Supplementary Material

Antifungal activity of Co(II) and Cu(II) complexes containing 1,3bis(benzotriazol-1-yl)-propan-2-ol on the growth and virulence traits of fluconazole-resistant *Candida* species: Synthesis, DFT calculations, and biological activity

Ricardo A. Murcia-Galan¹, Sandra M. Durán², Sandra M. Leal-Pinto², Martha V. Roa-Cordero², Jose D. Vargas², Laura V. Herrera³, Alvaro Muñoz-Castro⁴, Desmond MacLeod-Carey⁵, Tonny W. Naranjo^{6,7}, Peter L. Rodríguez-Kessler,⁸ John J. Hurtado^{1*}

¹Grupo de investigación en Química Inorgánica, Catálisis y Bioinorgánica, Departamento de Química, Universidad de los Andes, Carrera 1 No. 18A-12, 111711, Bogotá-Colombia; ra.murcia@uniandes.edu.co; jj.hurtado@uniandes.edu.co

²Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Calle 70 No. 55-210, Bucaramanga-Colombia; sandramduranbarajas@gmail.com sa.leal@mail.udes.edu.co; ma.roa@mail.udes.edu.co; vargasjosedavid.7.3@gmail.com

³Grupo Sistema Estomatognático y Morfofisiología (SEMF). Departamento de Ciencias Básicas, Universidad Santo Tomás seccional Bucaramanga, cra 27 No. 180-395, Bucaramanga-Colombia; laura.herrera01@ustabuca.edu.co

⁴Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524 Chile; alvaro.munozc@uss.cl

⁵Universidad Autónoma de Chile, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Materials Center, El Llano Subercaseaux 2801, Santiago, Chile; desmond.macleod@uautonoma.cl

⁶ Corporación para Investigaciones Biológicas (CIB), Experimental and Medical Micology Group, Medellin 050010, Colombia; tnaranjo@cib.org.co

⁷ Universidad Pontificia Bolivariana, Facultad de Medicina, Medellín 050034,Colombia; tnaranjo@cib.org.co

⁸Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, México; plkessler@cio.mx

* Correspondence: jj.hurtado@uniandes.edu.co; Tel.: +57-1-3394949 (ext. 3468), ORCID: https://orcid.org/0000-0002-0511-9719

Figure S1. ¹H NMR spectrum of 1,3-bis(benzotriazole-1-yl)propan-2-ol (1) in DMSO-d₆

Figure S2. ¹³C NMR spectrum of 1,3-bis(benzotriazole-1-yl)propan-2-ol (1) in DMSO- d_6

Figure S3. DEPT NMR spectrum of 1,3-bis(benzotriazole-1-yl)propan-2-ol (1) in DMSO- d_6

Figure S4. HSQC NMR spectrum of 1,3-bis(benzotriazole-1-yl)propan-2-ol (1) in DMSO-d $_6$

Figure S6. FT-IR (ATR) spectrum of 1,3-bis(benzotriazole-1-yl)propan-2-ol (1)

Figure S7. FT-IR (ATR) spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (**2**)

Figure S8. FT-IR (ATR) spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) (**3**)

Figure S9. FT-IR (ATR) spectrum of diacetate-diaqua-[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (4)

Figure S10. FT-IR (ATR) spectrum of diacetate[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) dihydrated (**5**)

BA

Scientific

Figure S11. Raman spectrum of 1,3-bis(benzotriazole-1-yl)propan-2-ol (1)

 Figure S12. Raman spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (2)
 HORIBA

 Figure S13. Raman spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) (3)

Scientific

 Figure S14. Raman spectrum of diacetate-diaqua-[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (4)

 HORBA

 Scientific

 Figure S15. Raman spectrum of diacetate[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) dihydrated (5)
 HORBA Scientific

Figure S16. Thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (2) in nitrogen atmosphere

Figure S17. Thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) (**3**) in nitrogen atmosphere

Figure S18. Thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) of diacetate-diaqua-[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (4) in nitrogen atmosphere

Figure S19. Thermogravimetric (TG) analysis and derivative thermogravimetric (DTG) of diacetate[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) dihydrated (5) in nitrogen atmosphere

Figure S20. UV-Vis spectrum of 1,3-bis(benzotriazole-1-yl)propan-2-ol (1) in methanol. 2.10 x 10⁻⁵ M, 200-1000 nm region

Figure S21. UV-Vis spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (2) in methanol. 2.18 x 10⁻⁵ M, 200-1000 nm region

Figure S22. UV-Vis spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']cobalt(II) (2) in methanol. 4.72×10^{-3} M, 400-700 nm region

Figure S23. UV-Vis spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) (3) in methanol. 2.16 x 10^{-5} M, 200-1000 nm region

Figure S24. UV-Vis spectrum of dichloro[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) (**3**) in methanol. 4.66 x 10⁻³ M, 400-1000 nm region

Figure S25. UV-Vis spectrum of diacetate-diaqua-[1,3-bis(benzotriazole-1-yl)propan-2ol-N,N']cobalt(II) (4) in methanol. 1.82 x 10⁻⁵ M, 200-1000 nm region

Figure S26. UV-Vis spectrum of diacetate-diaqua-[1,3-bis(benzotriazole-1-yl)propan-2ol-N,N']cobalt(II) (4) in methanol. 3.94 x 10⁻³ M, 400-700 nm region

Figure S27. UV-Vis spectrum of diacetate[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) dihydrated (**5**) in methanol. 1.81 x 10⁻⁵ M, 200-1000 nm region

Figure S28. UV-Vis spectrum of diacetate[1,3-bis(benzotriazole-1-yl)propan-2-ol-N,N']copper(II) dihydrated (5) in methanol. 3.91 x 10⁻³ M, 400-1000 nm region

Figure S29. Optimized geometry of conformer Da of (2) – Different perspectives

Figure S30. Optimized geometry of conformer Db of (2) – Different perspectives

Figure S31. Optimized geometry of conformer Dc of (2) – Different perspectives

Figure S32. Optimized geometry of conformer Dd of (2) – Different perspectives

Figure S33. Optimized geometry of conformer Qa of (2) – Different perspectives

Figure S34. Optimized geometry of conformer Qb of (2) – Different perspectives

Figure S35. Optimized geometry of conformer Qc of (2) – Different perspectives

Figure S36. Optimized geometry of conformer Qd of (2) – Different perspectives

Figure S37. Optimized geometry of conformer Da of (3) – Different perspectives

Figure S38. Optimized geometry of conformer Db of (3) – Different perspectives

Figure S39. Optimized geometry of conformer Dc of (3) – Different perspectives

Figure S40. Optimized geometry of conformer Dd of (3) – Different perspectives

Figure S41. Drug interaction isobolograms. A: A (Caspofungin vs Complex 4 against *C. tropicalis* 66029) B (Fluconazole vs Complex 4 *C. albicans* 90028).

Figure S42. Synthesis of the ligand (1). TBAB = Tetrabutylammonium bromide

Table S1. Thermoanalytical results (TGA and DTG) for metal complexes.

Compound	TG				Metallic			
(formula)	range /	$DTG_{max} / \ ^{o}C$		Mass loss mass loss		Assignment	ivicialitie	
(Iormula)	°C			Estimated (ca	lcd.) / %		residue	
	152-352	254, 337	2	31.63 (31.63)		loss of $C_6H_4N_3 + CH_4$		
2	352-385	365	1	9.52 (9.45)	63.55	loss of C ₃ H ₄	0.01.00	
$(C_{15}H_{14}Cl_2CoN_6O)$	385-473	421	1	12.53 (12.74)	(62.78)	loss of CN3	CoCl ₂ CO	
	473-694	512	1	9.86 (8.97)		loss of C ₃ H ₂		
	27-170	46, 148	2	1.99 (1.88)		loss of 4H ₂		
3 (C ₁₅ H ₁₄ Cl ₂ CuN ₆ O)	170-253	236	1	9.25 (9.11)	76.79	loss of C ₃ H ₃	CuCl	
	253-552	321	1	62.14 (62.41)	(76.91)	loss of C11N6ClO		
	552-694	694	1	3.40 (3.50)		loss of CH3		
	27-239	88, 159, 202	3	9.38 (9.47)		loss of $2H_2O + C$		
4	239-358	294	1	34.10 (34.13)	71.82	loss of $C_6H_4N_3 + C_3H_3O$		
(C19H24C0N6O7)	358-573	420, 495	2	22.81 (22.88)	(71.04)	loss of C ₆ H ₂ N ₃	$C0C_2O_4$	
	573-694	676	1	5.52 (4.55)		loss of CH ₃ + 4H ₂		
	64-126	95	1	7.54 (7.43)		loss of $2H_2O + H_2$		
5	126-239	170, 207	2	25.35 (25.42)	70.06	loss of $C_6H_4N_3 + C$		
$(C_{19}H_{24}CuN_6O_7)$	239-357	296	1	28.37 (28.55)	(70.40)	loss of $C_6H_4N_3 + C_2H_4$	CuC ₂ O ₄	
	357-694	405	1	8.80 (8.99)		loss of C ₂ H ₆ O		

Table S2. Antifungal activity of Co(II) and Cu(II) complexes containing 1,3-bis(benzotriazol-1-yl)-propan-2-ol on planktonic cells of *Candida sp.*

MIC: Minimum Inhibitory Concentration; CFM: Minimum fungicidal concentration. Measures expressed in µg mL⁻¹; ND: not determinated. The experiments were performed in triplicate at three independent times.

Compound	C. all ATCC	bicans 2 90028	C. all CAP	<i>bicans</i> PF-13	C. tro ATCC	picalis 2 66029	C. tro CAP	<i>picalis</i> F-01	C. gla MYA	abrata A2950	C. gla CAP	<i>ıbrata</i> PF-07	C. par ATC	apsilosis C22019	<i>C. para</i> 24	ipsilosis 754
	MIC	CFM	MIC	CFM	MIC	CFM	MIC	CFM	MIC	CFM	MIC	CFM	MIC	CFM	MIC	CFM
1	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>400	>400	>1000	>1000	>1000	>1000	>1000	>1000
2	125	250	125	500	125	1000	62.5	500	25	100	62.5	62.5	62.5	125	62.5	500
4	62.5	125	62.5	>1000	62.5	250	62.5	500	15.62	62.5	62.5	500	62.5	250	62.5	500
3	>1000	>1000	>1000	>1000	500	>1000	1000	>1000	>400	>400	>1000	>1000	125	>1000	>1000	>1000
5	>1000	>1000	>1000	>1000	500	>1000	500	>1000	>250	>250	1000	>1000	>1000	>1000	500	>1000
S2	31.25	62.5	31.25	250	31.25	125	7.81	62.5	15.62	31.25	15.6	62.5	31.25	62.5	15.6	125
S 4	62.5	125	62.5	>1000	31.25	125	31.25	125	15.65	31.25	15.6	62.5	31.25	125	15.6	62.5
S3	1000	>1000	125	>1000	250	1000	125	1000	>250	>250	125	>1000	>1000	>1000	250	>1000
S5	1000	>1000	125	>1000	125	>1000	125	>1000	>250	>250	250	>1000	>1000	>1000	125	1000
Fluconazole ¹	0.25	>64	32	>64	2.0	>32	32	>64	0.5	0.5	64	>64	1.0	>64	32	>64
Itraconazole ²	0.03	16	0.5	>16	>16	>16	0.5	>16	0.5	0.5	4	>16	0.0625	4	>16	>16
Caspofungin	0.062	0.125	0.062	0.062	0.125	0.125	1.0	4	ND	ND	ND	ND	ND	ND	ND	ND

Combination	Drug A (Complexes)	Drug B (Reference drugs)			
1	8X MIC	0			
2	4X MIC	1/4 MIC			
3	2X MIC	1/2 MIC			
4	MIC	MIC			
5	1/2 MIC	2X MIC			
6	1/4 MIC	4X MIC			
7	0	8X MIC			

Table S3. Matrix of combinations between cobalt(II) complexes and reference drugs (FCZ and Caspofungin).