

Supplemental Figure 2: Inactivated Fab-virus maps: 9H2 Fab binds virus with same mode 7 8 of binding in all three serotypes (inactivated virus): A: Surface rendered DeepEMhancer 9 sharpened maps are colored according to radius (color key) and show density corresponding to the 9H2 Fab. B: The central section shows the Fab has similar magnitude of density as the capsid. 10 **C:** FSC curves indicate resolution ranging from 2.5 – 3.2 Å at the gold standard 0.143 cutoff. **D:** 11 Refined models of single virus protomer (VP1-4; blue, green, red, yellow) and bound 9H2 variable 12 domain (heavy and light chain; dark and light gray). SIPV1, 2 and 3 data were taken at 13 magnification 59000x, 75000x, and 59000x resulting in pixel sizes of 1.1, 0.89, and 1.1 14 respectively. E: For each complex, a representative area illustrating the quality of the model built 15 into the map is shown. The map area highlighted includes residues VP1 270-273 and VP2 192-16 194. Coloration is VP1 (blue) and VP2 (green) with additional coloring by heteroatom. 17 18

SIPV2

SIPV1

SIPV3

Supplemental Figure 3: Local Resolution Maps: Local resolution values were measured in Angstroms and displayed with surface rendered for each inactive virus-Fab complex. The best resolution is present in the capsid shell while the poorest is found in the hinge region of the Fab fragments.

- 24 Hagine 25
- 26

Supplemental Figure 4: 9H2 Subparticles: Examples of subparticle classes for each virus
complex with 9H2 are shown. Multiple subparticle classes were merged for the final maps which
were recombined to produce a symbreak full icosahedral map into which virus and 9H2 were

- 31 built (Methods).
- 32
- 33
- 34

35

Supplemental Figure 5: Canyon Floor Loop: Unlike the crystal structure 1HXS, between wild type and inactivated Sabin, the structure and conformation of the loop (black circle) comprised of VP1 residues 232-238 superimpose. Residues identified as contacts are displayed as spheres matching their chain color (heavy and light chain; dark and light gray; VP1-3; blue,

- 40 green, red).
- 41
- 42

VP1 contac ISPV1 60 WTPV1 60 ISPV2 60 WTPV2 60 ISPV3 60 SPV3 60	ts 18-21 TVQTRHVVQHRSRSESSIESFFARGACVALI TVQTRHVVQHRSRSESSIESFFARGACVALI TVQTRHVIQRRTRSESTVESFFARGACVALI EVDNDAPTKRASRLFSVWKITYKDTVQLR TVQTRHVIQKRTRSESTVESFFARGACVALI EVDNDAPTKRASKLFSVWKITYKDTVQLR TVQTRHVVQRRSRSESTIESFFARGACVALI EVDNEQPTTRAQKLFAMWRITYKDTVQLR TVQTRHVVQRRSRSESTIESFFARGACVALIE VDNEQPTTRAQKLFAMWRITYKDTVQLR *******:*:*:****	119 119 119 119 119 119
ISPV1 120	RKLEFFTYSRFDMEFTFVVTANFTETNNGHALNQVYQIMYVPPGAPVPEKWDDYTWQTSS	179
WTPV1 120	RKLEFFTYSRFDMELTFVVTANFTETNNGHALNQVYQIMYVPPGAPVPEKWDDYTWQTSS	179
ISPV2 120	RKLEFFTYSRFDMEFTFVVTSNYIDANNGHALNQVYQIMYIPPGAPIPGKWNDYTWQTSS	179
WTPV2 120	RKLEFFTYSRFDMEFTFVVTSNYTDANNGHALNQVYQIMYIPPGAPIPKSWDDYTWQTSS	179
ISPV3 120	RKLEFFTYSRFDMEFTFVVTANFTNANNGHALNQVYQIMYIPPGAPTPKSWDDYTWQTSS	179
SPV3 120	RKLEFFTYSRFDMEFTFVVTANFTNANNGHALNQVYQIMYIPPGAPTPKSWDDYTWQTSS	179
ISPV1 180 WTPV1 180 ISPV2 180 WTPV2 180 SIPV3 180 SPV3 180	NPSIFYTYGTAPARISVPYVGISNAYSHFYDGFSKVPLKDQS-AALG <mark>DSL</mark> YGAASLNDFG NPSIFYTYGTAPARISVPYVGISNAYSHFYDGFSKVPLKDQS-AALG <mark>DSL</mark> YGAASLNDFG NPSVFYTYGAPPARISVPYVGIANAYSHFYDGFAKVPLAGQA-STEGDSLYGAASLNDFG NPSVFYTYGAPPARISVPYVGIANAYSHFYDGFAKVPLAGQA-STEG <mark>DSL</mark> YGAASLNDFG NPSIFYTYGAAPARISVPYVGLANAYSHFYDGFAKVPLKTDANDQIGDSLYSAMTVDDFG NPSIFYTYGAAPARISVPYVGLANAYSHFYDGFAKVPLKTDANDQIGDSLYSAMTVDDFG ***:*****: *****************	238 238 238 238 239 239
ISPV1 239	ILAVRVVNDHNPTKVTSKIRVYLKPKHIRVWCPRPPRAVAYYGPGVDYKDGTLTPLSTKD	298
WTPV1 239	ILAVRVVNDHNPTKVTSKIRVYLKPKHIRVWCPRPPRAVAYYGPGVDYKDGTLTPLSTKD	298
ISPV2 239	SLAVRVVNDHNPTRLTSKIRVYMKPKHVRVWCPRPPRAVPYYGPGVDYKDG-LTPLPEKG	297
WTPV2 239	SLAVRVVNDHNPTKLTSKIRVYMKPKHVRVWCPRPPRAVPYYGPGVDYKDG-LAPLPGKG	297
ISPV3 240	VLAVRVVNDHNPTKVTSKVRIYMKPKHVRVWCPRPPRAVPYYGPGVDYRNN-LDPLSEKG	298
SPV3 240	VLAVRVVNDHNPTKVTSKVRIYMKPKHVRVWCPRPPRAVPYYGPGVDYRNN-LDPLSEKG	298

VP2 contacts 3-6

VP2	conta	cts 3-6												
ISPV	1 121	ALGVE	AVPEMC.	LAGDSN	TTTMF	ITSYC	NANPO	EKGGT	FTGTFT	PDDN	TSPAR	RFCPVI	DYL 180	C
WTPV	1 121	ALGVE	AVPEMC.	LAGDSN	TTM	TSYC	NANPO	EKGGT	FTGTFT	PDNNC	TSPAR	RFCPVI	DYL 180	C
ISPV	2 121	ALGVE	AVPEMC.	LAGDST	- <mark>TH</mark> MB	TKYE	ENANPO	EKGGE	FKGSFT	LDTNA	TNPAR	NFCPVI	DYL 179	Э
WTPV	2 121	ALGVE	AVPEMC	lagds <mark>t</mark>	- <mark>TH</mark> MB	TKYE	ENANPO	EKGGE	FKGSFT	LDTNA	ATNPAR	NFCPVI	DYL 179	Э
ISPV	3 121	ALGVE	AIPEYC	lagds <mark>d</mark>	K-QR)	TSYA	NANPO	ERGGK	FYSQFN	KD <mark>N</mark> AV	TSPKR	EFCPVI	DYL 179	Э
SPV3	121	ALGVE	AIPEYC	lagds <mark>d</mark>	K-QRY	TSYA	NANPO	ERGGK	FYSQFN	KDNA	TSPKR	EFCPVI	DYL 179	Э
		****	* ** *	*****		* *	*****	* * * *	* . *.	*	* * *	****	* * *	

SPV1	226	RDTTHIEQKA	235 3.15 Å
WTPV1	226	RDTTHIE <mark>Q</mark> K <mark>A</mark>	235 3.13
ISPV2	226	RDTTHISQEA	235 2.50
WTPV2	226	RDTTHIS <mark>Q</mark> E <mark>A</mark>	235 2.73
ISPV3	226	RDTTHISQS <mark>A</mark>	235 2.91
SPV3	226	RDTTHIS <mark>Q</mark> S <mark>A</mark>	235 2.66

TOTAL 9H2 CONTACTS: 23-27 43

- 44 **Supplemental Figure 6: Sequence Alignment of Polioviruses:** 9H2 contacts are highlighted
- 45 in this Clustal Omega sequence alignment. Contact number is provided as low high end
- estimates for 9H2 footprint residue contacts. Variation likely resulted from differences in
- 47 resolution among maps and slight differences in chain and rotamer placement.

Supplemental Figure 7: Binding Competition ELISA: Binding of human monoclonal antibody 51 52 9H2 or recombinant soluble poliovirus receptor (sPVR) to wild type poliovirus type 1(Mahoney)(WTPV1) or WTPV1 complexed with 9H2 or sPVR. Binding was assessed by 53 54 enzyme-linked immunosorbent assay (ELISA) and reported optical density at 450nM. The results 55 are representative of three independent experiments. X axes are the concentration of 9H2 mAb or sPVR in µg/mL. Y axes are optical density readings at 450 nm. Color key labels indicate the 56 57 specimen being serially diluted and controls. For both A and B the green line indicates the ability of sPVR to compete off bound 9H2 by plotting the results of the sequential addition of virus, 9H2 58 held constant at 0.1 mg/mL across all dilution wells, followed by PVR at various dilutions. For both 59 A and B the blue line represents the ability for 9H2 to outcompete receptor; whereby the treatment 60 corresponds to the sequential addition of PV1, followed by the addition of a consistent amount 61 (0.1 mg/mL) of sPVR, and final addition of 9H2 at various dilutions. A: Human mAb-HRP 62 secondary antibody was used to report 9H2 bound to captured virus. B: Anti-sPVR secondary 63 mAb-HRP was used to report sPVR bound to captured virus. Application of 9H2 mAb at 0.1 64 65 mg/mL is capable of preventing subsequent sPVR (at 0.5 mg/mL) binding to the virus whereas 0.5 mg/mL 9H2 mAb can outcompete previously bound sPVR (at 0.1 mg/mL). 66

- 70 71 **Supplemental Figure 8: Live Footprint Comparisons: A-C:** 9H2 footprint comparisons among live PVs showing differences between serotypes. PV1 (Red), PV2 (gold), PV3 (blue). Overlaps shown; PV1 & PV2, orange; PV1 & PV3, purple; PV2 & PV3, green.

Data Collection and Processing	WTPV1	WTPV2	SPV3	SIPV1	SIPV2	SIPV3
magnification	59k	59k	120k	59k	75k	59k
voltage (kV)	300	300	200	300	300	300
e ⁻ /Å ²	40	40	50	40	40	40
defocus range (um)	1-3	1-3	0.5-2	1-2.5	0.75-2.5	0.75-2.5
pixel size (Å)	1.1	1.1	1.2	1.1	0.86	1.1
symmetry imposed	ICOS	ICOS	ICOS	ICOS	ICOS	ICOS
initial micrographs	1592	2284	3737	2302	1921	734
final micrographs	1550	2185	2915	1883	1701	714
particles	79471	11599	84951	99462	111182	52115
map resolution (Å)	3.1	2.7	2.7	3.2	2.5	2.9
Refinement						
model resolution* d _{model} (Å)	3.3	2.9	2.8	3.3	2.6	3.0
model	3.1	2.7	2.6	3.1	2.5	2.8
_{model} 0.143 (Å)						
map sharpening B factor	176.3	109.3	135.5	181.3	129.5	145.5
non-hydrogen atoms	8318	8245	8343	8300	8310	8329
protein residues	1068	1059	1068	1064	1066	1066
ligands	N/A	PLM	PLM	N/A	PLM	PLM
protein B factors mean (Å2)	100.83	58.74	57.55	91.93	54.20	73.54
ligand B factors (Å2)	N/A	58.98	66.86	N/A	55.04	70.11
RMS deviation bond length (Å)	0.005	0.006	0.007	0.004	0.005	0.005
RMS deviation bond angle (°)	0.774	0.898	1.083	0.712	0.792	0.893
MolProbity score	0.95	1.20	1.11	1.00	1.13	1.31
Clashscore	0.67	1.78	0.67	1.47	1.77	1.52
Rotamer outliers (%)	0.11	1.55	1.74	1.41	0.44	1.74
Ramachandran favored (%)	96.49	97.41	96.67	98.00	96.77	96.48
Ramachandran allowed (%)	3.42	2.49	3.33	2.00	3.23	3.52
Ramachandran outliers (%)	0.09	0.10	0.00	0.00	0.00	0.00

73 Supplemental Table 1: Data Collection, Processing, and Refinement Statistics

- Common statistics and parameters from the six 9H2 Fab-poliovirus complexes, with refinement
- statistics generated from Phenix comprehensive validation. ICOS=icosahedral. PLM=palmitic
 acid.
- 77
- *Model resolution d_{model} is the resolution of the map calculated from the final model that
- 79 maximizes the correlation to the experimental map¹.
- ^{**}Model resolution d_{FSC_model} is the resolution cutoff at which the model and experimental map
- 81 Fourier coefficients are most similar¹.
- 82
- 83

84 Supplemental Table 2: Capsid Contacts

85

WTPV1	
VP1	87 88 89 90 101 102 104 105 106 107 108 114 166 168 226 227 228 234 239 280 282
VP2	139 140 142 167
VP3	233 235
SIPV1	
VP1	87 88 89 90 101 104 105 106 107 108 109 114 166 168 169 223 226 227 228 280 282
VP2	138 139 140 167
VP3	235

WTPV2

VP1	87 88 89 91 102 103 105 106 107 108 109 114 166 168 226 227 228 282
VP2	137 138 139 141 171
VP3	233 235

SIPV2

VP1	87 88 89 90 100 101 103 105 106 107 108 114 166 168 228 234 239 282
VP2	137 138 139 141
VP3	235

SPV3

VP1	87 88 89 91 101 102 103 105 106 107 108 109 114 115 168 228 229 240
VP2	137 138 139 140 141 166
VP3	233 235

SIPV3

VP1	87 88 89 91 100 101 102 103 105 106 107 108 114 168 224 228 229 240 281
VP2	137 140 141
VP3	235
Identified	contact residue numbers in each 9H2-poliovirus complex for each virus chain

86 Identified contact residue numbers in each 9H2-poliovirus complex for each virus chain.

89 Supplemental Table 3: 9H2 Contacts

WTPV1	
Heavy chain	81 119 120 121 122 123 124
Light chain	45 46 50 73 74 114 115
WTPV2	
Heavy chain	74 121 122 123 124 125 127
Light chain	45 46 50 74 114 115
SPV3	
Heavy chain	74 81 120 121 122 123 124
Light chain	125 127 128 129 130 131 44 45 46 50 52 73 74 114 115
SIPV1	
Heavy chain	81 119 120 121 122 123 124
Light chain	125 127 128 129 130 45 46 50 73 74 75 90 113 114 115
SIPV2	
Heavy chain	46 120 121 123 124 125 127
Light chain	128 129 130 131 45 46 49 50 74 114 115
SIPV3	
Heavy chain	46 120 121 122 123 124 125
Light chain	127 128 129 130 131 45 46 50 73 74 90 115

91 Identified contact residue numbers in each 9H2-poliovirus complex for each Fab chain.

Supplemental Table 4: 9H2 Fab Binding Constants

		V			
	KD (M)	Ka (1/Ms)	Ka error	Kd (1/s)	Kd error
SPV1	9.364 x 10 ⁻⁴	1.122 x 10 ³	8.470 x 10 ⁴	1.050	0.1795
SIPV2	2.097 x 10 ⁻⁶	2.301 x 10 ⁵	1.182 x 10 ⁵	0.4826	0.1374
SPV3	3.232 x 10 ⁻⁶	1.461 x 10⁵	6.838 x 10 ⁴	4.769 x 10 ⁻²	4.769 x 10 ⁻²
9H2 Fab binding constants as provided by analysis of biolayer interferometry data.					

103 104		Supplemental References:
104	1)	Afonine, P. V., Klaholz, B. P., Moriarty, N. W., Poon, B. K., Sobolev, O. V., Terwilliger, T. C.,
106		Adams, P. D., & Urzhumtsev, A. (2018). New tools for the analysis and validation of cryo-EM
107		maps and atomic models. Acta Crystallographica Section D Structural Biology, 74(9), 814–840.
108		https://doi.org/10.1107/S2059798318009324
109		