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This document is the supplementary information for the Equilibria and oscillations in cheat-cooperator
dynamics and contains four sections: The first section has the list of all parameters used in the model; the second
section is a broader investigation for frequency and density dependence in scenario 1; the third section contains
additional results and checking related to periodic population bottlenecks in scenario 2; the fourth section has the
additional results related stochasticity in scenario 3.
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1 General
1.1 Table of all model parameters

Table S1: The list of parameters in the model. Sections column provides the relavent section numbers in this
document for each parameters.

Name Value Description Sections

General variables used in all scenarios

r 2 Intrinsic growth rate 3.3

K 10 Carrying capacity (set to 100 in scenario 3) 4.2

h 4 Benefit coefficient of cheats 3.4

sd 3 Shape coefficient of density dependence function 3.8

td 1.5 Threshold of density dependence function 3.9

sf 10 Shape coefficient of frequency dependence function 3.8

tf 0.5 Threshold of frequency dependence function 3.9

For growth cycles (scenario 2& 3)

D 10 Dilution ratio (set to 5 in scenario 3) 3.6

Tgrow 4 Duration of growth phase in each growth cycle 3.7

For stochasticity (scenario 3)

F 1.3 Mixing coefficient 4.4, 4.5

M 4000 Number of subpopulation (social groups) Fig. 4
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2 Frequency and density dependence (scenario 1)
2.1 Dynamics of various weightings of density and frequency dependencies
In Fig. 2 of the main text, we showed the population dynamics quickly become static after carrying capacity has
been reached, we tested whether the result was just a special case in this section. As shown in Fig. S1, we found the
same dynamics across all combinations of weighting coefficients. These results suggest a relatively static dynamic is
prevalent.
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Figure S1: Population dynamics across various combinations of weightings in the baseline setting.

2.2 Analytical stability analysis
We re-write Eq (2) of the main text as

N ′
co = F (Nco + α Nch; K) Nco

N ′
ch = h G(Nco; a, sd, td) G( Nco

Nco+Nch
; b, sf , tf ) F (α Nco + Nch; K) Nch

(S1)

where
F (N ; K) = 1 − N

K
, and G(N ; a, s, t) = 1 − a + a

1
1 + exp{−s(N − t)} (S2)

and 0 < α ≤ 1 is constant.
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If α is strictly less than 1, then
N∗

co = N∗
ch = K

1 + α
(S3)

is a unique, positive equilibrium; it is locally asymptotically stable when all eigenvalues of

J =

 F ′(K) N∗
co α F ′(K) N∗

co

α h G(N∗
co) G( N∗

co
N∗

co+N∗
ch

) F ′(K) N∗
ch h G(N∗

co) G( N∗
co

N∗
co+N∗

ch
) F ′(K) N∗

ch

 (S4)

have negative real part (parameters of G and F have been omitted, for simplicity). The Routh-Hurwitz criteria for
two-dimensional systems tell us that the eigenvalue condition on J is satisfied when both its trace is negative and its
determinant is positive. Direct calculation shows

trace J = F ′(K)
(

N∗
co + h G(N∗

co) G

(
N∗

co
N∗

co + N∗
ch

)
N∗

ch

)
< 0 (S5)

and
det J = h G(N∗

co) G

(
N∗

co
N∗

co + N∗
ch

)
(F ′(K))2 N∗

ch N∗
co (1 − α2) > 0 (S6)

which implies the equilibrium is locally asymptotic stable. A sketch of the phase plane shows not only that the
equilibrium is globally stable but also that periodic (oscillating) trajectories do not occur (Fig S). We formalize
the line of reasoning, here, using Dulac’s criterion. Define H(Nco, Nch) as 1

Nco Nch
and consider the vector field, V ,

defined (strictly inside the first quadrant of the plane) as

V (Nco, Nch) =
(

F (Nco + αNch)
Nch

, h G(Nco) G( Nco
Nco+Nch

) F (Nch + αNco)
Nco

)
(S7)

where, again, we have omitted the parameters of F and G for simplicity. We calculate the divergence of V to be

∇ · V = F ′(Nco + αNch)
Nch

+ h G(Nco) G′( Nco
Nco+Nch

) (−1) Nco

(Nco + Nch)2
F (Nch + αNco)

Nco

+ h G(Nco) G( Nco
Nco+Nch

) F ′(Nch + αNco)
Nco

. (S8)

Because F ′ < 0 and G′ > 0 we can be sure that ∇ · V < 0. Following Dulac’s criterion, then, we formally rule out
the existence of periodic solutions to Eq (S1), because ∇ · V neither changes sign nor is identically zero. Because
trajectories in the planar system, represented by Eq (S1), are bounded (Fig. S2), the Poincaré-Bendixson Theorem
tells us that they must either tend to an equilibrium or a periodic orbit thereof. Given that we have ruled out the
latter, it must be true that solutions tend to the only equilibrium we have identified inside the first quadrant.

If α = 1, then we can replace the variables Nco and Nch with N = Nco + Nch and P = Nco
N . With these new variables

the dynamics become

N ′ = (P + h G(PN) G(P ) (1 − P )) F (N) N,

P ′ = P (1 − P ) (1 − h G(PN) G(P ) ) F (N).
(S9)

As an aside, we note that the rate of change in the proportion of cooperators is the product of the trait variance
(namely, P (1 − P )) and the change in fitness experienced by an individual who switches from cheating to cooperation
(namely, F (N) − h G(PN) G(P ) F (N)). The sign of N ′ is solely determined by F (N). Therefore, over time, N
converges monotonically to K (the line Nco + Nch = K in Fig 2c). The sign of P ′ is also solely determined by F (N),
and so the evolution of P will follow that of N (P increases when N increases and decreases when N decreases).
It follows that P will also tend to some equilibrium in a monotonic fashion. Overall, we rule out the existence of
periodic solutions when α = 1.
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Figure S2: A sketch of the phase plane associated with Eq (S1). Red arrows show the direction followed by
trajectories over time. Solid lines show the set of states for which N’co=0 and N’ch=0, respectively. For the
former set, trajectories are instantaneously moving in a purely vertical direction; for the latter set, trajectories are
instantaneously moving in a purely horizontal direction. Solid lines intersect at the equilibrium (N * co,N * ch), and
this equilibrium is asymptotically stable.

3 Periodic population bottlenecks (scenario 2)
3.1 Parameters in density and frequency dependence function
Our density and frequency dependence functions share the same the basic structure of

f(x) = h(1 − a + a

1 + e−s(x−t) ), (S10)

where x is density (or frequency) of cooperators in the population, h is the coefficient of relative growth advantage
of cheats, which is a proxy for the costs of cooperation, a(orb) is the weighting coefficient of the dependence, s is the
shape coefficient adjusting the steepness, and t is the threshold, in which the steepest change in response takes place.
The effects of each parameter is shown in Fig. S3: increasing a results in a lower response at low cooperator density
(or frequency; Fig. S3a), increasing h results in greater response after threshold is passed (Fig. S3b); increasing s
results in steeper response, making cheat’s dependence more restricted to a specific range (Fig. S3c); increasing t
horizontally shifts the response of cheats (Fig. S3d).
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Figure S3: Parameters of logistic function used in density and frequency dependence terms.

3.2 ODE solver checking
We set up the ODE solver (the standard package in Python3: scipy.integrate.odeint) to numerically track the
population dynamics. The time in each iteration of the solver is adjustable that bigger leap means less precision but
less calculation time. Thus, we checked the precision setting to make sure we are not generating numerical artifacts
in our result. As shown in Fig. S4, the dynamics in all panels are close to identical, suggesting all settings have
reasonable precision. Thus, we use 20 iterations per time unit for all analysis (Fig. S4b).
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strain Cooperator Cheat
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Figure S4: Time series of population dynamics under different precisions (a=0.5, b=0.5 ).

3.3 Intrinsic growth rate checking (r)
We then checked the effects of intrinsic growth rate to make sure the oscillation is not an artifact from special
combinations of growth cycle (i.e., periodic population bottleneck) and growth rate (r). We found the pattern of
oscillation is robust as long as r > 1.5 in Fig. S5. Hence, we have been using r = 2 to make sure the results are
good representations for most ranges of the intrinsic growth rate.
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Figure S5: Amplitude of oscillation in proportion of cheats across various intrinsic growth rates, and relative growth
advantage coefficient of cheat. Brighter colour indicates larger oscillation and the amplitude is calculated from the
maximal difference in proportion of cheats in each growth cycle after the dynamics become stabilised.

3.4 Effects of the costs of cooperation (h)
We use the coefficient of relative growth advantage of cheats, h, as a proxy for the cost of performing cooperation
and we found as h increases, a region of no oscillation expands (arrows in Fig. S6b-d). The region is where both
weightings are small, meaning cheats do not depend as much on the density or frequency (proportion) of cooperators.
The underlying reason is as h is at a larger value, cheats can out-compete cooperators in a wider range of parameters.
In contrast, the result when weighting is at 1 does not change with h, as cheats cannot eliminate cooperators when
there is complete dependence in one of the two weightings. Lastly, we found no oscillation at all when h = 1 as the
fitness of cheats never exceeds cooperator in such setting (i.e., cheats are eliminated).
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Figure S6: Amplitude of oscillation across various relative growth advantage coefficient for cheats. Higher h means
higher benefit of cheats and brighter colour indicates larger oscillation.

3.5 Relative fitness of cheats
One important factor that determines whether cheats or cooperators win is the relative fitness, which is defined as

wrel,ch = wch

pchwch + (1 − pch)wco
, (S11)

where pch is the proportion of cheats in the population, wch is the per capita growth rate of cheats, dNch

Nchdt , and wco is
the per capita growth rate of cooperator, dNco

Ncodt . When wrel,ch > 1, cheats can outgrow cooperators and potentially
eliminate cooperators; when wrel,ch < 1, cooperators grow better than cheats and can potentially eliminate cheats.

We looked into two quantities of relative fitness: (1) the maximal difference within each growth cycle, and (2) the
average relative fitness over a single growth cycle. We found the pattern in differences is similar to the pattern in
oscillation amplitudes (Fig. S7 and Fig. S6). The only exception is when h = 1 because the brighter colors in Fig.
S7a mean cheats are much worse than cooperators, whereas brighter colors other panels mean cheats are doing
better than cooperators. This explanation is supported by the average relative fitness (Fig. S8), that we only found
relative fitness lower than 1 when h = 1. In addition, we found the region of wrel,ch ≈ 1 expands as h increases
because relative fitness is 1 for cheats when there is no cooperator in the population (arrows in Fig. S8b-d).
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Figure S7: Maximum difference in relative fitness of cheats in each growth cycle.
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Figure S8: Average of relative fitness of cheats in each growth cycle.
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3.6 Effects of dilution ratio (D)
The next factor we investigated is the dilution ratio, which controls the size of population bottleneck between
growth cycles. Intuitively, we found when D is too low, there is almost no oscillation (Fig. S9a-b), while the pattern
roughly stays the same when D is large (Fig. S9c-d). The reason is when there is insufficient dilution would prevent
cooperators from recovering their proportion in the population and eventually lead to extinction (see also Fig. 6a-e
in main text).
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Figure S9: Amplitude of oscillation across various dilution ratios.

3.7 Effects of growing time (Tgrow)
Another growth cycle-related factor is the duration of growth time in each growth cycle, which determines whether
dilution takes place at lag, exponential, or stationary phase of the growth curve. We found once Tgrow is greater
than 2, the results is identical regardless of the duration of growing time (Fig. S10b-d). This result is also easy to
explain as cheats would not have time to grow and increase their proportion if growing time is too short (Fig. S9a).
Yet, once cheats have chances to gain proportion, there is little difference in the results because both strains would
saturate in densities as growing time increases.
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Figure S10: Amplitude of oscillation across various duration of growth phase.

3.8 Effects of shape patameter (sd, sf)
Besides the settings in growth cycle, another important aspect of the model is the parameters controlling the density
and frequency dependence. We began from the shape parameters, sd and sf , where larger s means steeper response
(Fig. S3c). We found increasing sd always help oscillation as yellow area consistently increases as sd increases (Fig.
S11). On the contrary, the effect of sf is inconsistent as it helps oscillation when sf < 10 but somewhat hinders
oscillation when sf > 10 (Fig. S12). This discrepancy happens because (i) density can fluctuate through dilution
processes between growth cycle while frequency does not change through dilution, and (ii) increasing s would narrow
the range where response can be different. In other words, the fitness landscape becomes more binary when s
increases, while density dependence still have the drive to bounce between lower and higher responses (through
dilution), frequency dependence completely relied on relative fitness to oscillate and it is harder to move around
when the response is too steep. One final note is we set sd and sf to different values because the range of density is
larger than the range of frequency, which is confined in {0, 1}.
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Figure S11: Amplitude of oscillation across various shape parameter of density dependence.
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Figure S12: Amplitude of oscillation across various shape parameter of frequency dependence.
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3.9 Effects of threshold parameter (td, tf)
The last parameter we examined in scenario 2 is the threshold of the response, td and tf , which horizontally move
the response to different ranges (Fig. S3d). We found changing thresholds result in diverse outcomes. Specifically,
increasing td initially increases the region of oscillation, but when td > 1.5, increasing threshold hampers oscillations
(Fig. S13). This is likely because when threshold is too high or too low, the majority of time in the growth cycle
would favour one of the two strains (favouring cheats when threshold is low and cooperators when threshold is high),
and prevent oscillation. In one extreme case, when td = 6 and a > 0.9, there is no oscillation as cooperator density
hardly exceeds 6 and cheats cannot grow (Fig. S13d) On the other hand, the pattern of changing thresholds in
frequency is similar to changing shapes in frequency dependence (Fig. S14).
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Figure S13: Amplitude of oscillation across various threshold of density dependence.

13



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

t f= 0.3a

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

t f= 0.5 (main)b

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

t f= 0.7c

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

t f= 0.9d

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Weighting of density dependence, a

W
ei

gh
tin

g 
of

 fr
eq

ue
nc

y 
de

pe
nd

en
ce

, b

Figure S14: Amplitude of oscillation across various threshold of frequency dependence.
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4 Stochastic group formation (scenario 3)
4.1 Simulation setup of scenario 3

Figure S15: Schematic view of simulation steps in scenario 3, where the simulation codes are modified from Muzuuchi
et al, 2022. Following their design, we convert the densities of cheats and cooperators to integer after dilution,
and we use binomial process with equal probabilities to re-disperse each unit of cheats and cooperators during
repartitioning process. Both processes can help generate stochasticity to the system.
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4.2 Reducing stochasticity through increasing carrying capacity (K)
In addition to Fig. 4 in main text, an alternative way to manipulate stochasticity is to increase the population size
within each subpopulation. This can be done through increasing carrying capacity, K. Nevertheless, the duration
of growth cycle and the threshold of dependence have to change because the density of the two strain is going to
be at a different level (see figure caption of Fig. S16 for more information). We found the amplitude of oscillation
decreases as carrying capacity increases (Fig. S16g-i) and the result is consistent with Fig. 4.
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Figure S16: Increasing carrying capacity within each subpopulation decreases stochasticity and produce smaller
oscillation in proportion of cheats. Growth cycle and threshold are changed to different values to allow population
having sufficient growing time (Tgrow is 8 and td is 6 for K= 200 ; Tgrow is 16 and td is 9 for K= 400 ; a= 1 and b=
0 ).
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4.3 Relative fitness of cheats on a board scale
In Fig. S17, we found the average relative fitness of cheats is above 1 but close to 1 at the regions where oscillating
dynamics take place (Fig. 5). Together with Fig. 5, these results suggest oscillation happens at the parameter space
(1) where cheats are slightly fitter than cooperators and (2) cheats’ fitness is highly variable between subpopulations.
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Figure S17: Relative fitness of cheats. Brighter color means cheats having greater fitness over cooperators. Relative
fitness is calculated at subpopulation level, based on the proportion of cheats within each subpopulation at the
beginning of focal growth cycle. The absolute fitness used for relative fitness is approximated from per capita growth
rate, the change in cheat or cooperator density within subpopulation, divided by Tgrow and the initial densities. We
then averaged the relative fitness over all subpopulations and time, and rescaled the relative fitness by dividing it
with the relative fitness of cooperators because the raw values are deflated by empty subpopulations. Each grid is
the average of 10 repeated simulations. All simulations last 200 growth cycles and data was collected from cycle 51
to 200. The number of subpopulations is set to 4000.
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4.4 Effects of mixing coefficient (F)
We examined the effects of mixing coefficient as it can potentially change the spatial structure of the entire population
and help the spread of cheats or cooperators. We found that greater mixing produces a less periodic dynamic - as
the mixing coefficient (F ) increases, the peak signal in harmonic regression become smaller, while the non-peak
signals become larger (Fig. S18d& e). This is because faster mixing makes the spread of cheats and cooperators
faster, resulting in less periodic dynamics (Fig. S18c& f).

strain Cooperator Cheat

0

25

50

75

100

0 50 100 150 200
Cycle (round of bottleneck)

P
op

ul
at

io
n 

de
ns

ity

Population dynamics (F= 1.3)a

0

25

50

75

100

0 50 100 150 200
Cycle

P
op

ul
at

io
n 

de
ns

ity

Population dynamics (F= 2.6)b

0

25

50

75

100

0 50 100 150 200
Cycle

P
op

ul
at

io
n 

de
ns

ity

Population dynamics (Global)c

0.00

0.02

0.04

0.06

0 25 50 75 100
Period (Cycle)

A
m

pl
itu

de

Harmonic regressiond

0.00

0.02

0.04

0.06

0 25 50 75 100
Period

A
m

pl
itu

de

Harmonic regressione

0.00

0.02

0.04

0.06

0 25 50 75 100
Period

A
m

pl
itu

de

Harmonic regressionf

Figure S18: Local mixing is crucial for oscillation across growth cycles. (a-c) Population dynamics under default
mixing (a, F=1.3 ), twice times of mixing (b, F=2.6 ), and global mixing after the dilution in each growth cycle.
In global mixing setting, subpopulations are re-initialised through Poisson sampling after summing the density of
cheat and cooperator and after periodic population bottlenecks, so stochasticity is not reduced to zero. (d-f) The
corresponding Harmonic regression on proportion of cheats in each setting. Density and frequency dependence are
set to the combination where largest coefficient of variation was observed in Fig. 5 (a=0.9, b=0.25 ).
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4.5 Effects of mixing coefficient when cheats are obligate (F, a or b= 1 )
In addition to Fig. S18, where cheats are facultative that they can grow in the absence of cooperator, we found
some interesting result when cheat is obligate. Specifically, we found increasing mixing results in lower proportion of
cheats (Fig. S19). Further, increasing mixing produces more frequent oscillations as the peak in harmonic regression
moves to the left when F is larger. This is because of the complication that cheats are obligate cheats in this case
and cannot grow when cooperator is absent in the group These results suggest mixing is a crucial factor of our
model and it can determine the extent of periodicity and noise in the dynamics.
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Figure S19: Increasing mixing coefficient results in more frequent oscillation when cheats can only grow when
cooperator is present (a=1, b=0 ).
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