
DRAFT

Supplementary Note 1: HCP-YA data acquisition and preprocessing
Data Acquisition Whole-brain echo-planar imaging acquisitions were measured with a 32 channel head coil on a modified
3T Siemens Skyra (Connectome Skyra) at WashU with time to repetition (TR)=720ms, time to echo (TE)=33.1ms, flip
angle=52, bandwidth=2,290 Hz/pixel, in-plane field of view (FOV)=208×180mm, 72 slices, and 2.0mm isotropic voxels, with
a multi-band acceleration factor of 8 (Uğurbil et al., 2013). Data were collected over 2 days. On each day 29 min of rest
(eyes open with fixation on a cross-hair) BOLD data across two runs were collected (56 min total), followed by 30 min of task
fMRI data collection (60 min total). The two 14.5-minute resting-state BOLD runs that were collected on the same day were
acquired with opposite phase encoding directions (L/R and R/L). Complete parameters and acquisition details for the HCP
dataset were reported by (Smith et al., 2013). Task-based imaging data were not used in this study. Structural scans with the
following parameters were also collected: T1-weighted (0.7 mm isotropic resolution, TR=2400ms, TE=2.14ms, flip angle=8,
in-plane field of view=224×224) and T2-weighted (0.7 mm isotropic resolution, TR=3200ms, TE=565ms, variable flip angle,
in-plane field of view=224×224).

Preprocessing Resting-State fMRI Preprocessing Preprocessing consisted of the following steps, which closely followed the
steps advanced by the HCP consortium: i) The ‘minimal preprocessing’ approach outlined by Glasser and colleagues (Glasser
et al., 2013), which involved intensity normalization, phase-encoding direction unwarping, motion correction, and spatial
normalization to a standard template (Glasser et al., 2016) MSMAll, Angular Deviation Penalty (ADP) version; (Glasser et al.,
2016); ii) High-pass filtering (0.009Hz); iii) ICA-FIX for artifact removal (Salimi-Khorshidi et al., 2014). The final ‘minimally
preprocessed’ BOLD data was represented in the Connectivity Informatics Technology Initiative (CIFTI) file format, which
combines surface-based data representation for 1 cortex and volume-based data for subcortex gray matter locations (i.e.
‘grayordinates’). The CIFTI grayordinate BOLD time series were in turn used for subsequent analysis. Additional analyses
were performed with Workbench v1.2.3 and Matlab 2014b (The Mathworks). To remove any potential artifact at the
onset/offset of each new run, the first 100 frames were removed from every BOLD run for each subject. Subsequently, BOLD
runs were concatenated in order of acquisition (resting-state fMRI runs 2-1-4-3, R/L first, then L/R) following removal of the
mean of each run from each time series.

Visualization All visualizations were produced using Connectome Workbench using the CIFTI format, which combines surface
data for cortex with volume data for subcortex. To convert a 360-element partition vector (cortex) into a CIFTI file, the following
steps were taken: 1. For each hemisphere, a template 32k vertex CIFTI surface map file was loaded, where each vertex was
labeled with its corresponding parcel label from the Glasser parcels. 2. Each parcel label was replaced with its corresponding
network label from the 360element partition vector. 3. Step 2 was repeated for the opposite hemisphere. 4. Results were saved
as a func.gii file for visualization in Connectome Workbench.
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Supplementary Figures

Fig. S1. Workflow of CAP analysis.
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Fig. S2. Generation of basis CAP sets.
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Fig. S3. Spatial patterns of the basis CAPs are distinct to each other and reproducible using the proposed shuffled split-half
analysis. (A) Spatial patterns of the basis CAPs in each split-half data. The 4-CAP basis set and the 5-CAP basis set were generated
independently from the same split-half data, using the hierarchical clustering across 1,000 shuffled split-half resampling, as described
in Fig. S2. (B) Spatial similarity (r, correlation coefficient) of the 4-CAP basis set within the split 1 data (left) and within the split 2 data
(right). r values were rounded to the nearest 2 decimal digits for visualization. (C) Spatial similarity of the 5-CAP basis set within the
split 1 data (left) and within the split 2 data (right). (D) Spatial similarity of the 4-CAP basis set between the split 1 and 2 data (left) and
of the 5-CAP basis set between the split 1 and 2 data (right). (E) Spatial similarity between the 4-CAP basis set and the 5-CAP basis
set within the split 1 data (left) and within the split 2 data (right).
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Fig. S4. Spatial patterns of the CAPs estimated from both splits are reproducible and strongly correlated with at least one of
the basis CAPs. (A) From left to right, the marginal distributions of r between all estimated CAPs (ECs) and each basis CAP (BC) from
the 4-CAP basis set are illustrated using kernel density estimation. Results were obtained from the split 1 data (top) and the split 2 data
(bottom). Each r value is color-coded using a sorting algorithm to label the corresponding EC using the maximum spatial correlation
with BCs. (B) From left to right, the marginal distributions of r between all estimated CAPs and each BC from the 5-CAP basis set are
illustrated using kernel density estimation.
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Fig. S5. CAP state III is reproducibly absent across permutations in both splits.
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DRAFTFig. S6. Stability of individual mean DT, var DT and FO across permutations
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Fig. S7. Between-day reliability of neural measures at single subject level. Each datapoint in the scatter plot is a subject. For
each subject, neural measures were averaged across permutations.
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DRAFTFig. S8. Similarity of temporal organizations between positive and negative co-activation patterns. CAP states I and II have
similar FO, mean DT and DT variance across the positive and negative co-activation states (I+ vs I- and II+ vs II-). Each data-point
indicate a subject. The temporal metric values across all permutations and two days were averaged within each subject.
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Fig. S9. Within-subject variance of FO across 5 CAPs across permutations.
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Fig. S10. List of behavioral variables. Behavioral variable names are identical to the variable names pro-
vided by the HCP data dictionary for the S1200 data release: HCP_S1200_DataDictionary_April_20_2018.csv.

Check https://wiki.humanconnectome.org/display/PublicData/HCP-YA+Data+Dictionary-+Updated+for+

the+1200+Subject+Release for details.
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Fig. S11. The geometry of behavioral PCs 2 and 3. PC 3 has a relationship with sex.
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Fig. S12. There is no relationship between individual’s preference to CAP III and the individual scores on neural PC 3.
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