

Fig. S1. Mitochondrial Ca²⁺ uptake protein levels in MCU^{+/-} animals.

a, Western blot for mitochondrial Ca²⁺ uptake proteins in lysate from 6 month old mice (hippocampus, cortex and cerebellum).

b, Quantification of protein level, normalised to β -tubulin.

Hippocampus, *n* = 3, unpaired *t*-tests: MCUb *P* = 0.07, MCUR1 *P* = 0.53, MICU1 **P* = 0.046, MICU2 *P* = 0.83, MICU3 **P* = 0.01, VDAC1 *P* = 0.64, NCLX *P* = 0.74, LETM1 *P* = 0.62.

Cortex, *n* = 3, unpaired *t*-tests: MCUb *P* = 0.56, MCUR1 *P* = 0.93, MICU1 **P* = 0.044, MICU2 *P* = 0.71, MICU3 ***P* = 0.001, VDAC1 *P* = 0.16, NCLX *P* = 0.97, LETM1 *P* = 0.85.

Cerebellum, *n* = 3, unpaired *t*-tests: MCUb *P* = 0.40, MCUR1 *P* = 0.28, MICU1 *P* = 0.71, MICU2 *P* = 0.49, MICU3 ***P* = 0.007, VDAC1 *P* = 0.13, NCLX *P* = 0.25, LETM1 *P* = 0.16.

Fig. S2. Characterisation of individual neurons from MCU^{+/-} and control cultures.

a, Number of boutons in control and MCU^{+/-} neurons: 8.2 \pm 0.83 and 9.5 \pm 0.76 respectively, *n* = 42-50 neurons, unpaired *t*-test, *P* = 0.26.

b, Number of mitochondria in control and MCU^{+/-} neurons: 7.6 \pm 0.50 and 7.2 \pm 0.51 respectively, *n* = 42-50 neurons, unpaired *t*-test, *P* = 0.54.

c, Percentage of motile mitochondria in control and MCU^{+/-} neurons: 20 ± 2.8 and 18 ± 2.5 respectively, *n* = 42-50 neurons, unpaired *t*-test, *P* = 0.56.

d, Percentage of boutons occupied by mitochondria in control and MCU^{+/-} neurons: 47 ± 3.9 and 41 ± 2.2 respectively, n = 42-50 neurons, unpaired *t*-test, P = 0.39.

e, Percentage of mitochondria at boutons in control and MCU^{+/-} neurons: 51 ± 4.0 and 55 ± 3.6 respectively, n = 42-50 neurons, unpaired *t*-test, P = 0.41.

Experiments were performed in E16 mouse hippocampal neuronal cultures at DIV 10-12. Error bars represent SEM.

Fig. S3. MCU heterozygosity accelerates synaptic vesicle endocytosis.

Average vGlutpHluorin τ shown by dotted lines for control (grey) and MCU^{+/-} neurons (blue). MCU^{+/-} τ = 15.72s (95% CI 13.6 to 18.39), n = 18 neurons; Control τ = 23.95s (95% CI 20.72 to 28.18), n = 36 neurons). F statistic 13.11 (***P = 0.0003).

Fig. S4. ATP availability is reduced in MCU^{+/-} neurons.

a, Live images of neurons transfected with PercevalHR before and during glutamate stimulation, shown in false colour. Scale bar, 10 μm.

b, Average Δ F/F₀ MitoGCaMP5 traces from control neurons (n = 12, grey) and MCU^{+/-} neurons (n = 12, blue). Stimulation with glutamate occurred for 30 s (t = 20-50).

c, Average ATP:ADP ratio (derived from PercevalHR imaging) from control neurons (n = 12, grey) and MCU^{+/-} neurons (n = 12, blue). Stimulation with glutamate occurred for 30 s (t = 20-50).

d, Average ATP:ADP ratio (derived from PercevalHR imaging): at baseline prior to glutamate stimulation (Pre-stim baseline), the nadir following glutamate stimulation (Post-stim nadir), and at the end of the imaging period following glutamate stimulation (Post-stim recovery). ATP:ADP ratio was lower in MCU^{+/-} neurons at all three time points. Pre-stim baseline, unpaired *t*-test, ***P = 0.0001. Post-stim nadir, unpaired *t*-test, ***P = 0.0001. Post-stim recovery unpaired *t*-test, ***P = 0.0013.

Fig. S5. Blot Transparency related to Figure 1.

Fig. S6. Blot Transparency related to Supplementary Figure 1.