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1 Introduction
We modeled the observation process explicitly to extract maximal information from the data

generated.

1.1 Notation
In the text that follows, we use the following mathematical notation.

1.1.1 Logarithms and exponentials

log(x) denotes the logarithm base e of x (sometimes called ln(x)). We explicitly refer to the

logarithm base 10 of x as log
10
(x). exp(x) denotes ex .

1.1.2 Probability distributions

The symbol ∼ denotes that a random variable is distributed according to a given probability

distribution. So for example

X ∼ Normal(0, 1)
indicates that the random variable X is normally distributed with mean 0 and standard de-

viation 1.

We parameterize normal distributions as:

Normal(mean, standard deviation)

We parameterize positive-constrained normal distributions (i.e. with lower limit 0) as:

PosNormal(mode, standard deviation)

We parameterize censored normal distributions, in which values outside the censoring range

are reported at the lower limit of detection (lld) and upper limit of detection (uld), respec-

tively, as:

Censored Normal(mean, standard deviation, lld, uld)

We parameterize Poisson distributions as:

Poisson(mean)
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1.2 Units
Unless otherwise stated, we express time in units of hours, volume in units of mL, infectious

virus in units of plaque forming units collected on our air filter, and sgRNA in units of copy

numbers.

2 Dynamics model
We modeled the within-host dynamics of the virus within inoculated hamsters as a process of

exponential growth of virus up to a peak, followed by exponential decay of virus down from

that peak. The principal quantity of interest is airborne virus shedding over time Va (t),

expressed in units of infectious virions exhaled per unit volume of exhaled air per unit time.

We express time in units of hours post-infection.

2.1 Growth and decay of air shedding
We denote the exponential growth rate of the virus within the hamster by g and the expo-

nential decay rate after the peak by dav. We denote the time of peak airborne shedding ta > 0

and define t = 0 as the time of inoculation.

Our model is therefore:

Va (t) =
{
Va (0) exp

[
gt
]

t < ta

Va (0) exp
[
gta − dav (t − ta)

]
t ≥ ta

(1)

2.2 Offset growth and decay of oral shedding
Since we also took measurements of virus shed in oral swabs, we incorporated the dynamics

of oral swab shedding Vo (t) into our model. We modeled Vo (t) as offset in time from the

dynamics of airborne shedding Va (t) by some offset factor ω > 0. That is, the time of peak

oral shedding to is:

to = ωta (2)

Note that ω < 1 implies that swab shedding peaks earlier than airborne shedding, ω > 1

implies that swab shedding peaks later, and ω = 1 implies the peaks coincide in time.

We also allowed for the possibility that oral virus shedding decays at a faster or slower rate dov
than airborne virus shedding, which decays at a rate dav. Specifically, we defined the ratio of

dov to dav as qo > 0, so:

dov = qodav (3)

Then:

Vo (t) =
{
Vo (0) exp

[
gt
]

t < to

Vo (0) exp
[
gto − dov (t − to)

]
t ≥ to

(4)
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2.3 Relationship between sgRNA and infectious virus
We also modeled the possibility that measured sgRNA decays slower or faster than measured

infectious virus. Slower decay, for instance, could result from persistence of undegraded

RNA after all infectious virions have been neutralized or otherwise lost infectivity.

We modeled this possibly different RNA shedding decay rate with an estimated ratio qn > 0

that relates sgRNA shedding decay to infectious virus shedding decay. So the decay rate of

airborne sgRNA shedding dan is:

dan = qndav (5)

And similarly the decay rate of oral sgRNA shedding don is:

don = qndov = qoqndav (6)

We modeled the ratio between produced virusV (t) and produced sgRNA copiesN (t) with

multipliers on for oral swabs and an for air samples. So before the decay phase begins, V (t)
and N (t) are linearly related.

Na (t) = anVa (t) if t < ta

No (t) = onVo (t) if t < to
(7)

The dynamics of airborne sgRNA shedding Na (t) and oral sgRNA shedding No (t) are

therefore equivalent to those for infectious virus in equations 1 and 4, respectively, but with

dan instead of dav, don instead of dov, and initial valuesNa (0) = anVa (0),No (0) = onVo (0):

Na (t) =
{
Na (0) exp

[
gt
]

t < ta

Na (0) exp
[
gta − dan (t − ta)

]
t ≥ ta

(8a)

No (t) =
{
No (0) exp

[
gt
]

t < to

No (0) exp
[
gto − don (t − to)

]
t ≥ to

(8b)

2.4 Initial shedding value
For inference purposes, rather than set a prior distribution on the initial airborne shedding

viral load V0 = Va (0), we instead set a prior on the peak airborne viral load Vmax = Va (ta)
and back-calculated Va (0) (and thus Vo (0), Na (0), and No (0)) via:

log(V0) = log(Vmax) − gta (9)

2.5 Variant effects
We allowed the two variants of interest, Alpha and Delta, to take on different typical values

for all of the virological parameters: g, dav, ta, ω, qo, qn, an, on, and mean peak viral shedding

Vmax. We denote the variant-specific values for variant i by gi , davi , and so on.
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2.6 Respiration rates
We also measured animal respiration ratesm(t) and included these in our model. The amount

of infectious virus an animal deposits into the air per unit time ism(t)Va (t) and the amount

of sgRNA the animal deposits per unit time is m(t)Na (t).

2.7 Sex effects
Since male hamsters are physically larger and appeared to have different shedding profiles,

we wanted to be able to estimate the effect of host sex on key parameters of interest. To do

this, we modeled males as possibly offset from females in their typical values of respiration

ratem(t), airborne shedding exponential growth rate g, airborne shedding exponential decay

rate dav, peak airborne shedding time ta, and peak airborne shedding rateVmax (this then has

downstream consequences for other parameters such as dan or to that depend on those core

virological parameters).

We modeled sex differences in the virological parameters via offsets to the mean log values for

male hamsters. Δx denotes the offset for variable x. So for example if females have a mean log

respiration rate of log[m], males have one of log[m] + Δm. We also estimated male offsets

Δg for growth rate g, Δd for decay rate dav, and ΔV for peak shedding Vmax. We did not treat

effects as variant-specific, but rather sought to estimate the average sex differences in infection

dynamics across the two variants tested.

2.8 Individual heterogeneity in disease course
To account for the fact that individuals have heterogeneous disease courses, we made our

model hierarchical, with core virological parameter values for specific individuals distributed

about the typical population values. If infected with a variant i, animal j has individual values

for the virus growth rate gij , the virus decay rate davij , the peak load time taij , and the peak

load Vmaxij .

These values are log-normally distributed about the population values for the given variant

and animal sex, with estimated variant-specific standard deviations σgi , σdi , σti and σVi . We

use sj as an indicator for the sex of hamster j (0 if female, 1 if male). Then:

log[gij] ∼ Normal(log[gi] + sjΔg , σgi)
log[davij] ∼ Normal(log[davi] + sjΔd, σdi)
log[taij] ∼ Normal(log[tai], σti)

log[Vmaxij ] ∼ Normal(log[Vmaxi ] + sjΔV , σVi)

(10)

We also allowed for individual heterogeneity in respiration rates: animal j has an individ-

ual time-averaged respiration ratemj log-normally distributed about the population valuem
with an estimated standard deviation σm:

log[mj] ∼ Normal(log[m] + sjΔm, σm) (11)
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3 Predicting observable quantities
We measured the following quantities:

• Virus subgenomic RNA (sgRNA) in oral swabs, measured via quantitative PCR (qPCR)

in units of estimated copy numbers.

• Infectious virus in oral swabs, measured via endpoint titration in units of log
10
TCID50

per mL.

• Respiration rates, measured via plethysmography in units of mL air exhaled per unit

time.

• Virus sgRNA collected on cage air filters over 24h sampling periods, measured via

qPCR in units of estimated copy numbers.

• Infectious virus collected on cage air filters over 24h sampling periods, measured via

plaque assay as total plaques formed.

• Infection statuses for each variant for each sentinel hamster.

3.1 Units of virus dynamics
We expressed Va (t) and Vo (t) in units of total filter-collectible plaque forming units (PFU)

shed per mLh
−1

(i.e. units that directly predict the cage air infectious virus measurements).

As discussed in section 2, our model explicitly relates infectious virus dynamics Va (t) and

Vo (t) to sgRNA copy number dynamics Na (t) and No (t). The distinct conversion fac-

tors an and on and decay rates dan and don for airborne versus oral shedding account for

two types of possible differences between airborne and oral samples: biological differences

(distinct underlying relationships between infectious virus concentration and sgRNA con-

centration) and measurement differences (distinct quantities of absolute sgRNA quantity

recovered given the same underlying sgRNA concentration).

3.2 Converting predicted swab virus to units of TCID50
To fit our model, we needed to convert our internal representation of predicted oral shedding

of virusVo (t), which has the same “predicted air plaques” units as airborne shed virusVa (t),

into the units in which we measured oral shedding: infectious virus vo (t) in units of log
10

TCID50/mL). We modeled this conversion via a multiplier ov:

vo (t) = ovVo (t) (12)

The multiplier ov subsumes both unit conversion and any actual multiplicative difference in

virion numbers between airborne shedding and swabs (which could come from lower peak

virion concentrations, sampling volume, et cetera.).
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3.3 Predicting air sample plaques
We measured shedding into the air at the cage level; multiple hamsters were housed within

a single cage. Moreover, samples were cumulative 24h accumulation on the air filter, rather

than a point-sample.

3.3.1 Cumulative shedding over a time period

So to fit our model, we needed to compute the cumulative airborne shedding A over some

time period (t1, t2):

A(t1, t2) =
∫ t2

t1

m(t)Va (t) dt (13)

where m(t) is the animal’s respiration rate. Integrating yields:

A(t1, t2) =



m
g (Va (t2) − Va (t1)) t2 ≤ ta

m
dav

(Va (t1) − Va (t2)) t1 > ta

m
g

(
Va (ta) − Va (t1)

)
+ m

dav
(Va (ta) − Va (t2)) otherwise

(14)

where m is an appropriately-chosen constant to represent the time-varying effect of m(t)
on the value of the integral. Note that while ideally we would know how m(t) and Va (t)
change together and compute the integral explicitly, in practice we could only measure m(t)
coarsely, and so it was simpler to infer the appropriate value, understanding that it would not

necessarily equal a naive temporal average.

3.3.2 Accounting for loss of virion infectivity

Furthermore, since the air shedding measured accumulation on the air filter over a 24 hour

period, we had to account for decay of infectious virus between exhalation and quantifica-

tion. To do this, we assumed that the virus decays exponentially in suspended aerosols and on

the filter (as we have previously measured empirically
1,2

) but that minimal virus is lost once

the filter is removed for virus quantification.

Suppose the the sampling period begins at a time t1 post-infection and ends at a time t2 when

the filter is removed. Each hamster j sheds infectious virus at a rate mVaj (t) per unit time.

But if the virus loses infectivity according to an exponential decay process with rate λ, then

only a fraction e−λ(ts−t) of the virions shed at time ts > t1 and collected on the filter will

remain infectious when the filter is collected at t2. For simplicity in mathematical notation,

we assume here that, as in our experiments, potentially shedding individual remained present

until at least t2, though our code allows for modeling other situations, such as the removal

of the shedding individual prior to the removal of the filter.

We denote the cumulative number of virions shed since t1 ≥ t0 that remain viable (infec-

tious) at t2 ≥ t1 by Av (t1, t2) (to distinguish it from the cumulative shedding irrespective of
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retained infectiousnessA). Fixing t1,Av is defined by the following differential equation with

respect to t2:

dAv

dt2
= mVa (t2) − λAv (15)

Since we have an expression for Va (t) consisting of fixed periods of constant-rate exponen-

tial growth or decay, we can treat this as a system of two coupled linear ordinary differential

equations, with
dVa

dt2
= gVa or

dVa

dt2
= −davVa, depending on whether t2 > ta, and solve.

Assume the shedding individual is removed at a time ts ≥ t1, which may or may not be after

ta. Then:

Av (t1, t2) =



mV (t1)
g+λ

(
eg (t2−t1) − e−λ(t2−t1)

)
t1 < t2 ≤ ta, ts

mV (t1)
−dav+λ

(
e−dav (t2−t1) − e−λ(t2−t1)

)
ta ≤ t1 < t2 ≤ ts

mV (ta)
−dav+λ

(
e−dav (t2−ta) − e−λ(t2−ta)

)
+ Av (t1, ta)e−λ(t2−ta) t1 < ta < t2 ≤ ts

Av (t1, ts)e−λ(t2−ts) t1 ≤ ts < t2
(16)

In a previous version of this work, we took an equivalent alternative approach based on in-

tegrating over the virions shed at a time t1 ≤ t ≤ t2 that would survive until t2; we describe

that alternative approach in section 8.2 below for completeness.

3.4 Predicting air sample sgRNA
For air sample sgRNA, we again predicted cumulative accumulation. We did not model en-

vironmental degradation of detectable sgRNA, but rather chose to treat it implicitly via the

decay rate ratio qn relating airborne infectious virus shedding to airborne sgRNA shedding.

We chose not to model sgRNA environmental degradation more explicitly because environ-

mental half-lives for sgRNA are less well-characterized, but likely longer, than environmental

half-lives for infectious virus.

The cumulative predicted number of sgRNA copies collected is:

An (t1, t2) = m

∫ t2

t1

Na (t) dt (17)

An can be computed using the following antiderivative:

G(t, a, ti) =
∫

exp[a(t − ti)] dt =
1

a
exp[a(t − ti)] (18)

8



We obtain:

An (t1, t2) =



mNa (t1)
[
G(t2, g.t1) − G(t1, g, t1)

]
t2 < ta

mNa (t1) [G(t2,−d, t1) − G(t1,−d, t1)] t1 > ta

mNa (t1)
[
G(ta, g, t1) − G(t1, g, t1)

]
+ t1 ≤ ta ≤ t2

mNa (ta) [G(t2,−d, ta) − G(ta,−d, ta)]

(19)

3.5 Predicting sentinel exposures
Using our kinetics model, we were able to estimate the probability each donor in our dual

donor experiment had of infecting each sentinel, taking into account donor sex, infecting

variant, and timing of exposure. This also enabled us to assess whether the absence of ob-

served co-infections in sequential donor experiments was more suggestive of competitive in-

terference or non-interference among the virus variants (see section 6 for methods and re-

sults).

To do this, we assumed that each sentinel’s dose from each donor was proportional to the

cumulative airborne shedding by the donor over the period of sentinel exposure. Given the

short exposure period, we ignored the effect of environmental loss, so the computation was

Av (t1, t2) as in equation 43, but with the environmental loss rate set to λ = 0. We assumed

that the total dose received by each sentinel was equal to the cumulative shedding multiplied

by an estimated variant-specific constant ci that subsumes uncertainty about sentinel respi-

ration rate, cage airflow, and per-virion infectivity when inhaled by a hamster (since Av has

units of predicted cell culture plaques, and hamster airways may be more or less susceptible

to virions of a given variant).

So in our model, each sentinel j receives a dose hij of variant i that depends on the virus

shedding Avij (t1ij , t2ij) from the donor animal associated to variant i and sentinel j, where

t0ij and t1ij are the start and end times of the exposure under the exposure design for variant

i and sentinel j:
hij = ciAvij (t1ij , t2ij) (20)

We again applied a Poisson single-hit model of infection, so the probability pinf (i, j) that

sentinel j is infected with variant i depends on the cumulative dose hij as:

pinf (i, j) = 1 − e−hij (21)

4 Relating predicted quantities to observed quantities
4.1 Oral swabs
4.1.1 Infectious virus titers

Denote the kth measured oral swab titer by yvok. Suppose it was sampled from individual

animal j at time t. Then its predicted value is vok = ovVoj (t).
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We modeled the distribution of observed swab titers given log
10
TCID50 values vok via a Pois-

son single-hit process, as we have described previously
2,3

(in particular, see section 2.2 of SI

of
3
). Briefly, in a Poisson single-hit model of virus titration, a Poisson-distributed number of

virions successfully infect cells in each. The mean µ of this Poisson depends on the under-

lying sample virus concentration v (in log
10
TCID50) and degree of dilution D (in log

10
fold

dilutions).

µ = log(2)10v−D (22)

The factor of log(2) converts from units of TCID50 to units of successful virions.

A well will be positive for infection if at least one virion infects a cell, which occurs with

probability:

1 − exp

(
− log(2)10v−D

)
(23)

A complication to the typical single-hit model in this case is that we only had total counts

of positive wells rather than exact well identities, dilutions, and positive/negative status. To

handle this, we used an approximate method that integrates the likelihood function over the

most probable configurations of positive and negative wells that could generate an observed

total count. We describe this method in section 8.1.

4.1.2 Subgenomic RNA

If ynok is the kth measurement of oral swab sgRNA, sampled from animal j at time t, its pre-

dicted value is nok = No (t). To account for different sampling procedures and qPCR runs

for the donor animals used in the dual donor experiments compared to the animals used in

the kinetics experiments, for the donor animals we added an estimated offset term f to the

log copy number: log[nok] = log[No (t)] + f .

We modeled the observed log
10

oral swab sgRNA copy numbers ynok as distributed about

their predicted values nok, with an estimated variant-specific standard deviation σnoi (where

i is the variant infecting animal j) and censoring at the minimum and maximum observable

values (which are given by the particular sgRNA standard curve).

log
10
(ynoj) ∼ Censored Normal(log

10
(noj), σnoi , nmin, nmax) (24)

4.2 Air samples
4.2.1 Plaques

We used equations 45, 46, and 48 to predict the number of plaques vak observed on each

filter.

Note that this implies Va (t) has units of filter plaques produced per mL exhaled air per unit

time (in the absence of environmental decay).

If an observed plaque count yavk comes from an air sample taken between time t1 and time

t2 from a cage with nh hamsters infected with variant j, the corresponding predicted plaque

count vak is:

vak =

nh∑︁
u=1

Avu (t1, t2) (25)
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where Avu (t1, t2) is Av (t1, t2) for the uth hamster.

Since in vitro cell infection is well-described by a Poisson single-hit process
4

(possibly with bi-

nomial thinning), we modeled the observed plaque counts yavk as Poisson-distributed about

their predicted values vak.

yvak ∼ Poisson(vak) (26)

4.2.2 Subgenomic RNA

Similarly, we used equation 17 to predict the number of sgRNA copies nak that would be

observed when sampling cage k from t1 until t2 as:

nak =

nh∑︁
u=1

Anu (t1, t2) (27)

where Anu is the cumulative sgRNA shedding function An for hamster u.

We model the observed log
10

air sample sgRNA copy numbers log
10
(ynak) as normally dis-

tributed about their predicted values log
10
(nak) with an estimated variant-specific standard

deviation σnai and censoring at the minimum and maximum possible log
10

estimated copy

numbers (which depend on the standard curve).

log
10
(ynak) ∼ Censored Normal(log

10
[nak], σnai , nmin, nmax) (28)

4.3 Respiration rates
We modeled the observed log respiration rates for animal j log

(
ymij

)
as distributed about the

animal’s typical log value log

(
mj

)
with a estimated standard deviation σr .

log

(
ymij

)
∼ Normal(log

(
mj

)
, σr) (29)

4.4 Sentinel infection status
Our dynamical model generates predicted infection probabilities pinf (i, j) for sentinel i with

variant j (see section 3.5).

The observed infection status for sentinel j with variant i, ypij ∈ {0, 1} is therefore Bernoulli

distributed with probability pinf [i, j].

ypij ∼ Bernoulli(pinf [i, j]) (30)

5 Prior distributions
In general, we sought to set prior distributions for our parameters that were “weakly infor-

mative”
5
; that is, that rule out biologically implausible or impossible values while remaining

fairly agnostic about possible values of interest. We assessed the robustness of our prior dis-

tribution choices via prior predictive checks.
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5.1 Respiration rates
We placed a normal prior on the population-wide mean log respiration rate log(m), with m
in units of mLh

−1
.

log(m) ∼ Normal(log[4800], 0.25) (31)

We placed a positive-constrained normal prior on the individual respiration rate standard

deviation σmi (see equation 10).

σmi ∼ PosNormal(0, 0.25) (32)

5.2 Virological parameters
We placed log-normal priors on the variant-specific time to peak tai and peak shedding rate

Vmaxi ; i indexes the variant. To encode prior information about the variant-specific growth

and decay rates gi and davi in an interpretable manner, we placed normal priors on the dou-

bling and halving times (in hours) t2i = log(2)/gi and t 1
2
i = log(2)/davi and then back-

calculated gi and davi .

log[tai] ∼ Normal(log[24], 0.5)
log[Vmaxi ] ∼ Normal(log[1] − log[24] − log[4800], 3)

log[t2i] ∼ Normal(log[5], 0.5)
log[t 1

2
i] ∼ Normal(log[15], 0.75)

log[t 1
2
i] ∼ Normal(log[15], 0.75)

(33)

The prior mode for log[Vmaxi ] can be interpreted as corresponding to the amount of shed-

ding that would lead to 1 plaque(s) on the air filter from a 24h sample at the prior mean

respiration rate of log[4800mLh
−1].

We placed normal priors on the male sex effects Δm, Δg , Δd, and ΔV that modify the virolog-

ical parameters.

Δm ∼ Normal(0, 0.25)
Δg ∼ Normal(0, 0.25)
Δd ∼ Normal(0, 0.25)
ΔV ∼ Normal(0, 0.25)

(34)

We placed lognormal priors priors on the swab to air peak timing ratio ω, the swab to air

decay rate ratio qo, the sgRNA to infectious virus decay rate ratio qn, the air infectious virus

to oral TCID conversion factor ov, the air and swab copy number to infectious virus ratios
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an and on. We placed a normal prior on the donor log copy number offset f .

log(ω) ∼ Normal(0, 0.25)
log

(
qo
)
∼ Normal(0, 1)

log

(
qn
)
∼ Normal(log[1], 1)

log(ov) ∼ Normal(0, 10)
log(an) ∼ Normal(0, 10)
log(on) ∼ Normal(0, 10)

f ∼ Normal(0, 1.5)

(35)

We placed positive-constrained normal priors on the hierarchical standard deviations that

specify degree of individual variation about these population-wide virological parameters.

σgi ∼ PosNormal(0, 0.2)
σdi ∼ PosNormal(0, 0.2)
σti ∼ PosNormal(0, 0.15)
σVi ∼ PosNormal(0, 2)

(36)

5.3 Sentinel infection process constant
We placed a lognormal prior on the variant-specific sentinel infection process constant ci .

log[ci] ∼ Normal(0, 3) (37)

5.4 Observation error standard deviations
We placed positive-constrained normal priors on the observation process standard deviations

for respiration rate σr (equation 29), oral swab sgRNA copies σnoi (equation 24), and air

sample sgRNA copies σnai .
σr ∼ PosNormal(0, 0.2)

σnoi ∼ PosNormal(0, 0.5)
σnai ∼ PosNormal(0, 0.5)

(38)
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Figure M1: Prior predictive checks. Figure is as main text Figure 1, except that the trajectories

showed by the semi-transparent lines are randomly sampled from the prior predictive distri-

bution rather than from the posterior, and 500 lines are drawn in panel A rather than 100,

given the greater dispersion relative to the data. Wide range of simulated trajectories relative

to the data shows that priors allow for a wide range of a priori plausible kinetics.

5.5 Prior predictive checks
We assessed the appropriateness of prior choices via prior predictive checks. Figure M1 shows

a version of main text Figure 1 but where sample trajectories are plotted alongside the data,

but drawn from the prior predictive distribution rather than the posterior distribution.
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Figure M2: Posterior estimates for the infection probabilities for each variant in each cage.

Half-violin plots show posterior densities for Alpha infection probability (gray) compared

to Delta infection probability (green). There were very high Alpha infection probabilities in

cages A and F.

6 Assessing coinfection probabilities
To assess the probability of coinfection, we visualized the infection probabilities for each

variant in each cage. Given no interaction between two variants’ infection processes, the

probability of being coinfected for each hamster j is the product of the hamster’s probabilities

for each variant:

Pcoinf (j) = Pinf (1, j)Pinf (2, j) (39)

The distribution of the number of coinfections in a given cage or experiment is then the

convolution of these individual Bernoulli-distributed outcomes for individuals.

6.1 Results
Figure M2 shows the estimated infection probabilities by variant and cage. Cage F was the

only cage in which we observed coinfections, and our model shows that it is indeed the only

cage in which both Alpha and Delta clearly had a high probability of causing infections in

the sentinels.

We then calculated the posterior estimated probability of coinfection occuring for each ham-

ster in each cage, according to equation 39. Figure M3 shows the resulting estimates.

The model estimates that coinfection probabilities were highest in Cage F simply because

both Alpha and Delta infection probabilities were high. In other cages, coinfection probabili-

ties are substantially lower, since at least one variant has a low individual infection probability

M2. Cage C (Delta, then Alpha) is the only sequential exposure cage in which the absence

of coinfections is perhaps surprising; even there, the data are consistent with a coinfection
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Figure M3: Posterior estimates for coinfection probabilities by cage. Sequential exposures

shown in blue, simultaneous exposures shown in pink. Cage F, where coinfections were ac-

tually observed, has a substantially higher coinfection probability estimate than other cages.

probability of under 25% or even under 10%, so given that only 5 sentinels were exposed, the

absence of a coinfection is consistent with random variation.

Finally, to assess whether the absence of any coinfections in the sequential experiments while

several were observed in the simultaneous experiments could be explained by chance, we cal-

culated the posterior distribution for the expected number of coinfections by experiment

type (this is the sum of the probability for each cage times the number of sentinels in that

cage). The results are shown in Figure M4.

The model suggests that the absence of coinfections in the sequential exposures could simply

result from low probabilities in all cages except C; the data are consistent with an expectation

of between zero and two coinfections, though more than that would also have been plausible.

Taken together, our results suggest that differences in donor virus dynamics and shedding

could readily explain the differences between sequential and simultaneous exposures in our

small-N dataset. Identifying or ruling out competitive (or facilitating) interaction among

virus variants during sequential versus simultaneous transmission would likely require larger

samples.
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Figure M4: Expected coinfection counts for sequential and simultaneous experiments.
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7 Computational methods
We implemented and conducted inference from our model in Python using the Numpyro

probabilistic programming framework
6

. We drew posterior samples using Numpyro’s itera-

tive implementation
6

of the No-U-Turn Sampler (NUTS)
7
, a form of Hamiltonian Monte

Carlo (HMC). For each model fit, we ran three Markov Chains, each with 1000 warmup

steps and 1000 samples. We assessed convergence by examining figures and by confirming

sufficient effective sample sizes and the absence of divergent transitions after warmup.

For inference purposes, we set a minimum rate of 10
−20

for all Poisson distributions of “hit-

ting” virions (for filter plaques and virus titration). True 0 rates can cause numerical issue

when conducting NUTS sampling with Numpyro. This minimum rate of 10
−20

can be

thought of as representing a very small probability of a false positive plaque or well.

We prepared data for modeling and analyzed and visualized output in Python
8
; the packages

Numpy
9
, Scipy

10
, Matplotlib

11
, and Polars

12
were particularly critical.

All code and data to reproduce Bayesian inference results, including model fits and model

output figures, is available on the project Github repository (https://github.com/dylanhmorris/
host-viral-determinants) and archived on Zenodo (https://doi.org/10.5281/
zenodo.8396135).

8 Additional mathematical details
8.1 Well observation process
Spearman-Karber estimates for a 0.1 mL inoculum give an exact value for the total number

of positive wells in a 4 well by 8 serial dilution series (with a an undilute first row d = 0,

and serial f -fold dilutions—here f = 10—such that the dth row has been diluted f d-fold).

This allowed us to back-calculate the total number of positive wells. With some additional

assumptions, we were then able to calculate the approximate likelihood of observing a given

number of positive wells n given a true underlying titer v.

We assumed that wells were all positive until some dilution d and wells were all negative or

not attempted at dilutions d + 2 and higher. That is, only two sequential dilutions are as-

sumed potentially to have a mix of positive and negative wells: d and d + 1. This is by far

the most probable way to produce a given total number of positive wells, particularly with

10-fold or coarser dilutions, since other hit distributions require some negative wells to occur

at substantially higher plated concentrations than some positive wells.

With this assumption made, a given total number of positive wells n has implies a value of

thisd and a corresponding number k of total positives seen at dilutionsd andd+1 combined:

k = min{n, 4 + n mod 4}

d =
n − k

4

(40)

where mod denotes the modulo operation (remainder when n is divided by 4). Note that

while we assume d and d + 1 can have a mix of positive wells, we do not assume for certain
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that they do. When k = 4, all positive at d and all negative at d + 1 is a possible outcome (or,

much less probably, all positive at d + 1 and all negative at d); it is just not the only possible

outcome, as we could also have, e.g., 3 of 4 wells positive at d and 1 of 4 positive at d + 1.

The approximate log likelihood for observing n positive wells given an underlying virus con-

centration v is then the sum over the possible ways to generate k positives at dilutions d and

d + 1. Define the random variables Kd and Kd+1 as the number of wells positive at dilutions

d and d + 1, respectively. Then the probability of observing a certain value of Kd given the

underlying virus concentration v is given by a binomial distribution with success probability

equal to the single hit probability at dilution d, i.e.:

P (Kd = k | v) =
(
4

k

)
pk (1 − p)4−k (41)

For our experiments, v is measured in log
10
TCID50 and dilutions are 10-fold, so we have

p = 1 − exp

(
− log(2)10v−d

)
This gives us a computable approximate likelihood L (n | v) :

L (n | v) ≈
4∑︁

c=k−4
log[P (Kd = c | v)] + log[P (Kd+1 = k − c | v)] (42)

8.2 Alternative approach to computing viable virions shed during a
time window

This describes a second, equivalent manner of computingAv (t1, t2), the cumulative number

of virions shed between t1 and t2 that remain viable at t2. In this instance, we integrate over

the time of shedding t, but thin the virions shed by considering only the fraction e−λ(t2−t)

that will be viable when sampled at t2 ≥ t. This fraction is exact if we treat virion loss of

infectivity as exponential at a rate λ.

Av (t1, t2) = m

∫ t2

t1

Va (t)e−λ(t2−t) dt (43)

This integral can be computed using the following antiderivative:

F (t, a, ti , ts) =
∫

exp[a(t − ti) − λ(ts − t)] dt = 1

a + λ
exp[a(t − ti) − λ(ts − t)] (44)

In our case, a is the exponential growth rate of shedding, with negative a values representing

exponential decay, and ts ≥ t is the time of filter removal (so ts − t is how long a virion

deposited at t must retain infectiousness in order to be infectious when the filter is removed).

To computeAv (t1, t2), we have to consider several possible cases. Recall that time is measured

relative to the time t = 0 that the shedding individuals were inoculated, and ta > 0 is the

time of peak air shedding.
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If t2 < ta, the entire sampling period happens before peak air shedding. In that case:

Av (t1, t2) = mVa (t1)
[
F (t2, g, t1, t2) − F (t1, g, t1, t2)

]
(45)

If t1 > ta, the entire sample is taken after air shedding has peaked. In that case:

Av (t1, t2) = mVa (t1) [F (t2,−dav, t1, t2) − F (t1,−dav, t1, t2)] (46)

If the air shedding peak occurs during sampling (t1 ≤ ta ≤ t2), the problem can be solved

piecewise:

Av (t1, t2) =
∫ ta

t1

mVa (t1) exp
[
g(t − t1)λ(t2 − t)

]
dt +∫ t2

ta

mVa (ta) exp[−dav (t − ta) − λ(t2 − t)] dt
(47)

And so applying the antiderivative F from 44:

Av (t1, t2) = mVa (t1)
[
F (ta, g, t1, t2) − F (t1, g, t1, t2)

]
+

mVa (ta) [F (t2,−dav, ta, t2) − F (ta,−dav, ta, t2)]
(48)
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