Relationship between Respiration and CAM-Cycling in *Peperomia camptotricha*¹

Received for publication December 18, 1986 and in revised form March 12, 1987

ASMITA PATEL* AND IRWIN P. TING

Department of Botany and Plant Sciences, University of California, Riverside, California 92521

ABSTRACT

Mature leaves of well-watered *Peperomia camptotricha* show Crassulacean acid metabolism (CAM). Young leaves show CAM-cycling in which CO_2 uptake occurs during the day concomitant with a marked diurnal fluctuation of organic acids as in CAM. Evidence is presented suggesting that respiration is the source of CO_2 for nocturnal acid synthesis in leaves exhibiting CAM-cycling. Respiratory quotients for these leaves were consistently much less than unity despite the fact that the leaves metabolize starch. The conservation of CO_2 by refixation into acids at night represents about 17% of the total photosynthetically fixed CO_2 and about 50% of the total respiratory CO_2 .

CAM is characterized by gas exchange occurring predominantly at night when the stomata are open (4, 8, 9). CO₂ is fixed via phosphoenolpyruvate carboxylase leading to the formation of oxaloacetate which is reduced to malate by malate dehydrogenase. Malate thus formed accumulates in the vacuole as malic acid where it is stored until the subsequent light period. Then malic acid is decarboxylated and the released O_2 is refixed via the Calvin-Benson cycle. There are modifications to this basic mode of CAM which occur in response to environmental perturbations and/or as ontogenic differences (4, 12, 13, 19). CAMidling is one such modification and is characterized by a diminished acid flux with virtually no nocturnal gas exchange with the atmosphere (17, 18). In another variation, CAM-cycling, C₃ gas exchange occurs with stomata open during the day and closed at night, but a significant nocturnal accumulation of organic acids occurs as in CAM (13, 19).

Peperomia camptotricha is an epiphytic plant native to Mexico. The older leaves located at the base of this plant exhibit CAM while the younger apical leaves show CAM-cycling (13, 19). The persistence of CAM-cycling (13, 19) likely results from the nocturnal recycling of endogenous CO_2 , and indeed previous studies have assumed refixation of respiratory CO_2 to account for nocturnal acid synthesis when stomata are closed (5-7, 14). The purpose of this study was to estimate the extent to which respiratory CO_2 could be the substrate for nocturnal acid synthesis.

MATERIALS AND METHODS

Plant Material. Plants were propagated from cuttings by rooting in sand. Once the roots were formed, they were transplanted to pots, 15 cm in diameter, containing sandy loam soil and

grown in a glasshouse. The average daily maximum temperature in winter was 19°C and the average minimum temperature was 3.5°C. In summer, the average maximum temperature was 34°C, and the average minimum was 14°C. Relative humidity averaged from 52% in the morning to 37% at noon. During the experiments, the following conditions were observed. During midday, PAR reaching the young leaves ranged from 330 to 550 μ mol m⁻² s⁻¹. Day/night relative humidity ranged from 56 to 70%. Mean high temperature was about 28°C and the mean low was about 22°C. Plants were irrigated frequently and fertilized with 0.25 strength Hoagland solution (2).

Gas Exchange Studies. CO_2 assimilation and transpiration parameters were measured using a dual isotope porometer (3). With this instrument, an air stream of ${}^{14}CO_2$ in an 80:20 mixture of N₂:O₂ and a final concentration of 320 µl L⁻¹ CO₂ is passed through a reservoir of tritiated water at 0°C and of known specific activity. After clamping a small chamber onto a leaf, the lower surface was exposed to the gases for 20 s. Leaf samples were taken using a cork borer (8 mm diameter), extracted in 80% methanol, and placed in sunlight to oxidize the Chl. Isotope uptake was determined with a liquid scintillation spectrophotometer equipped with automatic quench correction. Stomatal conductances (cm s⁻¹) and CO₂ uptake rates (mg CO₂ dm⁻² h⁻¹) were derived from the amount of tritiated water and ${}^{14}CO_2$ uptake (3).

Acid Titrations. Leaf samples were collected and frozen on Dry Ice. They were assayed for total titratable acidity the next day. Tissue samples were weighed and then ground using a coaxial tissue homogenizer with a motor-driven Teflon pestle (Potter-Elvehjem). The extract was titrated to an end point of pH 7.0 using 0.01 N KOH.

O₂ Consumption Measurements. Leaf discs 3.6 mm in diameter were used for the measurement of O_2 uptake. Leaf tissue was placed in a vessel containing 50 mM phosphate buffer (pH 6.8) at 30°C (1). A Clark-type O₂ sensor (Yellow Spring Instruments, OH) was introduced into the vessel and covered with an air-tight lid. The vessel was introduced into a water bath which was maintained at 30°C and covered with three lavers of aluminum foil to exclude light allowing measurement of dark respiration. To ensure the penetration of added chemicals, the buffered medium and leaf discs were subjected to vacuum infiltration prior to measurement. The compounds used were malonate, a competitive inhibitor of succinate dehydrogenase; and succinate, a substrate of the tricarboxylic acid cycle. O_2 uptake rates were expressed as μ mol O₂ g⁻¹ fresh weight min ⁻¹. Only one sample per time was used because of equipment limitations; however, each point represents several readings. The experiments were conducted several times and a complete diurnal run was conducted three times, once with malonate as an inhibitor.

Respiratory Quotient Measurements. RQ measurements were performed by the method of Umbreit *et al.* (20) with use of a Gilson Differential Respirometer (General Medical Electronics,

¹ This research was supported in part by a grant from the National Science Foundation, DMB-8416981.

FIG. 1. Diurnal course of CO₂ uptake (A) and stomatal conductance (B) in young leaves of *P. camptotricha*. The dark period is indicated by the black bar on the abscissa. Maximum PAR was 330 to 550 μ mol m⁻² s⁻¹, day/night RH ranged from 56 to 70%, and the temperature from 22 to 28°C. Each datum point represents the mean of three samples ±SE with sampling at 4-h intervals.

FIG. 2. Diurnal course of organic acid accumulation. The dark period is indicated by the black bar on the abscissa. Each datum point represents a mean of three samples \pm SD.

WI). Manometeric flasks used for the measurement of O_2 uptake contained 0.2 ml of 10% (w/v) KOH and a small piece of filter paper folded in pleats and placed in the center well. Flasks used for the measurement of net O_2 and CO_2 exchange did not contain

FIG. 3. Diurnal course of the rate of respiration in *P. camptotricha* leaf discs. (\bigcirc \bigcirc), Control 1; (\bigcirc \bigcirc), control 2; (\triangle - $- \triangle$), 20 mM malonate-treated samples. The dark period for control 1 and malonate-treated samples was from 9:00 PM to 5:00 AM. For control 2, the dark period was from 6:00 PM to 6:00 AM. The mean nocturnal respiration rate reported in text was estimated as the average of the rates shown in control 1 and control 2.

Table	I.	Respiratory O_2 Exchange by Leaf Discs of P. camptotricha in
		the Presence of Malonate and Succinate

Measurements were made between 10:00 AM to	o 1:00 pn
--	-----------

interest interest in the interest			
Treatment	O ₂ Consumed		
	µmol g ⁻¹ fresh wt min ⁻¹		
Control	$0.046 \pm 0.0053 (n = 3)$		
Succinate	0.062 ± 0.018		
Malonate	0.013 ± 0.0062		
Succinate + malonate	0.015 ± 0.0047		

Table II. Estimated Day and Night CO₂ Exchange Taken from Figures 1A, 2, and 3 by Integrating Appropriate Areas Under the Curves

	By CAM ^a	By Respiration ^b	By Exogenous CO ₂ Fixation
		µmol CO2 g	⁻¹ fresh wt ⁻¹
Day ^c	-26	-64.8	182.9
Night	31	-60	3.9

^a Estimated from rate of organic acid synthesis (night) or degradation (light). ^b Estimated from O_2 consumption measurements assuming that RQ = 1. ^c Negative values represent CO₂ liberated.

 Table III. Respiratory Quotient (CO2 produced/O2 consumed)

 Calculated from Four Experiments

Measu	rements were	made betwee	п 1:30 AM and 3:00 AM.
	R CO ₂	R O ₂	$R \operatorname{CO}_2/R \operatorname{O}_2$
	µmol g fresh wt ⁻¹ min ⁻¹		ratio
1.	0.016	0.046	0.3478
2.	0.048	0.094	0.5106
3.	0.055	0.12	0.4583
4.	0.103	0.18	0.5722
			$\bar{X} = 0.47 \pm 0.0951$

KOH in the center well (15, 16). Experimental points were replicated three times.

RESULTS AND DISCUSSION

The young leaves of *Peperomia camptotricha* (*i.e.* the leaves closest to the apex up to plastochron 6) show C_3 gas exchange

(Fig. 1A) and a marked diurnal fluctuation of titratable tissue acidity (Fig. 2). During the light period, stomata were open and CO_2 was taken up whereas in the dark period there was little or no CO_2 uptake. Stomatal conductances paralleled the CO_2 uptake patterns in these leaves (Fig. 1B). Young leaves exhibited a diurnal fluctuation of the rate of respiration (Fig. 3). This increase in the rate of respiration at night may be due to an increase in nocturnal activity of certain respiratory enzymes (10). To confirm that the changes in O_2 consumption were the result of mitochondrial respiration, we examined O_2 exchange in the presence of malonate and succinate. As expected in the presence of malonate, a decrease in O_2 consumption was observed whereas succinate increased the rate of O_2 uptake (Table I; Fig. 3). These findings indicate that the observed O_2 uptake was the result of mitochondrial respiration.

The mean nocturnal respiration rate was $0.091 \ \mu$ mol O₂ consumed g⁻¹ fresh weight min⁻¹ estimated from the average of the rates shown in control 1 and control 2 of Figure 3. The rate of nocturnal acidification was 0.04 μ mol acid synthesized g⁻¹ fresh weight min⁻¹ estimated from the slope of the line in Figure 2 from 5:00 PM to 5:00 AM. This acidification rate was calculated assuming that the titrations required 2 μ eq of KOH per μ mol of malic acid. Acid fluctuations in this species have previously been shown to be due to malic acid (19). We calculated from the data of Table II that the amount of CO₂ taken up nocturnally was 17% of the CO₂ fixed photosynthetically. Our data also indicate that approximately 50% of the CO₂ released from respiration was refixed into acid (Table II).

The nocturnal CO₂ was estimated as follows: the RQ was assumed to be 1, since these plants primarily store and metabolize carbohydrates (4, 11). The difference between the mean measured RQ of 0.47 ± 0.095 (Table III) and unity should represent the CO₂ fixed into acid. If the ratio CO₂/O₂ = 0.47 then $R O_2 \times$ (0.47) = $R CO_2$ (rate of CO₂ evolution). $R CO_2$ calculated in this manner was subtracted from $R O_2$ (rate of O₂ consumption) to estimate a rate of 0.048 µmol g⁻¹ min⁻¹ CO₂ fixed into acid. This estimate of the CO₂ fixation rate is approximately equal to the measured rate of acid synthesis (0.04 µmol g⁻¹ min⁻¹).

Previous studies have indicated the occurrence of carbon recycling in CAM plants (5–7). In droughted plants of *Opuntia basilaris* Engelm. and Bigelov., stomata remained continuously closed (14). It was hypothesized that recycling of endogenous CO_2 prevented photooxidation of photosystems in high light (17). Martin and Zee (6) also proposed that *Talinum calycinum* Englem., a C₃ plant with CAM characteristics, has the ability to refix respiratory CO_2 at night. Their studies imply that the acid flux under nighttime stomatal closure results from refixation of respiratory CO_2 . They estimate that without this recycling of CO_2 , the nocturnal respiratory losses would be double those observed.

Winter *et al.* (21) examined the temperature effects on nocturnal carbon gain and nocturnal acid accumulation in three species of plants showing CAM. Their studies imply that conservation of carbon by recycling respiratory CO_2 is temperature dependent. Our data indicate that organic acid synthesis at night when stomata are closed in CAM-cycling plants is the result of refixation of respiratory CO₂. This refixation represents about 50% of the total nocturnal respiratory CO₂ and amounts to about 17% of the total photosynthetically fixed CO₂. Thus there is a substantial conservation of CO₂ in this CAM-cycling species.

Acknowledgments—We thank Jan Lippert for her assistance with the graphics. We also thank Dr. Carol J. Lovatt and Dr. J. K. M. Roberts for their critical comments on the manuscript, and Patti Zbesheski for her assistance in preparing the manuscript.

LITERATURE CITED

- DENIUS HR JR, PH HOMANN 1972 The relationship between photosynthesis, respiration, and crassulacean acid metabolism in leaf slices of *Aloe arbores*cens Mill. Plant Physiol 49: 873–880
- HOAGLAND DR, DI ARNON 1938 The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347. Berkeley, CA
- JOHNSON HB, PG ROWLANDS, IP TING 1978 Tritium and carbon-14 double isotope porometer for simultaneous measurements of transpiration and photosynthesis. Photosynthetica 13: 409-418
- 4. KLUGE M, IP TING 1978 Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation. Springer-Verlag, New York
- MARTIN CE, NL CHRISTENSEN, BR STRAIN 1981 Seasonal patterns of growth, tissue acid fluctuations, and ¹⁴CO₂ uptake in the Crassulacean acid metabolism epiphyte *Tillandsia usneoides* L. (Spanish moss). Oecologia 49: 322-328
- MARTIN CE, AK ZEE 1983 C₃ photosynthesis and Crassulacean acid metabolism in a Kansas rock outcrop succulent, *Talinum calycinum* Engelm. (Portulacaceae). Plant Physiol 73: 718-723
- MEDINA E 1974 Dark CO₂ fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28: 677–686
- OSMOND CB 1978 Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414
- OSMOND CB, JAM HOLTUM 1981 Crassulacean acid metabolism. In MD Hutch, NK Boardman, eds, The Biochemistry of Plants: A Comprehensive Treatise, Vol 8. Academic Press, New York, pp 283-328
- PIERRE JN, O QUEIROZ 1979 Regulation of glycolysis and level of the crassulacean acid metabolism. Planta 144: 143-151
- RANSOM SL, M THOMAS 1960 Crassulacean acid metabolism. Annu Rev Plant Physiol 11: 81–110
- RAYDER L, IP TING 1983 CAM-idling in Hoya carnosa (Asclepiadaceae). Photosynth Res 4: 203-211
- SIPES DL, IP TING 1985 Crassulacean acid metabolism and Crassulacean acid metabolism modifications in *Peperomia camptotricha*. Plant Physiol 77: 59– 63
- SZAREK SR, HB JOHNSON, IP TING 1973 Drought adaptation in *Opuntia* basilaris. Significance of recycling carbon through crassulacean acid metabolism. Plant Physiol 52: 539-541
- SZAREK SR, IP TING 1974 Seasonal patterns of acid metabolism and gas exchange in *Opuntia basilaris*. Plant Physiol 54: 76-81
- SZAREK SR, IP TING 1974 Respiration and gas exchange in stem tissue of Opuntia basilaris. Plant Physiol 54: 829-834
- TING IP 1985 Crassulacean acid metabolism. Annu Rev Plant Physiol 36: 595– 622
- TING IP, M GIBBS (eds) 1982 Crassulacean Acid Metabolism. American Society of Plant Physiologists, Rockville, MD
- TING IP, D SIPES 1985 Metabolic modification of Crassulacean acid metabolism CAM-idling and CAM-cycling. PW Ludden, JE Burris, eds, Nitrogen Fixation and CO₂ Metabolism. Elsevier, New York
- 20. UMBREIT WW, RH BURRIS, JF STAUFFER 1964 Manometric Techniques, Ed 4. Burgess Publishing, Minneapolis
- WINTER K, G SCHRÖPPEL-MEIER, MM CALDWELL 1986 Respiratory CO₂ as carbon source for nocturnal acid synthesis at high temperatures in three species exhibiting Crassulacean acid metabolism. Plant Physiol 81: 390-394