)  49.6 (43.2–59.6)  43.2  (33.9–58.3)  60.7  (52.5–66.5)  66.9 (61.9–69.8)  62.5  (55.2–67.4)  
Hainan 35.0  (35.0–35.5)  54.8 (53.7–54.8)  49.3  (48.5–49.4)  51.4  (51.4–58.1)  60.3 (60.3–63.0)  55.0  (55.0–60.1)  
Hong Kong 33.6  (33.2–33.9)   - 33.6  (33.2–33.9)  52.5  (52.1–53.2)   - 52.5  (52.1–53.2)  
Macao 32.3  (32.3–32.3)   - 32.3  (32.3–32.3)  66.5  (66.5–66.5)   - 66.5  (66.5–66.5)  

Northwest China 38.4  (32.9–46.0)  50.9 (42.6–58.6)  48.9  (39.2–56.5)  51.1  (42.0–62.1)  59.8 (51.8–69.4)  57.3  (47.4–67.6)  

Xinjiang 38.6  (32.9–46.4)  50.9 (42.6–60.8)  48.1  (40.4–57.5)  48.8  (41.7–61.1)  58.1 (50.1–71.7)  53.3  (45.7–66.2)  
Qinghai 40.2  (37.0–42.9)  50.0 (47.2–54.2)  47.7  (44.8–51.5)  56.2  (46.4–62.4)  59.7 (52.9–67.5)  57.7  (49.3–64.7)  
Gansu 37.4  (30.4–40.4)  50.3 (44.3–53.8)  47.9  (41.7–51.3)  52.8  (46.4–56.6)  63.8 (51.8–69.4)  58.5  (49.2–63.2)  
Ningxia 37.5  (30.4–38.0)  51.2 (44.3–51.5)  47.6  (40.7–47.8)  51.7  (47.5–56.5)  64.2 (59.7–65.7)  56.7  (52.4–60.2)  
Shaanxi 33.5  (21.1–38.9)  51.2 (42.3–53.9)  47.0  (37.3–50.3)  50.4  (47.5–82.5)  61.8 (59.7–84.2)  55.0  (52.4–83.2)  

Southwest China 36.7  (18.8–41.9)  50.3 (40.2–54.5)  44.9  (33.8–50.0)  56.0  (47.1–64.9)  64.1 (59.0–68.6)  58.9  (51.8–64.3)  

Tibet 38.9  (35.8–43.4)  51.6 (47.3–57.5)  49.5  (45.3–55.1)  62.2  (49.3–67.4)  63.8 (59.0–68.9)  63.3  (55.9–68.4)  
Sichuan 32.1  (12.0–38.0)  49.4 (35.3–53.2)  45.8  (30.5–50.0)  53.9  (43.7–58.3)  64.1 (59.2–67.2)  58.6  (50.9–62.4)  
Chongqing 22.6  (12.0–26.8) 42.3 (35.3–47.4) 36.7  (28.7–41.6)  52.7  (50.8–56.5)  64.7 (61.9–66.9)  56.7  (54.5–59.9)  
Guizhou 24.4  (14.6–29.9)  43.1 (38.4–48.4)  40.0  (34.5–45.3)  51.4  (48.8–56.0)  62.0 (57.7–67.6)  56.8  (53.3–61.9)  
Yunnan 32.1  (22.6–35.7)  47.7 (43.2–51.3)  44.8  (39.4–48.4)  52.2  (47.9–61.3)  64.0 (59.0–66.7)  58.2  (53.6–64.1)  
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Table S2 | Regional and nationwide 1990 mortality metrics associated with ozone exposure.  

Excess cardiopulmonary mortalities are defined as the total deaths caused from COPD and all-type cardiovascular diseases. Three mortality metrics are considered as i) number of excess deaths in 
thousand, ii) mortality rate per 100 000, and iii) years of life lost (YLLs) in million years. Estimates are summarised by median with 95% uncertainty intervals from 1000-time Monte Carlo bootstrap.  

Region Excess Deaths (thousand)  Mortality Rates (per 100 000)  YLLs (million years)  
Urban Rural Total Urban Rural Total Urban Rural Total 

Northeast China 4.0 17.5 21.5 17.9  28.5  26.2  0.44 0.61 1.05 
  (2.5 to 5.4)  (11.4 to 24.1)  (13.9 to 29.6)  (11.5 to 24.8)  (18.4 to 39.2)  (16.9 to 36.1)  (0.28 to 0.61)  (0.39 to 0.84)  (0.66 to 1.44) 

North China 14.3 29.0 43.3 23.1  34.0  31.0  0.57 0.73 1.29 
  (9.3 to 19.9)  (18.8 to 39.8)  (28.1 to 59.6)  (14.9 to 32.0)  (22.0 to 46.7)  (20.0 to 42.6)  (0.36 to 0.79)  (0.47 to 1.01)  (0.81 to 1.77) 

East China 41.0 67.1 107.8 22.5  34.2  30.3  0.56 0.74 1.29 
  (26.3 to 56.5)  (43.4 to 91.9)  (69.6 to 148.2)  (14.5 to 31.0)  (22.1 to 46.9)  (19.6 to 41.7)  (0.34 to 0.75)  (0.47 to 1.01)  (0.81 to 1.76) 

Central China 18.6 37.5 56.1 22.0  29.6  27.6  0.54 0.64 1.17 
  (12.1 to 25.8)  (24.3 to 51.7)  (36.3 to 77.4)  (14.2 to 30.3)  (19.1 to 40.8)  (17.8 to 38.0)  (0.34 to 0.74)  (0.41 to 0.88)  (0.73 to 1.61) 

South China 1.5 13.9 15.5 2.3  21.3  15.1  0.05 0.47 0.54 
  (0.8 to 2.0)  (9.0 to 19.4)  (9.9 to 21.5)  (1.5 to 3.2)  (13.7 to 29.5)  (9.7 to 20.9)  (0.03 to 0.08)  (0.29 to 0.64)  (0.34 to 0.74) 

Northwest China 2.6 18.6 21.2 14.5  29.5  27.6  0.35 0.64 0.99 
  (1.7 to 3.6)  (11.9 to 25.5)  (13.6 to 29.2)  (9.3 to 20.1)  (19.1 to 40.7)  (17.8 to 38.0)  (0.21 to 0.49)  (0.41 to 0.88)  (0.63 to 1.38) 

Southwest China 2.3 31.6 34.0 4.4  23.5  20.2  0.11 0.51 0.62 
  (1.5 to 3.1)  (20.3 to 43.6)  (21.9 to 46.9)  (2.8 to 6.1)  (15.2 to 32.5)  (13.0 to 28.0)  (0.06 to 0.15)  (0.32 to 0.69)  (0.40 to 0.86) 

Nationwide 84.2 215.3 299.5 17.5  29.4  26.3  2.62 4.34 6.95 
  (54.3 to 116.3)  (139.1 to 296.1)  (193.3 to 412.4)  (11.3 to 24.2) (19.0 to 40.4) (17.0 to 36.2) (1.62 to 3.61) (2.75 to 5.95) (4.37 to 9.56) 
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Table S3 | Historical 30-year regional and nationwide ozone-associated mortality trends.  

Longitudinal trends scaled in decadal average change rates are calculated by log-linear meta-regression maximum likelihood estimator from the annually resolved values with 95% confident intervals 
(CIs). When estimated trend approaches 0, an additional decimal place is reserved.  

Region Excess Deaths (thousand dec-1)  Mortality Rates (per 100 000 dec-1)  YLLs (million years dec-1)  
 Urban Rural Total Urban Rural Total Urban Rural Total 

Northeast China 1.9  -0.07  1.8  0.6  -0.2  -0.7  -0.019 -0.041 -0.060 
 (1.3 to 2.8)  (-0.09 to -0.05)  (1.2 to 2.7)  (0.4 to 0.7)  (-0.4 to -0.1)  (-1.0 to -0.7)  (-0.028 to -0.011)  (-0.054 to -0.027)  (-0.077 to -0.036)  

North China 7.7  -1.5  6.2  2.6  1.8  1.0  0.012 -0.010 0.002 
 (5.0 to 11.9)  (-2.2 to -1.0)  (4.0 to 9.7)  (1.7 to 3.4)  (1.1 to 2.3)  (0.6 to 1.2)  (0.009 to 0.015)  (-0.018 to -0.004)  (-0.001 to 0.005)  

East China 18.1  -8.8  9.3  1.2  0.3  -0.6  -0.016 -0.039 -0.055 
 (11.1 to 29.5)  (-12.1 to -6.4)  (4.7 to 17.4)  (0.8 to 1.5)  (0.2 to 0.4)  (-1.0 to -0.3)  (-0.019 to -0.013)  (-0.053 to -0.027)  (-0.068 to -0.044)  

Central China 9.9  -1.8  8.1  1.9  1.6  0.9  0.001 -0.009 -0.008 
 (6.4 to 15.3)  (-2.5 to -1.3)  (5.1 to 12.7)  (1.3 to 2.5)  (1.0 to 2.1)  (0.5 to 1.1)  (-0.001 to 0.003)  (-0.014 to -0.005)  (-0.012 to -0.005)  

South China 4.4  0.17  4.6  4.2  1.2  1.2  0.075 -0.006 0.069 
 (2.8 to 6.9)  (0.11 to 0.26)  (2.9 to 7.3)  (2.7 to 5.9)  (0.8 to 1.6)  (0.8 to 1.6)  (0.050 to 0.109)  (-0.009 to -0.004)  (0.044 to 0.096)  

Northwest China 0.9  -0.8  0.08  0.2  -0.4  -1.3  -0.018 -0.046 -0.063 
 (0.6 to 1.4)  (-1.1 to -0.6)  (0.01 to 0.28)  (0.1 to 0.3)  (-0.6 to -0.3)  (-1.8 to -0.8)  (-0.028 to -0.008)  (-0.064 to -0.032)  (-0.092 to -0.041)  

Southwest China 4.1  -1.2  2.9  3.5  1.6  0.5  0.062 -0.008 0.053 
 (2.7 to 6.3)  (-1.7 to -0.8)  (1.9 to 4.6)  (2.2 to 4.8)  (1.0 to 2.1)  (0.3 to 0.7)  (0.040 to 0.086)  (-0.013 to -0.003)  (0.033 to 0.080)  

Nationwide 47.1  -13.9  33.2  2.1  0.7  0.2  0.104 -0.162 -0.059 
 (30.4 to 64.2) (-19.4 to -9.1) (21.3 to 44.8) (1.4 to 2.8)  (0.4 to 0.9) (0.1 to 0.3)  (0.074 to 0.138)  (-0.210 to -0.117)  (-0.087 to -0.035)  
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Table S4 | 30-year multi-cause cross-sectional baseline mortality rates of Chinese population.  

Mortality rates (per 100 000) of 5 causes (NCDs, non-communicable diseases; CRDs, chronic respiratory diseases; COPD, chronic obstructive 

pulmonary disease; CVDs, cardiovascular diseases; IHD, ischaemic heart disease) are retrieved from the IHME GBD 2019 result portal 

(https://vizhub.healthdata.org/gbd-results), with 95% uncertainty intervals.  

Year NCDs CRDs COPD CVDs IHD 

1990 954.5 (856.2, 1049.4)  215.1 (157.8, 241.2)  206.1 (151.1, 231.2)  396.0 (353.5, 443.6)  100.0 (88.3, 111.9)  

1991 940.0 (854.0, 1032.0)  211.9 (157.0, 236.6)  203.2 (149.9, 226.9)  388.3 (348.9, 437.3)  99.1 (88.6, 111.4)  

1992 925.0 (840.6, 1015.4)  208.8 (154.4, 233.6)  200.4 (147.6, 224.5)  381.3 (341.7, 427.2)  97.7 (87.5, 108.7)  

1993 911.1 (829.3, 993.2)  205.0 (151.6, 227.5)  196.8 (144.3, 218.7)  374.7 (340.7, 414.2)  96.5 (87.2, 107.2)  

1994 891.7 (818.6, 967.0)  199.4 (147.2, 220.9)  191.5 (140.9, 211.3)  365.0 (331.9, 407.2)  94.2 (86.0, 104.3)  

1995 876.4 (814.3, 945.0)  193.3 (143.7, 213.0)  185.5 (137.5, 204.7)  358.7 (329.1, 401.3)  92.8 (84.9, 104.0)  

1996 866.5 (807.4, 931.4)  188.0 (139.1, 205.9)  180.5 (133.0, 198.0)  355.7 (326.6, 393.2)  92.5 (84.9, 101.9)  

1997 853.5 (802.1, 912.8)  181.3 (136.6, 198.0)  174.1 (130.1, 190.8)  351.5 (326.4, 385.9)  92.1 (85.4, 100.8)  

1998 846.5 (791.4, 903.2)  175.5 (134.4, 191.2)  168.6 (128.1, 183.9)  349.8 (323.4, 384.5)  92.6 (85.6, 101.3)  

1999 852.9 (801.2, 906.7)  172.7 (136.5, 188.0)  165.8 (130.5, 180.4)  355.2 (328.7, 392.8)  95.1 (88.1, 104.5)  

2000 869.2 (816.2, 928.7)  170.8 (136.5, 186.0)  164.0 (130.4, 178.3)  366.5 (339.6, 404.3)  100.4 (93.1, 109.9)  

2001 874.7 (817.9, 940.8)  166.2 (138.3, 180.8)  159.5 (131.8, 173.8)  373.4 (345.9, 409.0)  105.6 (97.7, 115.1)  

2002 883.9 (827.3, 949.0)  162.5 (135.8, 176.5)  155.9 (129.6, 169.5)  382.5 (352.3, 418.1)  112.4 (103.7, 122.6)  

2003 893.4 (834.9, 953.9)  158.7 (136.6, 172.1)  152.2 (130.2, 165.2)  390.9 (362.7, 423.4)  120.2 (111.3, 129.7)  

2004 908.8 (852.7, 964.6)  156.3 (137.0, 168.5)  149.8 (130.7, 161.7)  401.0 (371.9, 434.0)  128.2 (118.7, 138.5)  

2005 905.0 (848.7, 960.5)  150.4 (132.6, 161.9)  144.2 (127.0, 155.2)  402.2 (373.2, 435.7)  133.1 (123.5, 143.8)  

2006 878.9 (826.9, 935.4)  140.2 (126.0, 150.2)  134.4 (120.3, 143.9)  392.4 (363.2, 421.7)  134.1 (124.4, 144.5)  

2007 868.2 (817.4, 920.9)  133.4 (120.3, 143.7)  127.8 (115.0, 137.7)  390.5 (362.3, 419.7)  137.0 (126.9, 146.9)  

2008 873.9 (821.9, 927.0)  130.1 (116.9, 140.8)  124.7 (112.2, 134.9)  397.7 (367.1, 426.9)  142.7 (131.6, 154.0)  

2009 884.9 (835.0, 942.2)  127.9 (115.7, 137.9)  122.5 (110.8, 131.9)  408.4 (378.1, 437.2)  149.9 (138.4, 161.0)  

2010 896.7 (834.7, 961.8)  125.3 (113.5, 137.4)  119.9 (108.5, 131.6)  419.9 (384.8, 451.8)  158.0 (144.6, 170.8)  

2011 895.2 (832.5, 961.1)  120.6 (108.2, 135.9)  115.3 (103.4, 129.5)  424.3 (386.3, 458.8)  163.0 (148.0, 177.0)  

2012 882.7 (820.2, 947.7)  114.9 (104.2, 130.7)  109.7 (99.5, 125.1)  420.3 (385.4, 452.7)  163.5 (149.5, 176.2)  

2013 874.6 (804.4, 941.0)  110.1 (99.2, 129.5)  105.0 (94.5, 123.9)  420.3 (382.7, 455.0)  166.3 (151.1, 181.2)  

2014 870.7 (800.5, 949.1)  106.4 (95.2, 125.3)  101.5 (90.7, 119.9)  420.0 (379.6, 458.2)  167.9 (151.6, 183.2)  

2015 866.7 (784.9, 948.9)  103.4 (92.5, 122.9)  98.5 (88.2, 117.8)  419.1 (378.7, 459.0)  169.1 (152.9, 186.0)  

2016 876.4 (787.8, 969.9)  102.9 (89.9, 124.0)  98.1 (85.5, 118.2)  424.4 (377.3, 474.3)  171.6 (152.0, 191.3)  

2017 883.9 (788.6, 980.8)  101.8 (89.6, 124.6)  97.1 (85.5, 119.0)  427.8 (378.5, 475.3)  174.3 (155.1, 194.7)  

2018 894.6 (788.2, 1008.6)  102.2 (88.1, 124.1)  97.6 (84.1, 119.3)  431.3 (375.8, 488.6)  176.3 (153.9, 200.0)  

2019 914.6 (800.2, 1037.7) 104.2 (89.3, 126.8)  99.7 (85.4, 121.6) 439.6 (379.3, 499.7) 179.8 (154.6, 204.5) 
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Table S5 | Associations between rural-urban ambient ozone difference and land cover features.  

The rural-urban differences are defined as localised (i.e. within a prescribed downscaled spatial grid) rural ambient O3 concentration minus 

the adjacent urban levels. Backward stepwise selection (p-value <0.20) is adopted to identify associated variables. Features with high collin-

earity is censored as appropriate (e.g. emission rate of BC, aerosol optical depth at 550 nm, and surface PM2.5 concentrations are deleted due to 
collinearity with emission rate of OC). Regression coefficient βs shows the standardised effect of each feature when controlling all the other 

considered factors, reported with Wald’s p-value and 95% CI. The population-related features are obtained from aforementioned calibration. 

The emission rates of NOX, total NMVOC, organic carbon (OC), NH3, CO and SO2 are retrieved from Emission Inventory developed by Peking 

University (PKU-Inventory)32-42 and Multi-resolution Emission Inventory for China (MEIC)43-49, while the emission rates of biogenic NMVOC 

are modelled by CESM2-WACCM (accessed from the CMIP6 repository: https://esgf-node.llnl.gov/search/cmip6). Biomass features, vege-

tation, and urban land occupation fractions refer to the Land Use Harmonisation database (historical experiment for 1990–2014 and ssp370 

experiment for 2015–2019)50,51.  

Features βs p-value 95% CI 

Population and urbanisation indices    
lg-transformed total population  1.832 <0.001 (1.761, 1.902) 

urban population fraction 0.144 <0.001 (0.106, 0.182) 

urban land occupation 0.086 0.001 (0.036, 0.136) 

Emission rate    
emission rate of NOX –0.053 0.10 (–0.117, 0.010) 

emission rate of total NMVOC 0.138 <0.001 (0.094, 0.182) 

emission rate of biogenic NMVOC 0.231 <0.001 (0.193, 0.270) 

emission rate of OC 1.379 <0.001 (1.286, 1.473) 

emission rate of NH3 –0.030 0.18 (–0.075, 0.014) 

emission rate of CO 0.164 <0.001 (0.133, 0.195) 

emission rate of SO2 0.156 <0.001 (0.102, 0.210) 

Vegetation land occupation     
C3 annual and perennial crops 0.201 0.006 (0.057, 0.345) 

C4 annual and perennial crops 0.316 <0.001 (0.184, 0.449) 

pasture 0.370 <0.001 (0.313, 0.427) 

rangeland 0.826 <0.001 (0.728, 0.925) 

primary forested land 0.397 <0.001 (0.349, 0.445) 

primary non-forested land 0.669 <0.001 (0.583, 0.755) 

secondary forested land 1.015 <0.001 (0.941, 1.090) 

secondary non-forested land 0.118 <0.001 (0.075, 0.162) 

Biomass features    
secondary mean age 0.184 <0.001 (0.146, 0.223) 

secondary mean biomass carbon density 0.237 <0.001 (0.171, 0.302) 

 
Interpretation: The research hypothesis to test is that “spatial pattern of the rural-urban ambient O3 differences can be reflected by socio-

demographic and geographical features in spatial statistics”. Taking the variable “urban land occupation” as an example, the standardised co-

efficient is positive, as βs = 0.086, 95% CI: 0.036–0.136, which means summarising from all studied cells across the 30 years, the greater the 
urban land occupation is, the larger the rural–urban ambient O3 gap will be. This coincides with the fact that greater urban land occupations 

usually indicate higher emissions to form aerosols, and higher urban aerosols suppress the urban O3 formation, finally making the rural–

urban gaps greater (urban ↓, rural–urban ↑). Relevant characteristics such as urban population fraction (β=0.144, 95% CI: 0.106–0.182), and 

organic carbon emission (β=1.379, 95% CI: 1.286–1.473) thus also show positive partial correlations. For another example, the coefficient 

of C3 annual and perennial crops is also positive as βs = 0.201, 95% CI: 0.057–0.345. This is a typical rural indicator, meaning that larger C3 

crop vegetated land occupations usually indicate higher biogenic VOC emissions to form rural O3, finally making the rural–urban gaps greater 

(rural ↑, rural–urban ↑). The other studied features can be interpreted in similar way, that emission rate of CO (β=0.164, 95% CI: 0.133–

0.195), emission rate of biogenic non-methane VOCs (β=0.231, 95% CI: 0.193–0.270), and other vegetation coverage (e.g. cropland, pasture 

and rangeland), as rural indicators, also display positive associations with intensified rural O3 pollution.  
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Table S6 | Performance evaluations of phased data fusion with urban-rural distinguishment.  

Algorithm performance assessments include 10-fold cross-validation tests and full-scale overall evaluations separately for urban and rural 

sites for phased data fusion. Full-scale refers to model training, prediction and evaluation using full dataset. Due to heterogeneity in input 

data, cross-validation tests for 30-year full-length evaluation are not applicable (NA).  

  
Cross-validation test  Full-scale evaluation  

Scale 
 R2 RMSE (ppb)  ____ R2 RMSE (ppb)  ____ 

Phase I urban    0.84 4.2  0.93 3.2  Global 

rural 0.85 5.1  0.90 4.8  Global 

Phase II urban 0.88 4.2  0.94 3.6  Global 

rural 0.90 5.9  0.93 5.1  Global 

Phase III urban 0.82 4.9  0.91 4.2  China 

rural 0.86 7.0  0.89 5.2  China 

30-year urban NA NA  0.90 3.6  Global 

rural NA NA  0.93 5.0  Global 
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Table S7 | Evaluation of spatial and temporal extrapolation accuracy by space-time Bayesian neural network 
downscaler with urban-rural differentiation.  

Different from classical cross-validation tests by randomly splitting the dataset, spatiotemporal generalisability validation tests manually 

divide the initial dataset by location or time period. Region-clustered spatial generalisability tests use observations in aggregated regions for 

algorithm training, and assign observations in other aggregated regions for testing, including four sub-experiments (cross-validation for spa-

tial generalisability, cvs1: training on North America, testing on Europe; cvs2: training on Europe, testing on North America; cvs3: training on 

North America and Europe, testing on Asia; and cvs4: training on locations outside China, testing on China). Period-staged temporal gener-

alisability tests treat six consecutive years as testing subset based on trainings from the rest 24-year global-scale dataset, including five sub-

experiments (cross-validation for temporal generalisability, cvt1: training on 1990–2013, testing on 2014–2019; cvt2: training on 1990–2007 

and 2014–2019, testing on 2008–2013; cvt3: training on 1990–2001 and 2008–2019, testing on 2002–2007; cvt4: training on 1990–1995 

and 2002–2019, testing on 1996–2001; cvt5: training on 1996–2019, testing on 1990–1995). Prediction evaluation statistics include crude 

R2 and RMSE (in ppb) before 1:1 linear regression calibration, together with linear regression slope (k) and intercept (b).  

 

Urban  Rural 
Spatial extrapolation R2 RMSE (ppb) k b      R2 RMSE (ppb) k b 

cvs1 0.89  6.3 0.89  4.14      0.88  6.7 0.93  4.43  

cvs2 0.89  6.0 0.92  4.28   0.86  7.3 0.88  3.66  

cvs3 0.85  5.1 0.85  7.15   0.85  7.9 0.82  5.01  

cvs4 0.88  4.9 0.80  9.65   0.81  6.6 0.87  2.84  

Temporal extrapolation          
cvt1 0.90  5.7 0.92  1.65   0.89  4.7 1.07  –0.51  

cvt2 0.88  5.0 0.93  1.89   0.84  5.3 1.05  –0.52  

cvt3 0.91  4.9 0.92  1.44   0.84  4.6 1.02  –0.53  

cvt4 0.87  5.1 0.91  1.67   0.84  4.4 1.02  –0.56  

cvt5 0.85  4.7 0.91  1.38   0.82  4.8 1.01  –0.29  
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Table S8 | Quality assessment tool for observational cohort and cross-sectional studies.  

A. Was the research question or objective in this paper clearly stated?  

B. Was the study population clearly specified and defined?  

C. Was the participation rate of eligible persons at least 50%?  

D. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and 

exclusion criteria for being in the study prespecified and applied uniformly to all participants?  

E. Was a sample size justification, power description, or variance and effect estimates provided?  

F. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?  

G. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?  

H. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., 

categories of exposure, or exposure measured as continuous variable)?  

I. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study par-

ticipants?  

J. Was the exposure(s) assessed more than once over time?  

K. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study partic-

ipants?  

L. Were the outcome assessors blinded to the exposure status of participants?  

M. Was loss to follow-up after baseline 20% or less?  

N. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) 

and outcome(s)?  

Source: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.  
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Table S9 | Quality assessment of 29 included cohort studies for meta-analysis.  

Study-specific quality assessments aim to examine the reliability of the epidemiological evidence and ensure the quality for meta-analysis. A 

total of 14 assessment items are considered according to the Quality Assessment Tool of Observational Cohort and Cross-Sectional Studies 

developed by the National Institute of Health (NIH) (Table S8), and assigned with one score for each, and the tallied scores are translated 

into a rating of quality. Studies scoring full marks, 14, are categorised as “Good,” 10–13 as “Fair”, and <10 as “Poor.”  

Study A B C D E F G H I J K L M N Score Ref 

Abbey et al. 1999 √ √ √ √ √ √ √ √ 
 

√ √ √ √ √ Fair 52 

Lipfert et al. 2006 √ √ √  √ √ √ √  √ √ √ √ √ Fair 53 

Jerrett et al. 2009 √ √ √ √ √ √ √ √  √ √ √ √ √ Fair 21 

Krewski et al. 2009 √ √ √ √ √  √ √  √ √ √ √ √ Fair 54 

Smith et al. 2009 √ √ √  √  √ √  √ √ √ √ √ Fair 55 

Lipsett et al. 2011 √ √ √  √ √ √ √  √ √ √ √ √ Fair 56 

Zanobetti et al. 2011 √ √ √ √ √ √ √ √  √ √ √ √ √ Fair 57 

Carey et al. 2013 √ √ √  √ √  √  √ √ √ √ √ Fair 58 

Jerrett et al. 2013 √ √ √ √ √ √ √ √  √ √ √ √ √ Fair 59 

Bentayeb et al. 2015 √ √ √  √ √ √ √ √ √ √ √ √ √ Fair 60 

Crouse et al. 2015 √ √ √  √ √ √ √ √ √ √ √ √ √ Fair 61 

Tonne et al. 2016 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 62 

Turner et al. 2016 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 63 

Di et al. 2017 √ √ √  √ √ √ √ √ √ √ √ √ √ Fair 64 

Weichenthal et al. 2017 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 65 

Cakmak et al. 2018 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 66 

Hvidtfeldt et al. 2019 √ √ √  √ √  √ √ √ √ √ √ √ Fair 67 

Kazemiparkouhi et al. 2019 √ √ √  √ √ √ √  √ √ √ √ √ Fair 68 

Lim et al. 2019 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 69 

Paul et al. 2020 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 70 

Shi et al. 2021 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 71 

Strak et al. 2021 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 72 

Yazdi et al. 2021 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 73 

Bauwelinck et al. 2022 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 74 

Stafoggia et al. 2022 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 75 

So et al. 2022 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 76 

Liu et al. 2022 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 31 

Niu et al. 2022 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 30 

Yuan et al. 2022 √ √ √ √ √ √ √ √ √ √ √ √ √ √ Good 77 
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Table S10 | GRADE assessment for evidence of ozone-associated mortality risks of NCDs.  

Domains  Assessment  Rating 

Start level  All cohort studies.  High  

Risk of bias  The overall risk of bias in all cohorts is low.  No change  

Imprecision  
All studies included report the 95% confidence interval around the best es-

timate of the absolute effect.  
No change  

Inconsistency  
The values of effect sizes across the studies are inconsistent, as the point 

estimates are in the range of 0.816 to 1.108.  
Downgrade  

Indirectness  All studies include the desired population, exposures and outcomes.  No change  

Publication bias  

The trim-and-fill tool detects 1 study (Yuan et al. 2022) reporting signifi-

cant positive publication bias, which is excluded in censored meta-analysis. 

The publication bias for censored meta-analysis is non-significant.  

No change  

Magnitude of associations  
The magnitude of effect sizes is not large enough to upgrade the level of 

evidence.  
No change  

Dose-response trend  

Linear dose-response relationships are assumed in all studies, and at least 

4 studies after censoring (Di et al. 2017, Shi et al. 2021, Bauwelinck et al. 

2022, and So et al. 2022) have checked the dose-response trends.  

Upgrade  

Plausible confounding towards null  

Cakmak et al. 2018 reports higher RR after adjusting confounders; but 1 

study out of 29 reporting plausible confounding is not sufficient for an up-

grading.  

No change  

Overall Judgment  High  

  



 19 

 

Table S11 | GRADE assessment for evidence of ozone-associated mortality risks of CRDs.   

Domains  Assessment  Rating 

Start level  All cohort studies.  High 

Risk of bias  The overall risk of bias in all cohorts is low.  No change 

Imprecision  
All studies included report the 95% confidence interval around the best es-

timate of the absolute effect.  
No change 

Inconsistency  
The values of effect sizes across the studies are inconsistent, as the point 

estimates are in the range of 0.782 to 1.144  
Downgrade 

Indirectness  All studies include the desired population, exposures and outcomes.  No change 

Publication bias  The publication bias for censored meta-analysis is non-significant.  No change 

Magnitude of associations  
The magnitude of effect sizes is not large enough to upgrade the level of 

evidence.  
No change 

Dose-response trend  

Linear dose-response relationships are assumed in all studies, and at least 3 

out of 11 censored studies (Lim et al. 2019, Bauwelinck et al. 2022, and So 

et al. 2022) have tested dose-response trends.  

Upgrade 

Plausible confounding towards null  No crude and adjusted risks are provided for each study.  No change 

Overall Judgment  High 
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Table S12 | GRADE assessment for evidence of ozone-associated mortality risks of COPD.  

Domains  Assessment Rating 

Start level  All cohort studies.  High 

Risk of bias  The overall risk of bias in all cohorts is low.  No change 

Imprecision  
All studies included report the 95% confidence interval around the best es-

timate of the absolute effect.  
No change 

Inconsistency  
The values of effect sizes across the studies are inconsistent, as the point 

estimates are in the range of 0.746 to 1.090.  
Downgrade 

Indirectness  All studies include the desired population, exposures and outcomes.  No change 

Publication bias  The publication bias for censored meta-analysis is non-significant.  No change 

Magnitude of associations  
The magnitude of effect sizes (RR=1.060, 95% CI: 1.040–1.080) can be 

considered to upgrade the level of evidence.  
Upgrade 

Dose-response trend  
Linear dose-response relationships are assumed in all studies, but no stud-

ies check dose-response trends.  
No change 

Plausible confounding towards null  No crude and adjusted risks are provided for each study.  No change 

Overall Judgment  High 
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Table S13 | GRADE assessment for evidence of ozone-associated mortality risks of CVDs.  

Domains  Assessment Rating 

Start level  All cohort studies.  High 

Risk of bias  The overall risk of bias in all cohorts is low.  No change 

Imprecision  
All studies included report the 95% confidence interval around the best es-

timate of the absolute effect.  
No change 

Inconsistency  
The values of effect sizes across the studies are inconsistent, as the point 

estimates are in the range of 0.831 to 1.249.  
Downgrade 

Indirectness  All studies include the desired population, exposures and outcomes.  No change 

Publication bias  The publication bias for censored meta-analysis is non-significant. No change 

Magnitude of associations  
The magnitude of effect sizes is not large enough to upgrade the level of 

evidence.  
No change 

Dose-response trend  

Linear dose-response relationships are assumed in all studies, and at least 7 

out of 15 studies (Lim et al. 2019, Paul et al. 2020, Strak et al. 2021, Bau-

welinck et al. 2022, So et al. 2022, Liu et al. 2022, and Niu et al. 2022) 

have checked the dose-response trends.  

Upgrade 

Plausible confounding towards null  No crude and adjusted risks are provided for each study.  No change 

Overall Judgment  High 
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Table S14 | GRADE assessment for evidence of ozone-associated mortality risks of IHD.   

Domains  Assessment Rating 

Start level  All cohort studies.  High 

Risk of bias  The overall risk of bias in all cohorts is low.  No change 

Imprecision  
All studies included report the 95% confidence interval around the best es-

timate of the absolute effect.  
No change 

Inconsistency  
The values of effect sizes across the studies are inconsistent, as the point 

estimates are in the range of 0.761 to 1.360.  
Downgrade 

Indirectness  All studies include the desired population, exposures and outcomes.  No change 

Publication bias  The publication bias for censored meta-analysis is non-significant. No change 

Magnitude of associations  
The magnitude of effect sizes is not large enough to upgrade the level of 

evidence.  
No change 

Dose-response trend  

Linear dose-response relationships are assumed in all studies, and at least 3 

(Strak et al. 2021, Liu et al. 2022, and Niu et al. 2022) out of 8 censored 

studies have considered dose-response trends.  

Upgrade 

Plausible confounding towards null  
Cakmak et al. 2018 reports higher RR after adjusting confounders; but 1 

study reporting plausible confounding is not sufficient for an upgrading.   
No change 

Overall Judgment  High 
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Table S15 | Statistically resampled distributions of ozone exposure levels for each study.  

The distribution features include arithmetic mean, standard deviation (SD), minimum, 5th, 25th, 50th (median), 75th, and 95th percentile, maxi-

mum, inter-quartile range (IQR), and full range, based on ozone exposure concentrations scaled by OSDMA8 metric in ppb. Values in Bold 

font represent the statistics reported by literature, while the rest indicate imputed values. Detailed resampling procedures and imputation 

accuracy evaluation can be found in a previous study14.  

Study Mean SD Min 5% 25% Median 75% 95% Max IQR Range 

Abbey et al. 1999 50.4  14.9  16.1  26.1  40.6  50.4  60.5  74.8  84.9  23.2  84.9  

Lipfert et al. 2006 80.1  9.7  36.6  64.2  73.5  80.1  86.7  96.1  106.6  13.2  69.9  

Jerrett et al. 2009 

50.1  12.6  27.5  30.0  41.6  50.1  58.5  70.7  86.1  17.0  58.5  Krewski et al. 2009 

Smith et al. 2009 

Lipsett et al. 2011 55.6  10.1  29.4  39.1  48.8  55.6  62.4  72.3  95.5  12.9  66.1  

Zanobetti et al. 2011 45.9  5.2  26.6  40.1  44.0  48.4  51.1  52.5  71.2  6.9  44.7  

Carey et al. 2013 51.0  2.3  43.8  47.2  49.5  51.0  52.6  54.9  62.0  2.9  18.1  

Jerrett et al. 2013 58.3  16.9  19.8  33.3  42.5  58.7  70.5  85.8  103.2  28.0  83.5  

Bentayeb et al. 2015 49.4  4.9  20.3  25.4  45.5  48.9  52.1  57.0  60.2  6.2  39.9  

Crouse et al. 2015 39.5  7.3  10.7  26.8  34.2  39.0  44.0  51.0  59.9  9.8  49.1  

Tonne et al. 2016 39.8  3.8  30.7  33.4  37.3  40.0  42.5  46.4  49.0  5.2  18.4  

Turner et al. 2016 44.2  4.6  30.1  36.5  41.0  44.2  47.3  51.8  68.6  6.2  37.7  

Di et al. 2017 46.3  9.9  54.0  36.3  70.5  77.1  83.8  55.9  100.2  13.3  46.1  

Weichenthal et al. 2017 38.1  6.6  1.0  27.5  33.6  38.0  42.5  50.4  60.3  9.0  59.3  

Cakmak et al. 2018 39.1  6.7  0.0  28.1  34.6  39.1  43.6  50.1  58.6  9.0  58.6  

Hvidtfeldt et al. 2019 54.7  4.9  43.5  44.0  51.3  54.7  57.8  59.9  65.9  6.6  22.4  

Kazemiparkouhi et al. 2019 45.1  5.3  31.0  36.3  41.5  45.1  48.7  53.9  65.1  7.2  34.1  

Lim et al. 2019 45.5  6.1  31.3  35.4  41.4  45.5  49.7  55.6  59.8  8.3  28.6  

Paul et al. 2020 46.8  4.7  35.8  39.0  43.6  46.8  49.9  54.6  57.8  6.4  22.0  

Shi et al. 2021 40.2 4.8 17.9 30.5 37.5 40.9 43.3 47.2 50.0 5.8 32.1 

Strak et al. 2021 43.5 4.6 18.5 36.0 40.1 44.0 47.3 49.7 58.9 7.2 40.4 

Yazdi et al. 2021 41.9 3.9 31.9 35.5 39.4 42.5 44.7 48.3 50.0 5.3 18.1 

Bauwelinck et al. 2022 39.5 1.6 19.8 34.9 38.3 39.5 40.5 42.6 46.4 2.2 26.7 

So et al. 2022 40.9 2.2 24.9 36.0 40.1 41.4 42.2 43.5 46.9 2.1 22.0 

Liu et al. 2022 37.4 1.2 33.7 35.4 36.6 37.4 38.2 39.4 43.0 1.6 9.3 

Niu et al. 2022 45.8 7.3 28.8 33.8 40.9 45.8 50.7 57.8 62.8 9.8 34.0 

Yuan et al. 2022 51.4 9.0 31.0 36.7 45.4 51.4 57.4 66.1 72.7 12.0 41.7 

Note: Jerrett et al. 2009 did not report the arithmetic mean and standard deviation directly. The values were derived by weighted averaging 

the centric concentrations of 4 exposure intervals on the populations given in Table 1 from the original literature. Zanobetti et al. 2011 did 

not provide the exposure distribution features directly. The quartiles were extracted from the legends in Fig. 1 of the original literature.  

Methods: To reproduce the distribution, the arithmetic means and standard deviations (σ) were firstly extracted from literatures included for 

meta-analysis; if unavailable, the arithmetic means and standard deviations were estimated based on the reported descriptive statistics 

including median, first- and third-quartile, and all the other percentiles, to finally identify the parameters for presumed Gaussian normal 

distribution. Reported values were always treated as priority when divergences with estimations occurred. The centric level, arithmetic mean 

and median, were treated as exchangeable, but the arithmetic means were preferred. Theoretically, the minimum and maximum values of 

the distribution were not predictable, and thus 1st and 99th percentiles were used as proxies. Calculations for σ from key percentiles followed: 

75th%ile = mean + 0.6745 σ, 95th%ile = mean + 1.6449 σ, and 99th%ile = mean + 2.3263 σ. If IQRs were stated, then IQR = 1.3490 σ; if the 

5–95th percentile ranges were reported, then range5-95 = 3.2898 σ; if full minimum-maximum ranges were given, then range = 4.6527 σ. If 

more than one distribution features were provided, IQRs were more preferred for σ estimation due to higher robustness.  
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Table S16 | Evaluations of accuracies of deep-learning-based data assimilation with (ScA) and without (ScB) 
satellite-based remote-sensing measurements and chemical reanalysis outputs.  

Accuracy evaluations include coefficient of determination (R2) and root-mean-square error (RMSE, ppb) for 10-fold cross-validation tests 

using 70% observation-matched dataset by random split, external validation tests using 30% dataset, and overall model fitting for the two 

scenarios respectively. Given systematic in situ observations were unavailable in earlier years of China, and CNEMC sites were allocated in 

urban and rural environments disproportionally, model fitting and performance evaluations are conducted on global scale.  

Evaluation Metrics ScA ScB 

Cross-validation R2 0.883 0.882 

Cross-validation RMSE (ppb) 3.887 3.876 

External validation R2 0.885 0.883 

External validation RMSE (ppb) 3.879 3.868 

Overall fitting R2 0.969 0.968 

Overall fitting RMSE (ppb) 2.550 2.542 
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Table S17 | Multi-scenario sensitivity analysis.  

Sensitivity analyses are conducted on the estimation for 2017 as an example by multiple designed scenarios (Sc) beyond the main analysis. 

Cardiopulmonary mortality numbers are estimated for urban and rural population separately. Changes in total population mortalities (%) for 

different scenarios against the main analysis results are calculated. Sc1: Using log-linear risk model (rather than curved risk model in main 

analysis) with multi-study pooled RRs by random-effects meta-analysis, assuming threshold exposure level (also known as TMREL or low-

concentration cut-off) as the global lowest 5th percentile PWE in 2017 by BayNNDv2 dataset (see Method S1), 42.6 ppb. Sc2: Using log-

linear risk model assuming threshold as the 30-year global lowest 5th percentile PWE by BayNNDv2 dataset, 40.8 ppb. Sc3: Using log-linear 

risk model assuming threshold as the maximum of literature-reported lowest 5th percentile exposure levels from studies included for meta-

analysis, 44.0 ppb. Sc4: Using grid-averaged ambient ozone concentrations to quantify population exposure (following a previous study1), 

supposing the ambient ozone concentrations are not distinguished for urban and rural environments. Sc5: Using gender-specified other than 

the gender-standardised mortality metrics provided by IHME15 (GBD 2019 Study report). Sc6: Using province-specific mortality metrics for 

2017 provided by China CDC29, as the cause-specific mortality rates are proportionally converted from the estimated DALY (disability-

adjusted life years) rates. Sc7: Using M3-BME ambient ozone tracking data product instead of the fused one. As M3-BME did not distinguish 

urban and rural ozone, urban and rural mortalities were not applicable (NA). Sc8: Using cardiovascular mortality linear risk association 

(RR=1.227, 95% CI: 1.108–1.359) pooled from two cohort studies exclusively on Chinese population73,74.  

Scenarios Urban Mortality (thousand) Rural Mortality (thousand) Total Mortality (thousand) Change (%) 

Main Result 191.2 (123.6 to 260.0) 172.5 (111.4 to 234.9) 363.7 (235.0 to 495.0)  Ref. 

Sc1 179.1 (113.0 to 248.9) 160.0 (100.8 to 222.6) 339.1 (213.8 to 471.5) -6.74 (-8.99 to -4.74) 

Sc2 188.5 (119.0 to 261.8) 168.3 (106.1 to 234.0) 356.8 (225.1 to 495.8) -1.88 (-4.18 to -0.16) 

Sc3 173.4 (109.3 to 241.1) 155.1 1(97.6 to 215.8) 328.5 (207.0 to 456.9) -9.66 (-11.9 to -7.68) 

Sc4 189.9 (119.9 to 263.8) 137.8 1(86.7 to 192.0) 327.8 (206.6 to 455.8) -9.88 (-12.1 to -7.91) 

Sc5 195.0 (119.3 to 275.5) 176.0 (107.5 to 248.9) 371.0 (226.8 to 524.3) 2.01 (-3.45 to -5.93) 

Sc6 201.0 (127.7 to 279.9) 181.4 (115.1 to 252.9) 382.4 (242.7 to 532.8) 5.15 (-3.31 to -7.65) 

Sc7  NA  NA 332.5 (212.9 to 460.6) -8.58 (-9.40 to -6.94) 

Sc8 211.1 (129.6 to 293.3) 190.5 (116.8 to 265.0) 401.6 (246.4 to 558.3) 10.4 (-4.85 to -12.8) 
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SUPPLEMENTARY FIGURES  

 

 

Figure S1 | Mapping of 7 Chinese administrative divisions and 4 megalopolises.  
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Figure S2 | Nationwide and regional 30-year longitudinal trends of ambient ozone exposure.  

Population-weighted exposure (PWE) of total, rural- and urban-specified average exposure levels to ambient ozone are scaled in metric of 

OSDMA8. PWE levels are indicated by circles, based on which the rural–total (defined as rural-population average minus total PWE, similarly 

hereinafter) and total–urban differences are marked with directional bars. Upper apexes and lower vertexes represent nationwide or regional 

average ambient ozone exposure concentrations for rural and urban residents, respectively. Decadal average increasing rates (ppb per dec-

ade) are estimated by generalised linear model, as inserted in each subplot (T for total PWE; R for rural population exposure levels; U for 

urban population exposure levels). Longitudinal trends are summarised for nationwide, 7 geographical divisions, and 4 megalopolises (see 

Figure S1 for detailed definition).  

  

Nationwide
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Figure S3 | Multi-study pooled mortality RR of NCDs associated with long-term ozone exposure.  

Risk strengths are defined as RRs per 10-ppb incremental exposure by OSDMA8 metric. The upper panel displays the meta-analysis results 

for all relevant cohort studies identified from systematic review, and the lower panel, censored meta-analysis, excludes i) studies conducted 

from the same cohort; ii) studies using over-smoothed metrics (e.g. 24-hour average) to quantify the individual-level exposure; iii) studies 

showing significant publication bias by trim-and-fill test (Figure S8); and iv) studies in which ozone hazards are mistakenly confounded by 

correlated or anticorrelated air pollutant species (e.g. NO2). For cohort duplication censoring, only one study covering the widest population 

is reserved in principle; unless different participant inclusion criteria are clearly stated (e.g. Di et al.64 conducted study on the whole Medicare 

cohort participants while Shi et al.71 focused on the low-exposure participants, thus both included for meta-analysis). Methodology of metric 

and unit unification has been illustrated in a previous review14. Supplementary Figs. 4-7 follow the same configuration.  

  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Abbey et al. 1999 AHS-M 610/2278 1.064 (0.964, 1.174) 0.8%
Abbey et al. 1999 AHS-F 965/4060 0.964 (0.890, 1.043) 1.2%
Lipfert et al. 2006 WU-EPRI 44111/67108 1.033 (1.012, 1.053) 8.4%
Lipsett et al. 2011 CTS 7381/101784 0.993 (0.986, 1.002) 12.4%
Bentayeb et al. 2015 GAZEL 1967/20327 0.816 (0.646, 1.032) 0.1%
Turner et al. 2016 ACS CPS II 237201/669046 1.020 (1.010, 1.030) 8.6%
Di et al. 2017 Medicare 22567924/60925443 1.011 (1.010, 1.012) 14.2%
Weichenthal et al. 2017 CANCHEC 233340/2448500 1.058 (1.048, 1.067) 12.8%
Lim et al. 2019 NIH-AARP 126806/548780 1.000 (0.990, 1.010) 12.2%
Shi et al. 2021 Medicare 16507164/44684756 1.108 (1.099, 1.117) 12.8%
Bauwelinck et al. 2022 BC2001 707138/5474470 1.036 (1.014, 1.058) 8.1%
So et al. 2022 DanNAC 803881/3083227 0.980 (0.961, 1.000) 8.3%

Random-effects model 1.027 (1.017, 1.036) 100.00%
Heterogeneity: I 2 = 98.3%, τ 2 = 0.0002, p < 0.01

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Abbey et al. 1999 AHS-M 610/2278 1.064 (0.964, 1.174) 0.3%
Abbey et al. 1999 AHS-F 965/4060 0.964 (0.890, 1.043) 0.4%
Lipfert et al. 2006 WU-EPRI 44111/67108 1.033 (1.012, 1.053) 3.8%
Jerrett et al. 2009 ACS CPS II 118777/448850 0.987 (0.977, 0.995) 6.6%
Krewski et al. 2009 ACS CPS II 128954/488370 1.024 (1.012, 1.036) 5.7%
Smith et al. 2009 ACS CPS II - 1.005 (0.981, 1.034) 2.4%
Lipsett et al. 2011 CTS 7381/101784 0.993 (0.986, 1.002) 6.4%
Carey et al. 2013 CPRD 83103/824654 0.871 (0.782, 0.934) 0.5%
Jerrett et al. 2013 ACS CPS II 19733/73711 1.000 (0.991, 1.008) 6.7%
Bentayeb et al. 2015 GAZEL 1967/20327 0.816 (0.646, 1.032) 0.1%
Crouse et al. 2015 CANCHEC 301115/2521525 1.019 (1.011, 1.027) 6.7%
Tonne et al. 2016 MINAP 5129/18138 0.962 (0.834, 1.098) 0.1%
Turner et al. 2016 ACS CPS II 237201/669046 1.020 (1.010, 1.030) 3.9%
Di et al. 2017 Medicare 22567924/60925443 1.011 (1.010, 1.012) 7.9%
Weichenthal et al. 2017 CANCHEC 233340/2448500 1.058 (1.048, 1.067) 6.7%
Cakmak et al. 2018 CANCHEC 522305/2291250 1.080 (1.020, 1.140) 0.9%
Hvidtfeldt et al. 2019 DDCH 10913/49596 0.949 (0.908, 1.000) 0.9%
Kazemiparkouhi et al. 2019 Medicare 5637693/22159190 1.002 (1.001, 1.003) 7.9%
Lim et al. 2019 NIH-AARP 126806/548780 1.000 (0.990, 1.010) 6.2%
Shi et al. 2021 Medicare 16507164/44684756 1.108 (1.099, 1.117) 6.7%
Strak et al. 2021 ELAPSE 47131/325367 0.806 (0.775, 0.838) 1.5%
Yazdi et al. 2021 Medicare 14589797/44430747 1.008 (1.008, 1.008) 8.0%
Bauwelinck et al. 2022 BC2001 707138/5474470 1.036 (1.014, 1.058) 3.5%
Stafoggia et al. 2022 ELAPSE 3593741/28153138 0.910 (0.866, 0.959) 0.9%
So et al. 2022 DanNAC 803881/3083227 0.980 (0.961, 1.000) 3.7%
Yuan et al. 2022 CHARLS 1814/20882 1.381 (1.326, 1,439) 1.4%

Random-effects model 1.016 (1.011, 1.021) 100.00%
Heterogeneity: I 2 = 97.8%, τ 2 < 0.0001, p < 0.01

0.75 1 1.5

0.75 1 1.5
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Figure S4 | Multi-study pooled mortality RR of CRDs associated with ozone exposure.  

  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Abbey et al. 1999 AHS-M 63/2278 1.085 (0.890, 1.319) 0.5%
Abbey et al. 1999 AHS-F 72/4060 1.036 (0.867, 1.241) 0.6%
Jerrett et al. 2009 ACS CPS II 9819/448850 1.048 (1.016, 1.081) 8.1%
Smith et al. 2009 ACS CPS II - 1.144 (1.048, 1.247) 2.3%
Lipsett et al. 2011 CTS 702/101784 1.020 (0.993, 1.044) 9.5%
Carey et al. 2013 CPRD 10583/824654 0.782 (0.699, 0.871) 1.6%
Jerrett et al. 2013 ACS CPS II 1973/73711 1.004 (0.978, 1.030) 8.5%
Bentayeb et al. 2015 GAZEL 284/20327 0.953 (0.554, 1.671) 0.1%
Crouse et al. 2015 CANCHEC 24900/2521525 0.980 (0.953, 1.007) 8.7%
Turner et al. 2016 ACS CPS II 20484/669046 1.080 (1.060, 1.110) 8.2%
Weichenthal et al. 2017 CANCHEC 21100/2448500 1.041 (1.011, 1.070) 8.7%
Hvidtfeldt et al. 2019 DDCH 2093/49596 0.970 (0.888, 1.051) 2.6%
Kazemiparkouhi et al. 2019 Medicare 633216/22159190 1.033 (1.030, 1.037) 12.6%
Lim et al. 2019 NIH-AARP 12459/548780 1.040 (1.000, 1.080) 6.8%
Strak et al. 2021 ELAPSE 2865/325367 0.796 (0.679, 0.934) 6.2%
Bauwelinck et al. 2022 BC2001 82341/5474470 1.062 (1.014, 1.111) 5.7%
Stafoggia et al. 2022 ELAPSE 371990/28153138 0.901 (0.831, 0.977) 2.6%
So et al. 2022 DanNAC 223553/3083227 1.020 (0.982, 1.060) 6.7%

Random-effects model 1.020 (1.006, 1.035) 100.0%
Heterogeneity: I 2 = 84.9%, τ 2 = 0.0004, p < 0.01

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Abbey et al. 1999 AHS-M 63/2278 1.085 (0.890, 1.319) 0.4%
Abbey et al. 1999 AHS-F 72/4060 1.036 (0.867, 1.241) 0.5%
Smith et al. 2009 ACS CPS II - 1.144 (1.048, 1.247) 1.9%
Lipsett et al. 2011 CTS 702/101784 1.020 (0.993, 1.044) 13.9%
Carey et al. 2013 CPRD 10583/824654 0.782 (0.699, 0.871) 1.2%
Bentayeb et al. 2015 GAZEL 284/20327 0.953 (0.554, 1.671) 0.1%
Turner et al. 2016 ACS CPS II 20484/669046 1.080 (1.060, 1.110) 11.0%
Weichenthal et al. 2017 CANCHEC 21100/2448500 1.041 (1.011, 1.070) 12.4%
Kazemiparkouhi et al. 2019 Medicare 633216/22159190 1.033 (1.030, 1.037) 37.2%
Lim et al. 2019 NIH-AARP 12459/548780 1.040 (1.000, 1.080) 7.9%
Bauwelinck et al. 2022 BC2001 82341/5474470 1.062 (1.014, 1.111) 6.0%
So et al. 2022 DanNAC 223553/3083227 1.020 (0.982, 1.060) 7.6%

Random-effects model 1.042 (1.029, 1.055) 100.0%
Heterogeneity: I 2 = 76.8%, τ 2 = 0.0001, p < 0.01

0.75 1 1.5

0.75 1 1.5
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Figure S5 | Multi-study pooled mortality RR of COPD associated with ozone exposure.  

  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Zanobetti et al. 2011 Medicare 1445000/3210511 1.145 (1.082, 1.188) 16.2%
Crouse et al. 2015 CANCHEC 14170/2521525 0.959 (0.924, 0.996) 16.0%
Turner et al. 2016 ACS CPS II 9967/669046 1.090 (1.050, 1.130) 12.4%
Cakmak et al. 2018 CANCHEC 16470/2291250 1.000 (0.970, 1.030) 18.4%
Kazemiparkouhi et al. 2019 Medicare 328957/22159190 1.084 (1.079, 1.089) 23.8%
Lim et al. 2019 NIH-AARP 7748/548780 1.060 (1.010, 1.120) 11.6%
Strak et al. 2021 ELAPSE 1711/325367 0.746 (0.605, 0.917) 1.6%

Random-effects model 1.056 (1.029, 1.084) 100.0%
Heterogeneity: I 2 = 94.5%, τ 2 = 0.0007, p < 0.01

0.75 1 1.5

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Turner et al. 2016 ACS CPS II 9967/669046 1.090 (1.050, 1.130) 18.0%
Cakmak et al. 2018 CANCHEC 16470/2291250 1.000 (0.970, 1.030) 22.8%
Kazemiparkouhi et al. 2019 Medicare 328957/22159190 1.084 (1.079, 1.089) 42.7%
Lim et al. 2019 NIH-AARP 7748/548780 1.060 (1.010, 1.120) 9.7%
Strak et al. 2021 ELAPSE 1711/325367 0.746 (0.605, 0.917) 0.8%

Random-effects model 1.060 (1.040, 1.080) 100.0%
Heterogeneity: I 2 = 90.2%, τ 2 = 0.0002, p < 0.01

0.75 1 1.5
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Figure S6 | Multi-study pooled mortality RR of CVDs associated with ozone exposure.  

  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Lipsett et al. 2011 CTS 2919/101784 1.004 (0.991, 1.015) 7.6%
Smith et al. 2009 ACS CPS II - 1.053 (1.014, 1.114) 3.8%
Bentayeb et al. 2015 GAZEL 165/20327 0.831 (0.397, 1.729) 0.0%
Crouse et al. 2015 CANCHEC 98970/2521525 1.040 (1.025, 1.055) 13.7%
Turner et al. 2016 ACS CPS II 85132/669046 1.026 (1.009, 1.043) 21.7%
Hvidtfeldt et al. 2019 DDCH 2319/49596 0.878 (0.817, 0.959) 1.2%
Kazemiparkouhi et al. 2019 Medicare 2333681/22159190 0.997 (0.995, 0.999) 24.5%
Lim et al. 2019 NIH-AARP 39529/548780 1.020 (0.990, 1.030) 5.6%
Paul et al. 2020 ONPHEC 64773/452590 1.105 (1.078, 1.133) 7.4%
Strak et al. 2021 ELAPSE 15542/325367 0.791 (0.734, 0.853) 2.9%
Bauwelinck et al. 2022 BC2001 234549/5474470 1.050 (1.022, 1.076) 6.5%
Stafoggia et al. 2022 ELAPSE 1186101/28153138 0.954 (0.912, 0.996) 2.8%
So et al. 2022 DanNAC 90028/3083227 0.942 (0.886, 0.980) 1.6%
Liu et al. 2022 CHERRY 7308/744882 1.249 (1.060, 1.500) 0.2%
Niu et al. 2022 CCDRFS 2064/96955 1.214 (1.066, 1.383) 0.4%

Random-effects model 1.017 (1.009, 1.025) 100.0%
Heterogeneity: I 2 = 95.1%, τ 2 < 0.0001, p < 0.01

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Jerrett et al. 2009 ACS CPS II 48884/448850 0.980 (0.965, 0.993) 9.1%
Smith et al. 2009 ACS CPS II - 1.053 (1.014, 1.114) 3.8%
Lipsett et al. 2011 CTS 2919/101784 1.004 (0.991, 1.015) 9.9%
Jerrett et al. 2013 ACS CPS II 8046/73711 1.010 (0.997, 1.022) 10.0%
Bentayeb et al. 2015 GAZEL 165/20327 0.831 (0.397, 1.729) 0.0%
Crouse et al. 2015 CANCHEC 98970/2521525 1.040 (1.025, 1.055) 9.4%
Turner et al. 2016 ACS CPS II 85132/669046 1.026 (1.009, 1.043) 8.7%
Weichenthal et al. 2017 CANCHEC 77000/2448500 1.161 (1.144, 1.178) 9.4%
Hvidtfeldt et al. 2019 DDCH 2319/49596 0.878 (0.817, 0.959) 1.3%
Kazemiparkouhi et al. 2019 Medicare 2333681/22159190 0.997 (0.995, 0.999) 12.7%
Lim et al. 2019 NIH-AARP 39529/548780 1.020 (0.990, 1.030) 5.1%
Paul et al. 2020 ONPHEC 64773/452590 1.105 (1.078, 1.133) 6.3%
Strak et al. 2021 ELAPSE 15542/325367 0.791 (0.734, 0.853) 3.0%
Bauwelinck et al. 2022 BC2001 234549/5474470 1.050 (1.022, 1.076) 5.8%
Stafoggia et al. 2022 ELAPSE 1186101/28153138 0.954 (0.912, 0.996) 2.9%
So et al. 2022 DanNAC 90028/3083227 0.942 (0.886, 0.980) 1.8%
Liu et al. 2022 CHERRY 7308/744882 1.249 (1.060, 1.500) 0.3%
Niu et al. 2022 CCDRFS 2064/96955 1.214 (1.066, 1.383) 0.4%

Random-effects model 1.024 (1.015, 1.033) 100.0%
Heterogeneity: I 2 = 97.3%, τ 2 = 0.0002, p < 0.01

0.5 1 2

0.5 1 2
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Figure S7 | Multi-study pooled mortality RR of IHD and CHF associated with ozone exposure.  

  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight
Ischaemic Heart Disease
Jerrett et al. 2009 ACS CPS II 27642/448850 0.968 (0.950, 0.986) 11.1%
Krewski et al. 2009 ACS CPS II - 1.012 (0.988, 1.024) 9.5%
Lipsett et al. 2011 CTS 1358/101784 1.020 (1.002, 1.040) 11.4%
Jerrett et al. 2013 ACS CPS II 4540/73711 1.021 (1.004, 1.039) 11.7%
Crouse et al. 2015 CANCHEC 63050/2521525 1.065 (1.047, 1.084) 11.6%
Turner et al. 2016 ACS CPS II 45644/669046 0.980 (0.960, 1.000) 8.8%
Cakmak et al. 2018 CANCHEC 72634/2291250 1.120 (1.100, 1.130) 11.3%
Kazemiparkouhi et al. 2019 Medicare 1245041/22159190 0.996 (0.993, 0.999) 14.9%
Lim et al. 2019 NIH-AARP 22327/548780 1.030 (1.000, 1.060) 8.0%
Strak et al. 2021 ELAPSE 7265/325367 0.761 (0.679, 0.851) 1.1%
Liu et al. 2022 CHERRY 1742/744882 0.886 (0.614, 1.271) 0.1%
Niu et al. 2022 CCDRFS 726/96955 1.360 (1.102, 1.677) 0.3%

Random-effects model 1.021 (1.008, 1.033) 100.0%
Heterogeneity: I 2 = 96.1%, τ 2 = 0.0003, p < 0.01

0.75 1 1.5

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight
Ischaemic Heart Disease
Lipsett et al. 2011 CTS 1358/101784 1.020 (1.002, 1.040) 20.4%
Turner et al. 2016 ACS CPS II 45644/669046 0.980 (0.960, 1.000) 14.9%
Cakmak et al. 2018 CANCHEC 72634/2291250 1.120 (1.100, 1.130) 20.3%
Kazemiparkouhi et al. 2019 Medicare 1245041/22159190 0.996 (0.993, 0.999) 28.6%
Lim et al. 2019 NIH-AARP 22327/548780 1.030 (1.000, 1.060) 13.5%
Strak et al. 2021 ELAPSE 7265/325367 0.761 (0.679, 0.851) 1.6%
Liu et al. 2022 CHERRY 1742/744882 0.886 (0.614, 1.271) 0.2%
Niu et al. 2022 CCDRFS 726/96955 1.360 (1.102, 1.677) 0.5%

Random-effects model 1.024 (1.009, 1.040) 100.0%
Heterogeneity: I 2 = 96.6%, τ 2 = 0.0002, p < 0.01

0.75 1 1.5

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight
Congestive Heart Failure
Zanobetti et al. 2011 Medicare 865000/1561819 1.124 (1.061, 1.166) 8.1%
Turner et al. 2016 ACS CPS II 18314/669046 1.090 (1.060, 1.130) 24.1%
Kazemiparkouhi et al. 2019 Medicare 158649/22159190 1.072 (1.063, 1.080) 53.4%
Lim et al. 2019 NIH-AARP 6811/548780 1.010 (0.970, 1.050) 14.5%

Random-effects model 1.071 (1.052, 1.090) 100.0%
Heterogeneity: I 2 = 85.8%, τ 2 = 0.0003, p < 0.01

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight
Congestive Heart Failure
Turner et al. 2016 ACS CPS II 18314/669046 1.090 (1.060, 1.130) 24.8%
Kazemiparkouhi et al. 2019 Medicare 158649/22159190 1.072 (1.063, 1.080) 60.8%
Lim et al. 2019 NIH-AARP 6811/548780 1.010 (0.970, 1.050) 14.4%

Random-effects model 1.067 (1.049, 1.086) 100.0%
Heterogeneity: I 2 = 79.2%, τ 2 = 0.0001, p < 0.01

0.9 1 1.1

0.9 1 1.1
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Figure S8 | Examination of publication biases by trim-and-fill method.  

Scatter points are jittered appropriately to avoid excessive overlap.  
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Figure S9 | Multi-study pooled ozone-associated RR curves of multi-cause mortality.  

The exposure-response (ER) curves are estimated for (a) ozone-associated mortality risks of non-communicable diseases (NCDs), (b) chronic 

respiratory diseases (CRDs), (c) chronic obstructive pulmonary disease (COPD), (d) cardiovascular diseases (CVDs), and (e) ischaemic heart 

disease (IHD) by mean of exposure range resampled meta-regression, Bayesian, regularised, and trimmed (MR-BRT). Exposures are quantified 

by 6-month (April–September) ozone-season 8-hour daily maximum average (OSDMA8) metric in ppb. Meta-regressions are performed on 

censored epidemiological evidence removing studies on duplicated cohort, unless the ER curved are clearly reported in the original literatures. 

Threshold exposure levels, also known as theoretical minimum risk exposure levels (TMREL), are indicated in each panel. The curved relative 

risks are used for mortality estimations as main analyses.  
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Figure S10 | 30-year trend of hierarchical multi-cause mortality fractions.  

Three hierarchical fraction values are calculated, as a) chronic obstructive pulmonary disease (COPD) excess deaths out of all chronic respir-

atory deaths, COPD/CRDs; b) ischaemic heart disease (IHD) excess deaths out of all cardiovascular deaths, IHD/CVDs; and c) total chronic 

respiratory and cardiovascular excess deaths out of deaths due to all non-communicable diseases, (CRDs+CVDs)/NCDs. The median values 

for each year are indicated by dots, with 95% uncertainty intervals presented by shades.  
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Figure S11 | Gridded mapping of urban and rural cardiopulmonary premature deaths in 2019.  

The spatial resolution for grid-specific population ambient O3 exposure assignment and associated mortality estimation with (a) urban and 

(b) rural differentiation is 1/8°×1/8° (approximately 10×10 km2). Long-term ambient O3 exposure-associated excess cardiopulmonary prem-

ature deaths are defined as the total mortality cases caused from chronic obstructive pulmonary diseases (COPD) and all-type cardiovascular 

diseases. Intervals of colourbar are defined by Jenks natural breaks.  
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Figure S12 | Changes in population-weighted ozone exposure comparing 1990 with 2019.  

Panel a and b map population-weighted exposure (PWE) concentrations to ambient ozone (ppb) by OSDMA8 metric in year 1990 and 2019, 

respectively. Panel c presents the change of PWE (△PWE) from 1990 to 2019. Only 2 years of PWE are considered for comparison.  
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Figure S13 | Schematic diagram of (a) classical high-resolution downscaling and (b) urban-rural differentiated 

stacked downscaling.  

a. Classical downscaling requires predictions precise to target finer resolution (from 45 ppb to 47, 46, 26, … ppb for each finer cell, a total of 

8×8=64 times of predictions), which however is frequently unfeasible in practice due to lack of high-resolution auxiliary datasets as predic-

tors. Note in the diagram, spatial resolution and gridded values are manually faked, simply for illustration purpose. b. The left panel presents 

an 8×8 km2 coarse cell of which the cell-level ambient O3 concentrations (like 45 ppb) are sensible as an integrity (e.g. by remote-sensing 

measurement, model fusion calibrated by deep learning algorithms, etc.) to represent the average level of the whole cell. However, 8×8 km2 

is still a large domain with substantial intra-cell variability in term of ambient O3, as shown in the right part of panel a. Under the circumstance 

when it is unfeasible to realise higher-resolution downscaling (e.g. 1×1 km2) but there are multi-site urban- and rural-classified observations 

inside the studied cell, the urban and rural average ambient O3 concentrations, 32 and 52 ppb, can be calculated and stacked to the cell, as 

shown in the right panel. The stacked downscaling only requires two times of predictions, from 45 to 32 ppb for urban concentration, and 

from 45 to 52 ppb for rural concentration. Note in the diagram, spatial resolution and gridded values are manually faked, aiming at illustrative 

presentations.  
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Figure S14 | Schematic diagram of Bayesian neural network multi-model fuser and downscaler.  

Right part demonstrates deep-learning-based multi-model fuser, and left part depicts urban-rural downscaler. The shaded elements refer to 

the external datasets not affected by neural network; the rectangle circumscribed elements indicate the input, processing and output variates 

inside the neural network; and non-rectangle circumscribed elements represent the final products. The schematic diagram is appropriately 

modified from a publication2 with full consents from American Chemical Society Publications and involved authors.  

Abbreviations and denotations: FC, fully connected; Sup., supervised training; DP, dot product; F, multi-model fused output; Obs, observations; 

ReLU, rectified linear unit; M, calibrated CMIP6 models; Softmax, normalised exponential function; tanh, hyperbolic tangent function.  

  

⋯

Space

Time

Auxiliary
Variables

⋯

Input Layer Hidden Layer 1, 2, … , k

⋯ ⋯

⋯

Output Layer

k

δ

tanh

ReLU

Noise

FC FC FC FC

⋯

⋯⋯⋯ ⋯⋯ ⋯

β

α1

αn

σ

Bias

Noise

DP
M1

Mn

"
#
$#%# + ' + (
Fusion

tanh
Softmax

Obs

Sup.
Sup.

F

FC FC FC FC
Space

Time

Auxiliary
Variables

Output Layer Hidden Layer 1, 2, … , k Input Layer

Obs

Sup.

Sup.

Cell-averageUrban/Rural

Prediction

Bayesian neural network downscaler Bayesian neural network multi-model fuser/ensembler



 40 

 

 

Figure S15 | Extrapolation validations on Chinese in situ observations with (a) urban, (b) rural, and (c) suburban 
differentiation by metric of monthly average of daily 8-hour maximum.  

Prediction-observation extrapolation evaluations span from May 2014 to December 2019, including statistics of coefficient of determination 

(R2), root-mean-square error (RMSE, ppb), normalised mean bias (NMB, %, defined as difference that prediction minus observation proportion 

to observation), linear regression slope (k) and intercept (b). No Chinese in situ observations are included for Bayesian neural network frame-

work training; predictions for urban and rural ambient O3 in China are results of spatial extrapolation. Crude evaluations are performed on 

the observations and raw predictions by BayNND, and adjusted evaluations on the observations and 1:1-linearly calibrated predictions by 

BayNND. Adjusted evaluations are all of fixed NMB =0%, slope (k=1), and intercept (b=0). Panel (b) evaluates the coherence between “sub-

urban”-labelled observations and rural O3 predictions, and (c) evaluates the consistency between “suburban”-labelled observations and urban 

O3 predictions. Data-based evidence reveals the “suburban”-labelled ambient O3 concentrations are closer to rural than urban pattern.  

  

Crude
R2 = 0.81
RMSE = 6.64 ppb
NMB = 2.8%
k = 0.87
b = 2.84 ppb

Adjusted
R2 = 0.87

RMSE = 5.25 ppb

Crude
R2 = 0.48
RMSE = 12.2 ppb
NMB = –11.6%
k = 1.11
b = 5.17 ppb

Adjusted
R2 = 0.74

RMSE = 7.95 ppb

Crude
R2 = 0.88
RMSE = 4.94 ppb
NMB = –2.0%
k = 0.80
b = 9.65 ppb

Adjusted
R2 = 0.93

RMSE = 2.98 ppb

a b c

U
rb
an
O
3
ob
se
rv
at
io
ns
(p
pb
)

S
ub
ur
ba
n
-la
be
lle
d
O
3
ob
se
rv
at
io
ns
(p
pb
)

S
ub
ur
ba
n
-la
be
lle
d
O
3
ob
se
rv
at
io
ns
(p
pb
)

BayNND urban O3 predictions (ppb) BayNND rural O3 predictions (ppb) BayNND urban O3 predictions (ppb)
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125

125

100

75

50

25

0

125

100

75

50

25

0

125

100

75

50

25

0



 41 

 

 

Figure S16 | Schematic diagram of urban-rural stacked gridded population upscaling.  

The left panel presents 1×1 km2 higher-resolution population (in thousand) distribution in a target coarser 8×8 km2 cell, in which urban and 

rural populations are defined based on population density. The upscaling process sums up the total finely gridded populations separately for 

urban and rural regions, and stacked the total urban population count 89,100 and rural population count 6,600 into the upscale coarse cell, 

as shown in the right panel. In further analyses, it will only be considered the upscaled cell-level total urban and rural populations (i.e. 89,100 

and 6,600), rather than how the residents are spatially distributed (i.e. 2,100, 3,500, etc.). The populations scaled in coarse cell will be linked 

with ambient O3 in same spatial resolution. Note in the diagram, spatial resolution and gridded values are manually faked, aiming at illustrative 

presentations.  
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Figure S17 | Flowchart of gridded population dataset construction and calibration.  

Rounded rectangles represent procedural data products; two rectangles refer to the initial input and final output datasets; number-marked 

arrows note manual operations for database development. Spatial resolution, space-time coverage, and population features are indicated in 

each dataset.  
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Figure S18 | Schematic diagram of cross-sectional population migration at cell-level definition.  

Panel (a) represents the initial population structure in an earlier year, when urban and rural populations are both 200,000. Panel (b) indicates 

a counterfactual scenario in a later year, that only population growth occurs without any urban-rural population structure change. The cell-

level total population doubles from 400,000 to 800,000, among which urban and rural populations increase proportionally to 400,000. Panel 

(c) reflects the realistic population structure in the later year, when urban population is 700,000 and rural population is 100,000. Directly 

comparing the realistic situation (a and c), urban population expands by 500,000 and rural population shrinks by 100,000, which is affected 

both by population growth and migration. Adjusting the effect from population growth assuming urban and rural populations are of the same 

growing rate, the population migration flow can be equivalently perceived as 300,000 rural population inside the studied cell migrate to the 

urban environments in the same cell (comparing b and c), so that rural population can be perceived as 400,000–300,000=100,000, and urban 

population as 400,000+300,000=700,000.  
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Figure S19 | Schematic diagram of cell-level population exposure assignment in stacked context.  

The upper part presents upscaling of stacked urban-rural population, and the lower part shows the urban-rural differentiation of ambient O3 

concentrations. The right part demonstrates how urban (or rural) populations are linked to urban (or rural) ambient O3 exposure in the stacked 

context, as 89,100 urban population are exposed to 32 ppb O3 on average, and 6,600 rural population are exposed to 52 ppb O3.  
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Figure S20 | External ozone prediction validations with literature reported observations.  

Enhanced external evaluations beyond CNEMC span from October 1993 to December 2019, including statistics of coefficient of determi-

nation (R2), root-mean-square error (RMSE), normalised mean bias (NMB), linear regression slope (k) and intercept (b). Only point-to-point 

evaluations are performed, excluding literatures only reporting concentration ranges. All available metrics in monthly smoothed values are 

included with necessary cross-metric conversion. When multiple metrics are provided in literature, the daily 24-h average and diurnal max-

imum 8-h average are preferred. Crude evaluations are performed on the observations and raw predictions by BayNND, and adjusted eval-

uations on the observations and 1:1-linearly calibrated predictions by BayNND. Adjusted evaluations are all of fixed NMB = 0%, slope (k = 

1), and intercept (b = 0). Full information can be found at Content S2.  

  

a b
Crude
R2 = 0.71
RMSE = 24.2 ppb
NMB = 12.6%
k = 1.18
b = –5.42 ppb

Adjusted
R2 = 0.83

RMSE = 22.1 ppb

Crude
R2 = 0.79
RMSE = 15.3 ppb
NMB = –4.2%
k = 1.23
b = –7.83 ppb

Adjusted
R2 = 0.93

RMSE = 11.0 ppb
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Content S1 | Population density of “suburban”-labelled CNEMC observation stations in 2019.  

A total of 245 “suburban”-labelled CNEMC stations are projected to gridded population (see “Population gridding and calibration” section in 

Methods). Planar cell (approximated as rectangles) areas are calculated by planar meridional distance multiplied by planar parallel distance, 

where meridional (") and parallel (#) distance follow the two formulae below, where	%	is the average Earth radius, 6378.137 km. Population 

densities are calculated by cell-specific total population divided by cell area. Urban locations (U) are categorised by population density >1,500 

people per km2 (C1), and more conservatively, an additional urban categorisation by population density threshold >1,000 people per km2 (C2) 

is provided as a sensitivity analysis. By C1, 242 out of 245 sites are classified as rural (R); by C2, 232 out sites are classified as rural, indicating 

“suburban”-labelled sites are more of rural sociodemographic characteristics.  

Station Longitude (°E) Latitude (°N) Pop. Des. C1 C2 Station Longitude (°E) Latitude (°N) Pop. Des. C1 C2 

1002A 116.220  40.292  503  R R 1855A 111.675  29.024  205  R R 

1013A 117.151  39.097  1543  U U 1856A 111.679  29.038  205  R R 

1014A 117.193  39.173  2175  U U 1857A 111.716  29.146  259  R R 

1016A 117.184  39.121  1543  U U 1861A 110.442  29.315  141  R R 

1020A 117.269  39.134  1483  R U 1862A 110.414  25.317  258  R R 

1025A 117.401  39.124  568  R R 1866A 109.226  21.588  232  R R 

1027A 117.157  38.919  296  R R 1882A 104.563  28.793  265  R R 

1028A 114.564  38.055  1312  R U 1887A 104.679  28.799  277  R R 

1035A 114.352  37.891  286  R R 1893A 105.432  28.963  262  R R 

1036A 118.166  39.631  539  R R 1897A 104.755  29.363  590  R R 

1039A 118.219  39.668  540  R R 1905A 106.056  30.806  563  R R 

1058A 114.892  40.795  328  R R 1918A 108.720  34.396  776  R R 

1061A 114.892  40.866  328  R R 1921A 108.737  34.316  559  R R 

1066A 117.927  41.003  183  R R 1922A 109.066  35.099  196  R R 

1069A 116.715  39.557  358  R R 1926A 109.413  36.628  85  R R 

1076A 115.691  37.739  263  R R 1930A 107.185  34.306  239  R R 

1082A 112.573  37.910  1053  R U 1938A 109.529  34.510  360  R R 

1083A 112.434  38.011  488  R R 1942A 102.188  38.525  77  R R 

1092A 111.659  40.845  247  R R 1947A 106.339  38.817  114  R R 

1093A 111.608  40.814  173  R R 2073A 117.721  24.509  501  R R 

1098A 123.684  41.934  991  R R 2074A 117.657  24.516  501  R R 

1101A 123.284  41.769  1232  R U 2075A 117.634  24.467  260  R R 

1107A 123.361  41.781  1232  R U 2165A 112.845  35.546  300  R R 

1125A 125.719  43.515  408  R R 2177A 111.040  35.039  183  R R 

1129A 126.542  45.755  1430  R U 2180A 112.736  38.419  144  R R 

1146A 120.978  31.094  585  R R 2189A 122.260  43.627  100  R R 

1160A 120.561  31.247  398  R R 2190A 122.304  43.616  70  R R 

1174A 119.141  34.590  599  R R 2193A 119.728  49.201  24  R R 

1175A 119.368  34.751  26  R R 2194A 107.594  40.916  89  R R 

1176A 119.348  34.698  300  R R 2199A 122.062  46.087  106  R R 

1179A 117.192  34.308  933  R R 2204A 105.647  38.836  4  R R 

1183A 117.166  34.181  801  R R 2224A 124.342  43.175  277  R R 

1184A 119.460  32.388  751  R R 2228A 125.157  42.895  248  R R 

1185A 119.404  32.410  751  R R 2241A 130.982  45.305  195  R R 

1187A 119.439  32.403  751  R R 2242A 131.010  45.295  132  R R 

1197A 119.933  31.779  885  R R 2247A 130.110  47.338  74  R R 

1198A 119.962  31.809  885  R R 2251A 131.120  46.566  132  R R 

1199A 120.039  31.764  1076  R U 2254A 129.503  48.471  45  R R 

1208A 119.882  32.303  593  R R 2259A 130.379  46.759  159  R R 

1217A 120.129  33.372  324  R R 2260A 131.003  45.768  152  R R 

1219A 118.266  33.960  325  R R 2261A 130.863  45.819  78  R R 

1222A 118.321  33.951  325  R R 2262A 131.052  45.875  148  R R 

1225A 119.026  29.635  75  R R 2265A 127.529  50.247  79  R R 

1237A 121.554  29.891  349  R R 2268A 124.119  50.427  6  R R 

1238A 121.615  29.902  349  R R 2272A 117.309  32.935  436  R R 

1248A 120.576  30.007  442  R R 2276A 117.042  32.661  336  R R 

1249A 120.100  30.887  233  R R 2281A 116.633  32.620  253  R R 

1251A 120.093  30.862  352  R R 2293A 117.049  30.549  220  R R 

1273A 117.160  31.905  722  R R 2300A 118.316  32.306  199  R R 

1280A 119.390  26.054  689  R R 2304A 116.977  33.648  449  R R 

1286A 118.161  24.817  672  R R 2305A 116.968  33.628  449  R R 

1293A 115.973  28.697  660  R R 2313A 117.481  30.641  173  R R 

1296A 115.742  28.800  425  R R 2315A 117.497  30.654  173  R R 

1297A 115.912  28.613  413  R R 2323A 118.981  25.479  441  R R 

1302A 116.989  36.687  757  R R 2327A 117.728  26.311  143  R R 

1307A 120.666  36.240  44  R R 2331A 118.097  26.676  120  R R 

1324A 113.515  34.911  1071  R U 2335A 117.019  25.118  103  R R 

1334A 113.845  30.292  253  R R 2339A 119.500  26.695  131  R R 

1344A 112.958  28.361  878  R R 2340A 119.520  26.661  131  R R 

1355A 113.443  23.304  1192  R U 2342A 117.310  29.387  120  R R 
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Station Longitude (°E) Latitude (°N) Pop. Des. C1 C2 Station Longitude (°E) Latitude (°N) Pop. Des. C1 C2 

1382A 113.441  22.485  792  R R 2347A 114.100  27.500  152  R R 

1400A 112.475  23.100  178  R R 2352A 115.086  27.932  237  R R 

1405A 108.439  22.790  177  R R 2356A 114.912  27.804  209  R R 

1409A 110.576  19.951  133  R R 2357A 116.982  28.114  174  R R 

1414A 106.379  29.828  703  R R 2362A 114.902  25.915  234  R R 

1415A 106.460  29.574  923  R R 2371A 114.341  27.806  271  R R 

1423A 106.571  29.564  993  R R 2376A 116.213  28.081  198  R R 

1424A 106.512  29.516  993  R R 2381A 118.005  28.457  267  R R 

1430A 106.591  29.427  591  R R 2384A 117.903  28.430  239  R R 

1438A 103.620  31.020  159  R R 2393A 114.991  35.767  596  R R 

1449A 102.743  25.012  462  R R 2411A 115.658  34.402  629  R R 

1451A 102.625  24.961  264  R R 2428A 111.042  32.395  89  R R 

1472A 108.869  34.378  1121  R U 2442A 112.193  31.038  164  R R 

1477A 104.137  35.945  124  R R 2445A 114.886  30.452  552  R R 

1481A 101.749  36.692  316  R R 2447A 114.318  29.814  240  R R 

1483A 101.524  36.687  214  R R 2456A 112.500  26.917  446  R R 

1484A 105.951  38.602  150  R R 2462A 111.524  27.303  402  R R 

1485A 106.268  38.474  150  R R 2467A 112.407  28.643  310  R R 

1486A 106.217  38.454  162  R R 2472A 113.007  25.906  213  R R 

1487A 106.072  38.486  161  R R 2477A 111.622  26.208  193  R R 

1492A 87.475  43.947  750  R R 2482A 109.598  27.572  163  R R 

1552A 106.805  26.300  157  R R 2487A 111.959  27.890  292  R R 

1559A 113.251  27.834  303  R R 2492A 109.641  28.256  215  R R 

1564A 112.488  27.916  349  R R 2505A 109.568  23.148  234  R R 

1586A 109.810  40.658  331  R R 2509A 110.111  22.702  275  R R 

1614A 118.612  24.960  915  R R 2516A 108.201  24.715  88  R R 

1615A 117.685  36.205  493  R R 2523A 105.895  32.454  88  R R 

1617A 117.715  36.208  493  R R 2527A 105.545  30.568  552  R R 

1626A 115.997  36.457  570  R R 2535A 103.772  29.546  330  R R 

1627A 115.984  36.480  570  R R 2539A 104.031  30.048  327  R R 

1647A 121.595  37.387  245  R R 2543A 106.631  30.528  579  R R 

1649A 119.092  36.731  556  R R 2546A 106.641  30.484  409  R R 

1651A 119.161  36.657  565  R R 2548A 107.528  31.283  250  R R 

1654A 116.586  35.414  566  R R 2553A 103.009  30.013  211  R R 

1667A 118.586  37.444  196  R R 2557A 106.758  31.848  389  R R 

1668A 118.819  37.378  174  R R 2561A 104.662  30.137  513  R R 

1696A 114.678  23.757  111  R R 2566A 102.188  31.914  6  R R 

1699A 111.980  21.859  161  R R 2571A 102.343  27.810  131  R R 

1702A 113.043  23.691  444  R R 2576A 104.800  26.589  161  R R 

1705A 116.637  23.672  830  R R 2598A 100.214  26.858  49  R R 

1712A 112.039  22.917  142  R R 2617A 98.578  24.441  93  R R 

1721A 113.382  40.110  160  R R 2623A 97.181  31.125  6  R R 

1722A 113.286  40.096  261  R R 2627A 88.893  29.237  19  R R 

1729A 113.147  36.196  314  R R 2631A 80.090  32.504  1  R R 

1732A 111.513  36.098  238  R R 2634A 106.989  33.184  169  R R 

1737A 111.492  36.042  337  R R 2638A 109.741  38.334  55  R R 

1754A 123.129  41.023  461  R R 2642A 109.032  32.654  127  R R 

1778A 126.706  43.713  137  R R 2649A 106.006  34.343  126  R R 

1782A 123.626  47.203  132  R R 2653A 102.647  37.936  105  R R 

1797A 118.402  31.384  525  R R 2660A 107.683  35.729  226  R R 

1802A 118.625  31.724  527  R R 2665A 105.082  33.326  59  R R 

1810A 115.977  29.570  276  R R 2680A 105.003  37.464  51  R R 

1818A 114.484  36.062  744  R R 2683A 106.232  36.142  110  R R 

1821A 114.393  36.088  745  R R 2690A 88.124  43.889  18  R R 

1822A 114.286  36.110  839  R R 2701A 79.949  37.115  52  R R 

1823A 114.341  34.802  523  R R 2702A 79.912  37.101  52  R R 

1825A 114.373  34.798  523  R R 2707A 88.121  47.905  15  R R 

1830A 113.199  35.270  683  R R 2874A 117.041  32.646  336  R R 

1831A 113.306  33.721  663  R R 2914A 106.768  31.879  340  R R 

1838A 111.143  34.796  188  R R 2916A 117.490  30.660  173  R R 

1846A 112.289  30.306  225  R R 2923A 113.280  40.111  261  R R 

1852A 113.212  29.355  186  R R 3122A 105.961  26.261  319  R R 

1853A 111.704  29.024  205  R R 
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Content S2 | Literature-based external validations of urban-rural ambient ozone predictions.  

Accuracy evaluations on CNEMC observations are limited to the latest six years (2014–2019). To check the reliability of 30-yr deep-learning-

based prediction, totally 68 peer-reviewed studies reporting in situ observations of ambient O3 are collected for enhanced model-observation 

comparison. The developed ambient O3 database covers two metrics as i) monthly average of daily 24-h average, and ii) monthly average of 

daily maximum 8-h average. The metric, daily diurnal 7-h average, adopted in earlier literatures, are compared to daily maximum 8-h average 

as an alternative proxy. For prediction-observation comparisons on daily 1-h maximum metric, null-intercept linear conversion is applied to 

approximately project daily 8-h maximum average (DMA8h) concentrations onto daily 1-h maximum average (DMA1h) concentrations. The 

idea of null-intercept linear conversion was put forward by US EPA (Volume I, section 7.1.3.2)78, and the conversion coefficients have been 

updated by 30-yr historical observations archived in TOAR and CNEMC14. At multi-season or multi-year scale, the conversion follows: 

DMA1h = DMA8h × 1.213; in warm seasons (i.e. April to September), the conversion follows: DMA1h = DMA8h×1.202, where O3 concen-

trations in DMA8h metric are obtained from Bayesian neural network downscaler. Observed and deep-learning-modelled ambient O3 con-

centrations are both unified into ppb. IGAC (International Global Atmospheric Chemistry project) TOAR-II Working Group has double-

checked the external validation in August 2022, and recognised the credibility of the database for long-term population exposure tracking 

and risk assessment studies (https://igacproject.org/human-health-impacts-ozone-focus-working-group, accessed February 2023).  

Site location Longitude (°E) Latitude (°N) Period start Period end Metric Type Observed Modelled Refs 

Chongqing 106.5  29.6  Oct-93 
 

Period 24-h average Urban 7  12.6  79 

Chongqing 106.5  29.6  Oct-93 
 

Daily 7-h average Urban 12  19.6  79 

Chongqing 106.5  29.6  Nov-93 
 

Period 24-h average Urban 10  13.5  79 

Chongqing 106.5  29.6  Nov-93 Daily 7-h average Urban 16  25.3  79 

Chongqing 106.5  29.6  Dec-93 
 

Period 24-h average Urban 3  10.2  79 

Chongqing 106.5  29.6  Dec-93 
 

Daily 7-h average Urban 7  10.1  79 

Chongqing 106.5  29.6  Jan-94 
 

Period 24-h average Urban 5  10.4  79 

Chongqing 106.5  29.6  Jan-94 
 

Daily 7-h average Urban 11  17.0  79 

Chongqing 106.5  29.6  Feb-94 Period 24-h average Urban 9  15.0  79 

Chongqing 106.5  29.6  Feb-94 
 

Daily 7-h average Urban 17  20.5  79 

Chongqing 106.5  29.6  Mar-94 
 

Period 24-h average Urban 11  17.6  79 

Chongqing 106.5  29.6  Mar-94 
 

Daily 7-h average Urban 19  25.4  79 

Hong Kong SAR 114.0  22.0  May-94 
 

Period 24-h average Urban 33  36.5  80 

Hong Kong SAR 114.0  22.0  Jul-94 Period 24-h average Urban 21  22.9  80 

Lin'an, Zhejiang 119.7  30.4  Aug-94 Jul-95 Period maximum 1-h Rural 120  100.7  81 

Waliguan, Qinghai 100.9  36.3  Aug-94 Jul-95 Period maximum 1-h Rural 130  87.3  81 

Shazikou, Shandong 120.5  36.1  Aug-94 Jul-95 Period maximum 1-h Rural 90  80.9  81 

Longfengshan, Heilongjiang 127.6  44.7  Aug-94 Jul-95 Period maximum 1-h Rural 80  76.6  81 

Waliguan, Qinghai 100.9  36.3  Aug-94 Dec-13 Period 24-h average Rural 65  60.6  82 

Hong Kong SAR 114.0  22.0  Sep-94 
 

Period 24-h average Urban 52  52.1  80 

Hong Kong SAR 114.0  22.0  Oct-94 
 

Period 24-h average Urban 60  55.7  80 

Hong Kong SAR 114.2  22.3  Oct-94 Nov-94 Period 24-h average Urban 53±13 53.3  83 

Hong Kong SAR 114.0  22.3  Oct-94 Nov-94 Period 24-h average Urban 69±23 52.4  83 

Longfengshan, Heilongjiang 127.6  44.7  Oct-94 Jan-95 Period maximum 1-h Rural 86  75.3  84 

Lin'an, Zhejiang 119.7  30.4  Oct-94 Jan-95 Period maximum 1-h Rural 112  72.3  84 

Hong Kong SAR 114.3  22.2  Oct-94 Jan-95 Period maximum 1-h Urban 87  70.9  84 

Qingdao, Shandong 120.5  36.1  Oct-94 Jan-95 Period maximum 1-h Urban 67  68.5  84 

Mt Waliguan, Qinghai 100.9  36.3  Jan-95 Dec-18 Annual average Rural 47–56 53.7–57.9 85 

Beijing 117.1  40.7  Jan-95 Dec-18 Annual average Rural 33–46 35.0–53.3 85 

Lin'an, Zhejiang 119.7  30.4  Jan-95 Dec-18 Annual average Rural 30–35 28.6–36.3 85 

Chongqing 106.5  29.6  Jun-95 
 

Period 24-h average Urban 11  14.9  79 

Chongqing 106.5  29.6  Jun-95 
 

Daily 7-h average Urban 22  29.3  79 

Chongqing 106.5  29.6  Jul-95 
 

Period 24-h average Urban 10  14.9  79 

Chongqing 106.5  29.6  Jul-95 Daily 7-h average Urban 18  29.3  79 

Chongqing 106.5  29.6  Aug-95 
 

Period 24-h average Urban 17  16.1  79 

Chongqing 106.5  29.6  Aug-95 
 

Daily 7-h average Urban 27  30.7  79 

Chongqing 106.5  29.6  Jun-96 
 

Period 24-h average Urban 29  24.3  79 

Chongqing 106.5  29.6  Jun-96 
 

Daily 7-h average Urban 41  30.4  79 

Chongqing 106.5  29.6  Jul-96 Period 24-h average Urban 27  23.3  79 

Chongqing 106.5  29.6  Jul-96 
 

Daily 7-h average Urban 30  26.5  79 

Chongqing 106.5  29.6  Aug-96 
 

Period 24-h average Urban 31  30.0  79 

Chongqing 106.5  29.6  Aug-96 
 

Daily 7-h average Urban 34  35.8  79 

Lin'an, Zhejiang 119.7  30.4  Sep-99 
 

Period maximum 1-h Rural 136  102.3  86 

Lin'an, Zhejiang 119.7  30.4  Oct-99 Period maximum 1-h Rural 112  85.5  86 

Lin'an, Zhejiang 119.7  30.4  Nov-99 
 

Period maximum 1-h Rural 87  76.4  86 

Lin'an, Zhejiang 119.7  30.4  Dec-99 
 

Period maximum 1-h Rural 68  64.1  86 

Nanjing, Jiangsu 118.7  32.1  Jan-00 Feb-03 Period 24-h average Urban 20.4±18.3 20.9  87 

Lin'an, Zhejiang 119.7  30.4  Jan-00 
 

Period maximum 1-h Rural 65  64.0  86 

Lin'an, Zhejiang 119.7  30.4  Feb-00 Period maximum 1-h Rural 71  71.3  86 

Lin'an, Zhejiang 119.7  30.4  Mar-00 
 

Period maximum 1-h Rural 76  76.0  86 

Lin'an, Zhejiang 119.7  30.4  Apr-00 
 

Period maximum 1-h Rural 83  87.9  86 

Lin'an, Zhejiang 119.7  30.4  May-00 
 

Monthly average Rural 57  58.4  88 

Lin'an, Zhejiang 119.7  30.4  May-00 
 

Period maximum 1-h Rural 124  101.6  86 

Lin'an, Zhejiang 119.7  30.4  Jun-00 Period maximum 1-h Rural 118  102.3  86 

Lin'an, Zhejiang 119.7  30.4  Jul-00 
 

Period maximum 1-h Rural 145  102.2  86 

Nanjing, Jiangsu 118.7  32.1  2000–2003 Spring Monthly average Urban 27±20.6 27.3  87 

Nanjing, Jiangsu 118.7  32.1  2000–2003 Summer Monthly average Urban 22.8±19.4 21.8  87 

Nanjing, Jiangsu 118.7  32.1  2000–2003 Autumn Monthly average Urban 18.4±16.7 19.8  87 

Nanjing, Jiangsu 118.7  32.1  2000–2003 Winter Monthly average Urban 14.1±12.9 17.6  87 

Shanghai 121.5 31.2 Jan-01 Jan-04 DMA8h Urban 32.3±18.7 35.5  89 



 49 

Site location Longitude (°E) Latitude (°N) Period start Period end Metric Type Observed Modelled Refs 

Lin'an, Zhejiang 119.7  30.4  Feb-01 Apr-01 Period 24-h average Rural 34±18 32.8  90 

Mt Tai, Shandong 117.1  36.3  Jul-03 Nov-03 Period 24-h average NA 58±16 58.6  91 

Beijing 117.1  40.7  Sep-03 Dec-03 Period 24-h average Rural 26.8±27.7 25.9  92 

Jinan, Shandong 117.1  36.7  2003  Spring Period 24-h average Urban 38.4  40.1  93 

Jinan, Shandong 117.1  36.7  2003  Summer Period 24-h average Urban 43.4  36.9  93 

Jinan, Shandong 117.1  36.7  2003  Autumn Period 24-h average Urban 22.1  22.6  93 

Jinan, Shandong 117.1  36.7  2003  Winter Period 24-h average Urban 14.3  16.5  93 

Jinan, Shandong 117.1  36.7  2003  Summer Period 24-h median Urban 37.9  36.9  93 

Mt Waliguan, Qinghai 100.9  36.3  2003  Spring Period 24-h average Rural 58±9 59.4  94 

Mt Waliguan, Qinghai 100.9  36.3  2003  Summer Period 24-h average Rural 54±11 52.0  94 

Beijing 117.1  40.7  Jan-04 Dec-04 Period 24-h average Rural 30.1±26.7 28.5  92 

Shanghai 121.5  31.2  Mar-04 Dec-05 DMA8h Urban 39.3±1.5 38.5  95 

Jinan, Shandong 117.1  36.7  Apr-04 
 

Period maximum 1-h Urban 105.6  101.6  96 

Guangzhou, Guangdong 113.6  22.7  Apr-04 May-04 Period maximum 1-h Urban 178.0  91.9  97 

Jinan, Shandong 117.1  36.7  May-04 
 

Period maximum 1-h Urban 131.4  141.3  96 

Mt Huang, Anhui 118.2  30.1  May-04 
 

Period 24-h average Rural 67.8  66.7  98 

Mt Tai, Shandong 117.2  36.4  May-04 
 

Period 24-h average Rural 64.4  55.9  98 

Beijing 117.1  40.7  May-04 
 

Period 24-h average Rural 42.5  40.7  98 

Wan-Li, Taiwan 121.7  25.2  May-04 Period 24-h average Rural 32.9  34.1  98 

Hong Kong SAR 114.1  22.4  May-04 
 

Period 24-h average Urban 25.5  22.3  98 

Mt Tai, Shandong 117.2  36.4  May-04 
 

Period maximum 1-h Urban 111.0  120.4  98 

Mt Huang, Anhui 118.2  30.1  May-04 
 

Period maximum 1-h Rural 114.0  102.3  98 

Jinan, Shandong 117.1  36.7  Jun-04 
 

Period maximum 1-h Urban 143.8  110.8  96 

Jinan, Shandong 117.1  36.7  Jul-04 Period maximum 1-h Urban 136.2  140.8  96 

Jinan, Shandong 117.1  36.7  Aug-04 
 

Period maximum 1-h Urban 109.0  125.4  96 

Jinan, Shandong 117.1  36.7  Sep-04 
 

Period maximum 1-h Urban 114.3  119.1  96 

Guangzhou, Guangdong 113.6  22.6  Oct-04 Nov-04 Period 24-h average Rural 49  49.3  99 

Guangzhou, Guangdong 113.3  23.1  Oct-04 Nov-04 Period 24-h average Urban 29  29.9  99 

Jinan, Shandong 117.1  36.7  Oct-04 Period maximum 1-h Urban 107.1  102.3  96 

Beijing 117.1  40.7  Jan-05 Dec-05 Period 24-h average Rural 32.8±30.4 30.3  92 

Shanghai 121.1  31.5  May-05 
 

Period maximum 1-h Urban 127  100.9  97 

Beijing 116.3  40.4  Jun-05 Jul-05 Period maximum 1-h Urban 286  129.7  100 

Beijing 117.1  40.7  Jan-06 Dec-06 Period 24-h average Rural 30.9±29.3 30.2  92 

Mt Tai, Shandong 117.1  36.3  May-06 Jun-06 Period 24-h average Urban 82  89.5  101 

Shanghai 121.4  31.2  Jun-06 Jun-07 Period maximum 1-h Urban 128  126.3  102 

Shanghai 121.4  31.2  Jun-06 Jun-07 Monthly avg daily max Urban 17-70 15.8-66.7 102 

Shanghai 121.4  31.2  Jun-06 Jun-07 Period 24-h average Urban 6-28 12.0-29.9 102 

Lanzhou, Gansu 103.7  36.1  Jun-06 Jul-06 Period maximum 1-h Rural 143  102.0  97 

Lanzhou, Gansu 103.7  36.1  Jun-06 Jul-06 Period 24-h average Rural 53±24 48.1  103 

Beijing 115.7  39.1  Jul-06 Sep-07 Period maximum 1-h Rural 100.7  100.4  104 

Qingyuan, Guangdong 113.0  23.5  Jul-06 
 

Diurnal average Rural 54±18 58.8  105 

Guangzhou, Guangdong 113.3  23.1  Jul-06 
 

Diurnal average Urban 51±29 53.5  105 

Mt Waliguan, Qinghai 100.9  36.3  Jul-06 Aug-06 Period 24-h average Rural 59±8 61.0  103 

Beijing 116.8  40.5  Aug-06 Diurnal average Rural 65  68.4  106 

Peking Uni, Beijing 116.3  40.0  Aug-06 
 

Period maximum 1-h Urban 123  122.3  107 

Tianjin 117.2  39.1  Sep-06 Oct-06 Diurnal maximum Urban 117  129.1  108 

Beijing 116.4  39.9  Jan-07 Jan-10 Period maximum 1-h Urban 60–120 47.3–108.2 109 

Beijing 115.7  39.1  Jun-07 
 

Monthly average Rural 54.8±18.1 57.3  104 

Beijing 115.7  39.1  Jun-07 DMA8h Rural 108.6±23.6 113.9  104 

Beijing 115.7  39.1  Jun-07 
 

Daily mean values Rural 70.0±13.1 78.4  104 

Beijing 117.1  40.7  Jun-07 Sep-07 Period 24-h average Rural 58.2±32.1 54.2  110 

Beijing 116.3  39.8  Jun-07 Sep-07 Period 24-h average Urban 36.2±34.1 37.4  110 

Beijing 116.6  40.1  Jun-07 Sep-07 Period 24-h average Urban 39.6±36.6 37.1  110 

Beijing 116.4  39.9  Jun-07 Sep-07 Period 24-h average Urban 47.0±41.6 43.7  110 

Songyuan, Jilin 125.0  45.0  Jun-07 
 

Period 24-h average Urban 100  99.7  111 

Beijing 116.8  40.5  Aug-07 
 

Diurnal average Rural 50  50.2  106 

Shanghai 121.5 31.2 Sep-07 
 

Period 24-h average Urban 20–60 32.7  112 

Guangzhou, Guangdong 113.6  22.7  Oct-07 Dec-07 Period 24-h average Rural 40±3 42.4  113 

Hong Kong SAR 113.9  22.3  Oct-07 Dec-07 Period 24-h average Urban 32±1 31.0  113 

Beijing 116.3  40.0  Nov-07 Mar-08 Period 24-h average Urban 11.9±0.8 15.9  114 

Beijing 116.3  40.0  Nov-07 Mar-08 Period maximum 1-h Urban 69.7  67.2  114 

Guangzhou, Guangdong 113.6  22.7  Nov-07 
 

Period 24-h average Rural 59±5 55.9  115 

Shangri-La, Yunnan 99.7  28.0  2007–2009 January Monthly average Rural 45.4±5.6 47.4  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 February Monthly average Rural 50.6±5.8 51.8  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 March Monthly average Rural 57.1±6.9 59.4  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 April Monthly average Rural 58.3±8.8 60.9  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 May Monthly average Rural 50.2±9.8 49.1  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 June Monthly average Rural 37.4±11.6 33.6  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 July Monthly average Rural 26.8±12.5 24.6  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 August Monthly average Rural 24.2±8.8 26.2  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 September Monthly average Rural 29.6±9.2 29.0  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 October Monthly average Rural 31.4±10.1 29.9  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 November Monthly average Rural 38.1±7.8 35.2  116 

Shangri-La, Yunnan 99.7  28.0  2007–2009 December Monthly average Rural 39.7±5.0 36.3  116 

Xi'an, Shaanxi 108.9  34.3  Jun-08 
 

Monthly average Urban 33.5  35.4  117 

Beijing 117.5  40.4  Jul-08 Aug-08 Period 24-h average Rural 67.0  55.7  118 

Baoding, Hebei 115.5  38.9  Jul-08 Aug-08 Period 24-h average Rural 55.3  50.5  118 

Beijing 116.0  39.5  Jul-08 Aug-08 Period 24-h average Rural 47.1  47.7  118 

Olympic Vill, Beijing 116.6  40.0  Jul-08 Aug-08 Period 24-h average Urban 55.3  45.7  118 

Langfang, Hebei 116.8  39.6  Jul-08 Aug-08 Period 24-h average Rural 46.8  45.7  118 
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Site location Longitude (°E) Latitude (°N) Period start Period end Metric Type Observed Modelled Refs 

Beijing 116.1  40.1  Jul-08 Aug-08 Period 24-h average Rural 46.5  45.6  118 

Beijing 116.4  40.0  Jul-08 
 

Period maximum 1-h Urban 190.0  116.2  119 

Peking Uni, Beijing 116.3  40.0  Aug-08 Sep-08 Period maximum 1-h Urban 135.0  112.8  120 

Beijing 116.4  40.0  Aug-08 Period maximum 1-h Rural 128.0  115.6  121 

Beijing 116.4  40.0  Aug-08 
 

Period maximum 1-h Rural 111.3  115.6  121 

Beijing 116.4  40.0  Aug-08 
 

Period maximum 1-h Rural 118.0  115.6  121 

Xi'an, Shaanxi 108.9  34.3  2008  Spring Period 24-h average Urban 21.8±10.1 22.3  117 

Xi'an, Shaanxi 108.9  34.3  2008  Summer Period 24-h average Urban 32.5±11.6 31.1  117 

Xi'an, Shaanxi 108.9  34.3  2008  Autumn Period 24-h average Urban 8.8±8.1 21.0  117 

Xi'an, Shaanxi 108.9  34.3  2009  Winter Period 24-h average Urban 3.0±2.5 15.3  117 

Tianjin 117.2  39.1  Jan-09 Dec-15 DMA8h Urban 120.0  115.9  122 

Tianjin 117.0  39.4  Jul-09 Sep-09 Period maximum 1-h Rural 193.7  160.4  123 

Tianjin 117.2  39.1  Jul-09 Sep-09 Period maximum 1-h Urban 130.4  139.0  123 

Beijing 116.4  40.0  Jul-10 Period 24-h average Urban 3.1-66.3 36.4  124 

Beijing 116.0  39.7  Jul-10 
 

Period 24-h average Urban 8.2-105.1 35.8  124 

Beijing 116.0  39.7  Aug-10 
 

Period 24-h average Urban 22.3-89.1 33.7  124 

Beijing 116.4  40.0  Aug-10 
 

Period 24-h average Urban 11.7-53.1 33.2  124 

Hong Kong SAR 114.1  22.4  Oct-10 
 

Period 24-h average Urban 31.9-47.5 65.7  125 

Nam Co, Tibet 91.0  30.8  Jan-11 Dec-11 Period 24-h average Rural 23.5±6.2 42.6  126 

Mt Huang, Anhui 118.2  30.1  Jun-11 
 

Period 24-h average Rural 12.8-51.0 39.8  127 

Beijing 116.0  39.7  Jul-11 
 

Period 24-h average Urban 36.3-80.8 52.2  124 

Beijing 116.4  40.0  Jul-11 
 

Period 24-h average Urban 4.6-54.1 37.3  124 

Beijing 116.0  39.7  Aug-11 
 

Period 24-h average Urban 30.9-74.6 35.4  124 

Beijing 116.4  40.0  Aug-11 Period 24-h average Urban 6.6-56.1 33.9  124 

Nanjing, Jiangsu 119.0  32.1  Aug-11 
 

Monthly average Rural 23.7  29.1  128 

Nanjing, Jiangsu 119.0  32.1  Sep-11 
 

Monthly average Rural 29.2  27.5  128 

Nanjing, Jiangsu 119.0  32.1  Oct-11 
 

Monthly average Rural 22.8  27.7  128 

Nanjing, Jiangsu 119.0  32.1  Nov-11 
 

Monthly average Rural 7.4  18.5  128 

Nanjing, Jiangsu 119.0  32.1  Dec-11 Monthly average Rural 8.6  12.4  128 

Nanjing, Jiangsu 119.0  32.1  Jan-12 
 

Monthly average Rural 16.3  14.4  128 

Nam Co, Tibetan 91.0  30.8  Jan-12 Dec-12 Period 24-h average Rural 48.1±11.4 44.0  126 

Nanjing, Jiangsu 119.0  32.1  Feb-12 
 

Monthly average Rural 15.5  18.5  128 

Nanjing, Jiangsu 119.0  32.1  Mar-12 
 

Monthly average Rural 17.1  20.0  128 

Nanjing, Jiangsu 119.0  32.1  Apr-12 Monthly average Rural 21.8  20.0  128 

Nanjing, Jiangsu 119.0  32.1  May-12 
 

Monthly average Rural 20.4  23.5  128 

Nanjing, Jiangsu 119.0  32.1  Jun-12 
 

Monthly average Rural 27.1  25.3  128 

Nanjing, Jiangsu 119.0  32.1  Jul-12 
 

Monthly average Rural 31.3  25.8  128 

Nam Co, Tibetan 91.0  30.8  Jan-13 Dec-13 Period 24-h average Rural 47.5±12.3 42.2  126 

Wuhan, Hubei 114.4  30.5  Feb-13 Oct-14 Daily Maximum average Urban 85.0  81.4  129 

Nanjing, Jiangsu 118.7  32.2  Jun-13 Aug-13 Period maximum 1-h Urban 110.6  114.8  130 

Nanjing, Jiangsu 118.7  32.2  Jun-13 Aug-13 Period maximum 1-h Urban 129.2  114.8  130 

Nanjing, Jiangsu 118.7  32.2  Jun-13 Aug-13 Period maximum 1-h Urban 135.1  114.8  130 

Nanjing, Jiangsu 118.7  32.1  Jun-13 Aug-13 Period maximum 1-h Urban 134.1  114.8  130 

Lanzhou, Gansu 103.8  36.1  Jun-13 Jul-13 Diurnal maximum Urban 48–98 83.3  131 

Lanzhou, Gansu 103.7  36.1  Jun-13 Jul-13 Diurnal maximum Rural 66–138 88.3  131 

Hangzhou, Zhejiang 120.2  30.3  Jul-13 Aug-13 Period 24-h average Urban 45.5±15.1 52.5  132 

Hangzhou, Zhejiang 120.3  30.3  Jul-13 Aug-13 Period 24-h average Rural 42.0±10.8 36.8  132 

Hangzhou, Zhejiang 119.0  29.6  Jul-13 Aug-13 Period 24-h average Rural 42.0±10.8 36.0  132 

Fudan Uni, Shanghai 121.5  31.3  Aug-13 DMA8h Urban 15.8–117.0 81.1  133 

Hong Kong SAR 114.1  22.4  Nov-13 Dec-13 Period 24-h average Rural 30.6–32.7 58.5  134 

Nam Co, Tibetan 91.0  30.8  Jan-14 Dec-14 Period 24-h average Rural 24.2±5.4 45.3  126 

North China 114.5–119.5 36.5–40.5 May-14 Jul-17 DMA8h NA 98.5  104.3  135 

North China 114.5–119.5 36.5–40.5 May-14 Jul-17 Maximum of DMA8h NA 124.4  116.2  135 

Ningbo, Zhejiang 121.5  29.9  Sep-14 Aug-15 Period hourly average Urban 11–39 21.9  136 

Ningbo, Zhejiang 121.6  29.8  Sep-14 Aug-15 Period hourly average Rural 22–53 30.2  136 

Ningbo, Zhejiang 121.9  29.8  Sep-14 Aug-15 Period hourly average Rural 22–53 30.3  136 

Mt Tai, Shandong 117.0  36.3  Jan-15 Dec-15 Daily maximum average NA ~100 58.3  137 

Nam Co, Tibetan 91.0  30.8  Jan-15 Dec-15 Period 24-h average Rural 48.9±12.0 46.1  126 

Kashgar, Xinjiang 76.0  39.5  2015  Autumn Period 24-h average Urban 13.9  20.7  138 

Nanjing, Jiangsu 118.8  32.1  Jan-16 Dec-16 DM8h 90th percentile Urban 93.9  75.5  139 

Shanghai 121.5  30.8  May-16 
 

DMA8h Rural 106.4  104.1  140 

Hangzhou, Zhejiang 120.2  30.2  Aug-16 Sep-16 Period 24-h average Urban 64.7  32.1  141 

Hangzhou, Zhejiang 120.2  30.2  Sep-16 
 

Period 24-h average Urban 38.4  32.1  141 

Kashgar, Xinjiang 76.0  39.5  2016  Spring Period 24-h average Urban 16.2  22.1  138 

Shanghai 121.5  30.8  Dec-17 
 

Period 24-h average Rural 35.0  37.5  142 

Shanghai 121.4  31.2  2017  Autumn Period maximum 1-h Urban 146.0  122.9  143 

Kashgar, Xinjiang 76.0  39.5  2017  Summer Period 24-h average Urban 29.6  30.2  138 

Fuzhou, Fujian 119.3  26.1  May-18 
 

Period 24-h average Urban 24.6  22.2  144 

Fuzhou, Fujian 119.4  26.0  May-18 Period 24-h average Urban 20.6  22.0  144 

Shenzhen, Guangdong 114.0  22.6  Sep-18 Oct-18 Period maximum 1-h Urban 121.0  101.5  145 

Shanghai 121.4  31.2  2018  Spring Period maximum 1-h Urban 137.0  121.3  143 

Kashgar, Xinjiang 76.0  39.5  2018  Winter Period 24-h average Urban 5.4  20.3  138 

Shanghai 121.5  31.3  May-19 Sep-19 Period 24-h average Urban 35.14±18.72 32.5  146 

Shanghai 121.4  31.2  2019  Summer Period maximum 1-h Urban 185.0  162.7  143 

Shanghai 121.4  31.2  2019  Winter Period maximum 1-h Urban 76.7  80.2  143 
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