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Supplementary Methods 

1. Measures  

1.1. Main risky behaviour measure 

We closely follow the methods of ref 1 to derive a measure of risky behaviour based on 

participants’ self-reports across the drinking, smoking, driving, and sexual domains. 

Specifically, we use the following UK Biobank variables: 

● Number of alcoholic drinks per week (Data-Fields: 1558, 1568, 1578, 1588, 1598, 1608, 

5364, 4407, 4418, 4429, 4440, 4451, 4462) 

● Ever smoking (Data-Field 20116, 1249, 1239) 

● Frequency of driving faster than the motorway speed limit (Data-Field 1100) 

● Lifetime number of sexual partners (Data-Field 2149)1 

The full description of each Data-Field can be found in the online data showcase of the UKB 

(http://biobank.ctsu.ox.ac.uk/crystal/search.cgi). The annotated STATA code used to derive all 

behavioural phenotypes and control variables can be found in our pre-registered analysis plan 

(https://osf.io/qkp4g/). 

All variables above were measured on at least one of 3 occasions: (1) the initial assessment visit, 

(2) the first repeat assessment visit, and (3) the imaging visit. Data from (2) and (3) are only 

available for a subset of the original sample. In cases where participants provided answers 

across more than one visit, we compute the average of their reports. 

To obtain a measure that captures the common variance in risky behaviour shared across 

domains, we perform principal component analysis (PCA) on N = 315,855 UKB participants and 

extract the first principal component (PC) as our main outcome of interest for this study (referred 

to as “risky behaviour”). Compared to experimental procedures that elicit risk tolerance, self-

reported measures exhibit higher external validity and test-retest reliability3–5. Furthermore, by 

 
1 Self-reports of the number of sexual partners have been implicated in risky behaviours related to alcohol abuse (i.e., binge 
drinking) and unprotected sex, specifically in young adults 2, irrespective of gender or sexual orientation.  
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extracting the first principal component of the four risky behaviours, we reduce measurement 

noise due to the aggregation of signals across various measures, while capturing behavioural 

tendencies across domains that are independent of idiosyncratic differences in the four specific 

behaviours. The PCA summary statistics are available in Supplementary Table 1, and the 

component loadings are available in Supplementary Table 2. The first PC explained about 37% 

of the variance in the different phenotypes of risky behaviours in the sample, and it was the only 

PC that positively loaded on all of four phenotypes. Data distribution was assumed to be normal 

but this was not formally tested. 

While the GWAS by Linnér et al. (2019)1, was primarily based on a meta-analysis of two very 

crude, noisy, single-item measures of risk taking that were available in the two largest samples 

(UKB and 23andMe, which had slightly different questions on risk taking), this choice (in the 

GWAS) was made to maximize the sample size for genetic discovery, following the logic outlined 

in ref 6, i.e., that in genetic discovery studies, sample size typically trumps phenotypic accuracy 

in terms of statistical power. (The supplementary material of ref 6 includes a mathematical 

derivation that illustrates this). In the current work, we also wanted to maximize statistical power, 

albeit the situation here is different, as the sample size was exogenously determined by the UKB. 

Thus, the only means to increase statistical power was via increasing the quality of the 

phenotypic measurement. We decided to focus on the first PC of the four risky behaviours 

introduced in Linnér et al. (2019) for the following reasons: (1) It is available for a large part of the 

scanned subsample. (2) Linnér et al. (2019) showed that this first PC has a higher SNP-based 

heritability than any of the general risk-taking measures or individual phenotypes, which is partly 

because the first PC is less affected by random measurement error than any input variable 

considered separately. (3) The high heritability of the first PC suggests that similar genetic factors 

influence risk taking across various domains, making this a promising trait to study in connection 

with other biomarkers such as brain anatomy. (4) This variable has been studied in the literature, 

limiting our degrees of freedom for the current study. (5) GWAS results for this variable were 

readily available.6 
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1.2 Control Variables 

All of our analyses systematically control for several genetic, socio-demographic and 

anthropometric factors that could potentially confound the observed associations [e.g. sex7, 

height8 and genetic population structure9]. Specifically, we use the following control variables, 

as provided by the UKB: 

● Age at the time of brain scan (Data-Field 21003) 

● Birth year (Data-Field 33) 

● Sex (self reported and genetically identified, Data-Fields 31 & 22001, dummy coded) 

● Height (Data-Field 50) 

● Handedness (Data-Field 1707, categorical variable: Right-handed, Left-handed, 

ambidextrous, N/A) 

● Sex x birth year interactions (binned into fields containing at least 20 participants each) 

● The first 40 PCs of the genetic data (Data-Field 22009) 

● Total intracranial volume (TIV), derived using the CAT12 toolbox from T1 images. 

We carry out an additional analysis that further controls for the following socio-economic and 

cognitive outcomes (provided by the UKB): 

● Educational attainment (Data-Field 6138) 

● A 13-item measure of fluid IQ (Data-Fields 20016 and 20191) 

● Zip-code level measure of the Townsend social deprivation index (Data-Field 189) 

● Household income (Data-Field 738)  

● Number of household members (Data-Field 709) 

● Place of birth, binned in 100 clusters based on North and East birth location 

coordinates (Data-Fields 129 and 130). Clusters were calculated using the k-means 

algorithm, which minimizes within-cluster variances (squared Euclidean distances) of k 

= 100 clusters with 10,000 iterations after random seeding. 
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The empirical distributions of the main variables used in our main analysis and the correlations 

between them are depicted in Figure 1B and Extended Data Figure 1 and 2. Data distributions 

were assumed to be normal but this was not formally tested. 

1.3 Imaging-derived Phenotypes (IDPs) 

1.3.1 T1 MRI Image Processing 

Our voxel-level analysis uses T1-weighted structural brain MRI images in NIFTI format provided 

by the UKB (data field 20252). The images were acquired using 3-T Siemens Skyra scanners, 

with a 32-channel head coil (Siemens, Erlangen, Germany), with the following scanning 

parameters: repetition time = 2000 ms; echo time = 2.1 ms; flip angle = 8°; matrix size = 256 × 

256 mm; voxel size = 1 × 1 × 1 mm; number of slices = 208. 

We preprocessed the data using the Computational Anatomy Toolbox (CAT; www.neuro.uni-

jena.de/cat/) for SPM (www.fil.ion.ucl.ac.uk/spm/software/spm12/), a fully automated toolbox 

for deriving neuroanatomical measurements at voxel and ROI levels. Image pre-processing used 

the default setting of CAT12 (accessible online at http://www.neuro.uni-jena.de/cat12/CAT12-

Manual.pdf). Images were corrected for bias-field inhomogeneities, segmented into gray matter, 

white matter, and cerebrospinal fluid (CSF), spatially normalized to the MNI space using linear 

and non-linear transformations, and were modulated to preserve the total amount of signal in 

the original image during spatial normalization (the specific SPM-processing parameters can be 

found in the pre-registered document on OSF https://osf.io/qkp4g/). We applied spatial 

smoothing with 8-mm Full-Width-at-Half-Maximum (FWHM) Gaussian kernel for the segmented, 

modulated images for grey matter volume (GMV). Finally, to ensure that only voxels that likely 

contain grey matter enter the analyses, we constructed a brain mask based on the average of 

all GMV images. Specifically, following standard VBM procedures (see SPM/CAT12 

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) we thresholded the average of all brain 

images at 250 GMV intensity units. The resulting image was binarized and applied as a pre-mask 

to all individual images before running analyses. Additionally, on an individual level, we excluded 

all voxels that exhibited a lower grey matter volume than .1 from the analyses (see standard 
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parameters of SPM/CAT12 http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). Data 

distributions were assumed to be normal but this was not formally tested. To illustrate the results 

of the GMV analyses, we used a standard MNI brain template based on Fonov et al (2011)10. 

1.3.2 Region of interest (ROI)-level IDPs Processed by the UKB 

We use all of the GMV IDPs that were processed and provided by the UKB [for details see ref 

11]. These IDPs include GMV of 139 ROIs derived using parcellations from the Harvard-Oxford 

cortical and subcortical atlases, and Diedrichsen cerebellar atlas. Data distributions were 

assumed to be normal but this was not formally tested. 

1.3.3 Additional ROI-level IDPs 

Based on our voxel-level results (see 2.1), we extracted 5 additional ROI-level IDPs that 

quantified GMV in anatomical substructures that were not derived by the UKB. These ROIs were 

extracted bilaterally from unbiased masks and included the dorsolateral prefrontal cortex (dlPFC; 

BA 46), hypothalamus, posterior hippocampus, ventro-anterior insula and ventromedial 

prefrontal cortex (vmPFC). For the dlPFC, ventro-anterior insula and vmPFC masks, we used 

recent functional parcellations based on resting state data. The dlPFC mask was derived using 

the Sallet Dorsal Frontal resting state connectivity-based parcellation (cluster 7/BA46)12. 

Functionally, this area exhibits coupling with the frontal-parietal network (incl. anterior cingulate 

cortex, parietal cortex and inferior parietal lobe), as well as with the vmPFC. Anatomically, its 

boundaries show resemblance to BA 46 — an area functionally related to executive function that 

shows distinct cytoarchitectonic properties. 

We extracted GMV from the vmPFC using a parcellation of the medial wall of the prefrontal 

cortex, based on resting state functional coupling13. Specifically, we extracted GMV from 14m 

— an area linked to cost-benefit integration in value-based decision-making14–17, which maintains 

strong positive coupling with hypothalamus, ventral striatum, and amygdala18. The hypothalamus 

mask was derived from a high-resolution atlas of human subcortical brain nuclei19. The posterior 

hippocampus mask was derived according to recent recommendations for long-axis 

segmentation of the hippocampus in human neuroimaging20. We labeled hippocampal voxels 
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posterior to the coronal plane at y = -21 in MNI space (which corresponds to the uncal apex of 

the parahippocampal gyrus), as posterior hippocampus. To ensure spatial precision across 

participants, we used a minimum 80% likelihood of each voxel being in the anatomical structure 

for all of the aforementioned masks. The ventro-anterior insula mask was derived following a 

recent parcellation of the insula based on a resting state functional connectivity analysis by ref 

21, which reported that this brain region showed functional coactivation with limbic areas 

including amygdala, ventral tegmental area (VTA), superior temporal sulcus, and posterolateral 

orbitofrontal cortex. The raw mask was thresholded at z = 10. 

 

1.4 Polygenic Risk Score (PRS) for Risky behaviour 

We use the genetic data provided by the UKB to construct a polygenic risk score (PRS) for risky 

behaviour. As a first step, we rerun the genome-wide association study (GWAS) of risky 

behaviour (the same measure used in the current study) as reported in ref 1 after excluding the 

18,796 genotyped individuals with usable T1 NIFTI structural brain images (UKB field 20252) and 

all of their relatives up to the third degree (defined using the KING coefficient22 based on a 

pairwise coefficient >0.0442). The final GWAS sample includes 297,025 individuals of European 

ancestry. We use BOLT-LMM version 2.3.223 to perform GWAS with linear mixed models (LMM), 

which outperforms linear regression in terms of statistical power and controlling for 

relatedness24. 

Next, we perform quality control (QC) of the GWAS results using a standardized QC protocol, 

described in detail in ref 1. This protocol removes rare and low-quality single-nucleotide 

polymorphisms (SNPs) based on minor allele frequency (MAF) < 0.001, imputation quality (INFO) 

< 0.7, and SNPs that could not be aligned with the Haplotype Reference Consortium (HRC) 

reference panel. After QC, a total of 11,514,220 SNPs remains in the GWAS summary statistics. 

Thereafter, we calculate for each participant i a PRS, 𝑆!, by weighting his or her genotype across 

SNPs (j), 𝑔!", by the corresponding regression coefficients, 𝛽" estimated in the GWAS described 

above. Thus, the PRS is a linear combination of genetic effects, calculated as: 
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𝑆! = ∑ 𝛽"𝑔!"#
"$1 , 

where the set of SNPs, M, is restricted to the consensus genotype set of 1.4 million SNPs 

established by the International HapMap 3 Consortium25, which has been successfully employed 

for polygenic prediction in many previous studies. Furthermore, the PRS is constructed only with 

autosomal, bi-allelic SNPs with MAF > 0.01 and INFO > 0.9 in the UKB. The resultant PRS is 

based on a total of M=1,176,729 SNPs. The PRS is then standardized to mean zero and unit 

variance in the prediction sample. Data distribution was assumed to be normal but this was not 

formally tested. 

1.5 Genetic Correlations of Risky behaviour 

We rely on the results of the risky behaviour GWAS to estimate genetic correlations between this 

phenotype and 85 other traits, using bivariate LD Score regression26. The estimates are reported 

in Supplementary Table 3. For this purpose, we query the “GWAS ATLAS”27 to identify publicly 

archived GWAS results that we consider relevant. We supplement the publicly available GWAS 

with a soon-to-be published GWAS on diet composition28. Notably, the collected traits span 

across many different outcomes, including the anthropometric, behavioural, cognitive, 

psychiatric, medical, and socioeconomic domains.  

We find moderate to strong genetic correlations between our main measure and a range of 

phenotypes that are considered risky behaviours, including ever consuming cannabis (rg = 0.72; 

SE = 0.03), self-employment (rg = 0.52; SE = 0.30), and age at first sexual experience (rg = –0.54; 

SE = 0.02). Our measure of risky behaviour is also genetically correlated with a range of mental 

disorders including bipolar disorder (rg = 0.23; SE = 0.03), major depressive disorder (rg = 0.22; 

SE = 0.03), and schizophrenia (rg = 0.17; SE = 0.02). Finally, risky behaviour is genetically 

correlated in the expected direction with the personality traits of conscientiousness (rg = –0.25; 

SE = 0.10) and extraversion (rg = 0.34; SE = 0.05). 

 

2. Pre-registration of Analysis Plan and Unplanned Deviations 
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We pre-registered our analysis plan on Open Science Framework (OSF, https://osf.io/qkp4g/). 

Our pre-registered plan specifies the construction of the dependent variable, the control 

variables, the inclusion criteria and quality controls, the VBM analyses and the main ROI-level 

analyses. 

We deviated from the pre-registered plan in several cases, which are outlined in the 

following. These deviations occurred when the computational burden of following the pre-

registered plan was unexpectedly high, and when alternative measures that we were not aware 

of at the time of the pre-registration were made available by the UKB. Specifically, we decided 

not to use alternative segmentations of the cortex (e.g. Hammer’s atlas) as robustness checks 

for our ROI-level analysis because of the significant computational burden in deriving those 

measures. Instead, based on the voxel-level analysis, we derived additional ROIs only when they 

were not derived in sufficient granularity in the IDPs provided by the UKB (see 1.3.3). 

Similarly, we did not derive cortical thickness (CT) measures because of the high 

computational burden using FreeSurfer, which is the gold standard in cortical thickness 

estimation. While other means to derive CT would have been available (e.g. CAT toolbox), they 

would provide relatively lower quality data and would not allow analyses of subcortical areas. 

Additionally, the UKB was expected to release CT measures derived from FreeSurfer before this 

work was finalized (see the UKB Data Showcase website for public announcements). The lack 

of CT measures has also led us to decide to postpone the conduct of an additional pre-registered 

multivariate analysis. 

Finally, our pre-registered plan states that we would run additional robustness checks to 

control for potential neurotoxic effects of excessive alcohol intake. Upon examining the data for 

a different project that is focused on the effects of alcohol intake on the brain, we observed 

effects that were mainly driven by individuals who were heavy drinkers. We therefore decided to 

deviate from our original plan and exclude all participants who qualified as current or former 

regular heavy drinkers. However, we also provide additional analyses that include weekly alcohol 

intake and smoking habits as a covariate (see Extended Data Figure 6). Finally, the pre-registered 
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analysis of white-matter volume is not reported here, because we decided to focus our 

manuscript on GMV differences. 

 

Supplementary Discussion 

Our study highlights the importance of using large samples to study associations of 

neuroanatomy with complex behavioural traits. The largest effect we identify for the relationship 

between any cluster of voxels and risky behaviour is ΔR2 = 0.6% (see Supplementary Table 4). It 

would require more than 1,750 participants to have 90% statistical power at a liberal p-value 

threshold of 0.05 (uncorrected) to identify effects of this magnitude. This is a lower bound for the 

required sample size for such studies that does not reflect the upward bias in our effect size 

estimate due to the statistical “winner’s curse”, and the need to correct for multiple testing. 

Previous large-scale VBM studies (N > 1000) with other behavioural phenotypes29 found effect 

sizes of similar magnitude and suggest that large samples are a prerequisite to detect such an 

association reliably. Of note, the largest previous study of risk tolerance employed a sample of 

108 participants30 and would have only 12% power to detect ΔR2 = 0.6% at α = 0.05 

(uncorrected). 

A possible limitation of our study is that, the specific features of the component 

phenotypes (e.g., smoking) rather than their first PC (risky behaviour) could have driven the 

associations we report (quantified via standardized regression coefficients). To further 

investigate this possibility, we repeat our ROI-based analysis with the individual phenotypic 

measures (instead of their first PC) as outcome variables (see Supplementary Table 6). We find 

that 22 out of 23 ROIs are significantly associated with more than one phenotype (the exception 

is IX Cerebellum (r), which is significantly associated only with the number of sexual partners, yet 

the standardized coefficient denoting its relationship with the first PC is greater in magnitude 

than the coefficient denoting its relationship with the number of sexual partners). Furthermore, 

the standardized coefficients quantifying the relationships between the ROIs and the individual 
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phenotypes are either smaller than or at the same order of magnitude as the coefficients 

quantifying their relationship with the first PC. 

While our study is larger and more representative than any previous investigation of the 

topic, and although we control for various potential confounds and replicate our findings in an 

independent sample, it was conducted in a population of UK individuals of European descent 

that were over 40 years old at the time of measurement, which limits the generalizability of our 

results to other populations. Moreover, our results do not exclude the possibility of bias due to 

other unobserved variables that our analyses do not account for. With the rise of large publicly 

available data sets [e.g. ref 31], we hope that future studies will be able to test the generalizability 

of our findings to populations of different ethnicities and age groups (e.g., adolescents).  

Finally, while our analyses identify distinct brain areas that mediate gene-phenotype 

associations for risky behaviour (i.e., putamen, hypothalamus and dlPFC), they do not provide 

evidence for their causal relationship. For instance, it is possible that a person’s genetic 

disposition would lead them to select into environments that influence both risky behaviour and 

features of brain anatomy. 
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Supplementary Table 1 | Eigenvalues of the four Principal Components of Risky Behaviours 
 

Component Eigenvalue 
Cumulative Variance 

Explained 

Component 1 1.474 0.3685 

Component 2 0.975 0.6121 

Component 3 0.819 0.817 

Component 4 0.732 1 

 
 
 
Supplementary Table 2 | Eigenvectors of the four Principal Components of Risky Behaviours 
 

Variable Comp1 Comp2 Comp3 Comp4 

Speeding 0.4096 0.7643 0.1402 0.4779 

Sexual behaviour 0.5543 0.1448 -0.6327 -0.5211 

Drinking 0.5351 -0.1876 0.7339 -0.374 

Smoking 0.4885 -0.5998 -0.2036 0.6002 
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Supplementary Table 3 | Genetic correlations (rg) between risky behaviour (GWAS N = 297,025) 

and 85 traits, estimated using bivariate LD Score regression. All P values are based on two-sided 

statistical tests. 

Trait Category Genetic 
correlation (rg) 

SE(rg) Z P 
value 

Number of sexual partners Mental & Behavioral 0.807 0.009 87.168 <0.001 
Smoking initiation Mental & Behavioral 0.746 0.013 59.671 <0.001 
Ever cannabis Mental & Behavioral 0.721 0.025 29.382 <0.001 
Drinks per week Mental & Behavioral 0.698 0.016 44.726 <0.001 
Alcohol dependence Mental & Behavioral 0.613 0.063 9.668 <0.001 
Maternal smoking around birth Mental & Behavioral 0.581 0.026 22.676 <0.001 
General risk tolerance Mental & Behavioral 0.559 0.021 26.176 <0.001 
Self-employment Mental & Behavioral 0.517 0.304 1.703 0.089 
Automobile speeding propensity Mental & Behavioral 0.513 0.02 26.189 <0.001 
Suicide attempt Mental & Behavioral 0.473 0.069 6.857 <0.001 
Antisocial behaviour Mental & Behavioral 0.453 0.143 3.179 0.002 
Cannabis use disorder Mental & Behavioral 0.442 0.097 4.559 <0.001 
Leisure/social  activities: Pub or 
social club Mental & Behavioral 0.433 0.028 15.272 <0.001 
Own or rent accommodation lived 
in: Own with a mortgage Mental & Behavioral 0.409 0.039 10.598 <0.001 
Townsend deprivation index Mental & Behavioral 0.401 0.046 8.793 <0.001 
Own or rent accommodation lived 
in: Rent - from private landlord or 
letting  agency Mental & Behavioral 0.35 0.073 4.803 <0.001 
Extraversion Mental & Behavioral 0.338 0.054 6.284 <0.001 
Stress-related disorder Mental & Behavioral 0.308 0.043 7.084 <0.001 
Psychiatric cross-disorder Mental & Behavioral 0.256 0.036 7.121 <0.001 
Bipolar disorder Mental & Behavioral 0.226 0.027 8.348 <0.001 
Post-traumatic stress disorder Mental & Behavioral 0.198 0.052 3.805 0.0001 
Smoking cessation Mental & Behavioral 0.19 0.033 5.809 <0.001 
Major depressive disorder Mental & Behavioral 0.18 0.025 7.336 <0.001 
Schizophrenia Mental & Behavioral 0.167 0.021 7.979 <0.001 
Anxiety Disorder Case-Control Mental & Behavioral 0.163 0.082 1.989 0.047 
Insomnia Mental & Behavioral 0.149 0.027 5.612 <0.001 
Leisure/social activities: Sports club 
or gym Mental & Behavioral 0.143 0.034 4.188 <0.001 
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Anxiety Disorder FactorScore Mental & Behavioral 0.116 0.087 1.331 0.183 
Cigarettes per day Mental & Behavioral 0.112 0.031 3.679 <0.001 
Own or rent accommodation lived 
in: Rent - from local authority, local 
council, housing association Mental & Behavioral 0.098 0.035 2.793 0.005 
Openness Mental & Behavioral 0.076 0.06 1.263 0.206 
Autism spectrum disorder (ASD) Mental & Behavioral 0.048 0.039 1.231 0.218 
Intelligence Mental & Behavioral 0.039 0.023 1.679 0.093 
Household income Mental & Behavioral 0.03 0.037 0.815 0.415 
Neuroticism Mental & Behavioral -0.012 0.059 -0.21 0.834 
Anorexia Mental & Behavioral -0.022 0.032 -0.698 0.485 
Educational attainment Mental & Behavioral -0.028 0.02 -1.382 0.167 
Tourette's syndrome Mental & Behavioral -0.03 0.042 -0.731 0.465 
Friendships satisfaction Mental & Behavioral -0.057 0.034 -1.705 0.088 
Leisure/social activities: Adult 
education class Mental & Behavioral -0.057 0.04 -1.414 0.157 
Childhood intelligence Mental & Behavioral -0.073 0.056 -1.299 0.194 
Sleep duration Mental & Behavioral -0.081 0.023 -3.579 <0.001 
Obsessive compulsive disorder Mental & Behavioral -0.105 0.05 -2.103 0.036 
Subjective well-being Mental & Behavioral -0.108 0.035 -3.06 0.002 
Chronotype Mental & Behavioral -0.162 0.022 -7.357 <0.001 
Family relationship satisfaction Mental & Behavioral -0.247 0.037 -6.728 <0.001 
Leisure/social activities: Religious 
group Mental & Behavioral -0.251 0.026 -9.564 <0.001 
Conscientiousness Mental & Behavioral -0.251 0.101 -2.497 0.013 
Own outright (by you or someone in 
your household) Mental & Behavioral -0.365 0.028 -12.865 <0.001 
Agreeableness Mental & Behavioral -0.386 0.399 -0.969 0.333 
Age of smoking initiation Mental & Behavioral -0.401 0.029 -13.946 <0.001 
Age at first sex Mental & Behavioral -0.536 0.018 -29.502 <0.001 
Coronary artery disease Circulatory 0.069 0.021 3.307 <0.001 
Blood pressure Circulatory -0.06 0.02 -3.034 0.002 
Heart rate Circulatory -0.074 0.019 -3.798 <0.001 
Age of first facial hair (male) Dermatologic 0.1 0.028 3.585 <0.001 
Stomach or abdominal pain Digestive 0.043 0.037 1.151 0.249 
Fat (diet composition) Digestive 0.009 0.038 0.221 0.825 
Protein (diet composition) Digestive -0.016 0.039 -0.411 0.681 
Sugar (diet composition) Digestive -0.327 0.032 -10.168 <0.001 
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Carbohydrates (diet composition) Digestive -0.53 0.028 -18.795 <0.001 
Waist-to-hip ratio (WHR) Endocrine & Metabolic 0.089 0.019 4.685 <0.001 
Body mass index Endocrine & Metabolic 0.066 0.019 3.424 <0.001 
Type 2 diabetes Endocrine & Metabolic -0.017 0.022 -0.793 0.428 
Chronic kidney disease Endocrine & Metabolic -0.157 0.066 -2.39 0.017 
Age at menarche Genitourinary 0.054 0.024 2.302 0.021 
Age at menopause Genitourinary -0.084 0.028 -2.969 0.003 
Mother's age at death Longevity -0.164 0.062 -2.645 0.008 
Parental lifespan Longevity -0.169 0.029 -5.943 <0.001 
Fathers age at death Longevity -0.188 0.038 -4.994 <0.001 
Hip pain Musculoskeletal 0.183 0.038 4.841 <0.001 
Back pain Musculoskeletal 0.173 0.028 6.095 <0.001 
Knee pain Musculoskeletal 0.143 0.028 5.038 <0.001 
Neck or shoulder pain Musculoskeletal 0.132 0.03 4.392 <0.001 
Height Musculoskeletal 0.065 0.014 4.633 <0.001 
Infant birth weight Musculoskeletal 0.053 0.025 2.133 0.033 
Infant head circumference Musculoskeletal 0.036 0.061 0.588 0.557 
Rheumatoid arthritis Musculoskeletal -0.018 0.032 -0.547 0.585 
Cancer (diagnosed by doctor) Neoplasms 0.113 0.051 2.222 0.026 
Alzheimer's disease Neurological 0.032 0.042 0.749 0.454 
Parkinson's disease Neurological -0.022 0.054 -0.395 0.693 
Headache Neurological -0.085 0.03 -2.89 0.004 
Asthma Respiratory 0.074 0.024 3.111 0.002 
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Supplementary Table 4 | Association between risky behaviour and grey matter volumes (GMV) 

in clusters of voxels (N = 12,675). Depicted are the summarized regression statistics per cluster. 

ΔR2 indicates the marginal increase in variance explained compared to a model that excludes 

GMV from the respective cluster. The corresponding coordinates of the peak activation in each 

cluster can be found in Extended Data Figure 3. 

 Cluster 𝜷 95% CI SE Puncorr T(12,562) R2 ΔR2 

1 -0.115 [-0.14,-0.091] 0.013 1.15×10-19 -9.089 0.048 0.006 

2 -0.108 [-0.133,-0.084] 0.013 1.15×10-17 -8.571 0.048 0.006 

3 -0.064 [-0.082,-0.045] 0.010 3.01×10-11 -6.652 0.045 0.003 

4 -0.061 [-0.08,-0.042] 0.010 2.06×10-10 -6.362 0.045 0.003 

5 -0.078 [-0.098,-0.057] 0.011 3.66×10-13 -7.275 0.046 0.004 

6 -0.072 [-0.093,-0.051] 0.011 2.21×10-11 -6.697 0.045 0.003 

7 -0.054 [-0.073,-0.035] 0.010 1.46×10-08 -5.670 0.044 0.002 

8 -0.066 [-0.089,-0.042] 0.012 4.11×10-08 -5.490 0.044 0.002 

9 -0.066 [-0.087,-0.045] 0.011 7.64×10-10 -6.157 0.045 0.003 

10 -0.064 [-0.085,-0.043] 0.011 2.6×10-09 -5.960 0.045 0.003 

11 -0.066 [-0.088,-0.044] 0.011 4.50×10-09 -5.869 0.045 0.003 

12 -0.061 [-0.081,-0.04] 0.011 9.33×10-09 -5.746 0.044 0.003 

13 -0.057 [-0.077,-0.036] 0.010 4.77×10-08 -5.463 0.044 0.002 

14 -0.053 [-0.072,-0.033] 0.010 1.06×10-07 -5.319 0.044 0.002 

15 -0.054 [-0.074,-0.034] 0.010 1.14×10-07 -5.306 0.044 0.002 

16 -0.052 [-0.071,-0.032] 0.010 3.44×10-07 -5.100 0.044 0.002 
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17 -0.051 [-0.071,-0.032] 0.010 3.42×10-07 -5.102 0.044 0.002 

18 -0.051 [-0.07,-0.031] 0.010 3.66×10-07 -5.088 0.044 0.002 

19 -0.050 [-0.07,-0.03] 0.010 6.84×10-07 -4.969 0.044 0.002 

20 -0.049 [-0.068,-0.03] 0.010 6.23×10-07 -4.987 0.044 0.002 

21 -0.049 [-0.068,-0.029] 0.010 1.19×10-06 -4.870 0.044 0.002 
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Supplementary Table 5 | Effect sizes (standardized betas) and 95% confidence interval 

(uncorrected) of associations between risky behaviour and grey matter volumes (GMV) in 23 

ROIs, with and without controlling for cognitive and socioeconomic outcomes (N = 11,864). 

Additional controls include education years, fluid IQ, zip-code level social deprivation, household 

income, number of household members, birth location. Both models include all standard 

controls. The sample size of the analysis with additional controls is reduced due to missing data 

for some variables. *FWE-rate of 5%; **FWE-rate of 1%.  

ROI 
Risky behaviour 

(with additional controls) 
Risky behaviour 

(with standard controls) 

vmPFC (l) 
-0.055** [-0.081, -0.03] 

 t(11,647) = -4.27 puncorr = 2.01 ´ 10-5 
-0.056** [-0.08, -0.031] 

 t(12,562) = -4.44 puncorr = 8.88 ´ 10-6 

dlPFC (r) (BA46) 
-0.065** [-0.087, -0.044] 

 t(11,647) = -5.98 puncorr = 2.29 ´ 10-9 
-0.065** [-0.086, -0.044] 

 t(12,562) = -6.15 puncorr = 7.91 ´ 10-10 

dlPFC (l) (BA46) 
-0.044** [-0.066, -0.022] 

 t(11,647) = -3.93 puncorr = 8.64 ´ 10-5 
-0.048** [-0.069, -0.027] 

 t(12,562) = -4.44 puncorr = 8.96 ´ 10-6 

Precentral Gyrus (r) 
-0.057** [-0.079, -0.036] 

 t(11,647) = -5.17 puncorr = 2.37 ´ 10-7 
-0.061** [-0.082, -0.04] 

 t(12,562) = -5.65 puncorr = 1.6 ´ 10-8 

Cuneal Cortex (l) 
-0.031 [-0.051, -0.012] 

 t(11,647) = -3.18 puncorr = 1.46 ´ 10-3 
-0.038** [-0.057, -0.02] 

 t(12,562) = -4 puncorr = 6.48 ´ 10-5 

Hypothalamus 
-0.066** [-0.087, -0.044] 

 t(11,647) = -6.02 puncorr = 1.84 ´ 10-9 
-0.068** [-0.089, -0.047] 

 t(12,562) = -6.41 puncorr = 1.53 ´ 10-10 

Putamen (l) 
-0.057** [-0.076, -0.039] 

 t(11,647) = -6.06 puncorr = 1.4 ´ 10-9 
-0.061** [-0.079, -0.043] 

 t(12,562) = -6.67 puncorr = 2.69 ´ 10-11 

Putamen (r) 
-0.055** [-0.073, -0.036] 

 t(11,647) = -5.79 puncorr = 7.34 ´ 10-9 
-0.055** [-0.073, -0.037] 

 t(12,562) = -5.98 puncorr = 2.34 ´ 10-9 

Amygdala (l) 
-0.073** [-0.095, -0.051] 

 t(11,647) = -6.39 puncorr = 1.77 ´ 10-10 
-0.072** [-0.094, -0.051] 

 t(12,562) = -6.54 puncorr = 6.34 ´ 10-11 

Amygdala (r) 
-0.066** [-0.089, -0.043] 

 t(11,647) = -5.73 puncorr = 1.01 ´ 10-8 
-0.073** [-0.095, -0.051] 

 t(12,562) = -6.58 puncorr = 4.85 ´ 10-11 

Ventral Striatum (l) 
-0.045** [-0.066, -0.024] 

 t(11,647) = -4.23 puncorr = 2.31 ´ 10-5 
-0.048** [-0.068, -0.027] 

 t(12,562) = -4.61 puncorr = 4.16 ´ 10-6 

Ventral Striatum (r) 
-0.052** [-0.072, -0.031] 

 t(11,647) = -4.81 puncorr = 1.5 ´ 10-6 
-0.053** [-0.074, -0.033] 

 t(12,562) = -5.12 puncorr = 3.17 ´ 10-7 

Brain-Stem 
-0.035 [-0.055, -0.015] 

 t(11,647) = -3.43 puncorr = 6.11 ´ 10-4 
-0.041** [-0.061, -0.022] 

 t(12,562) = -4.15 puncorr = 3.4 ´ 10-5 

Crus I Cerebellum (l) 
-0.039* [-0.059, -0.019] 

 t(11,647) = -3.89 puncorr = 9.88 ´ 10-5 
-0.04** [-0.059, -0.02] 

 t(12,562) = -4.05 puncorr = 5.2 ´ 10-5 

Crus II Cerebellum (l) 
-0.041** [-0.06, -0.021] 

 t(11,647) = -4.13 puncorr = 3.59 ´ 10-5 
-0.038** [-0.057, -0.02] 

 t(12,562) = -4 puncorr = 6.45 ´ 10-5 

VIIb Cerebellum (l) 
-0.055** [-0.074, -0.036] 

 t(11,647) = -5.71 puncorr = 1.17 ´ 10-8 
-0.054** [-0.072, -0.035] 

 t(12,562) = -5.72 puncorr = 1.12 ´ 10-8 
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VIIb Cerebellum (r) 
-0.044** [-0.063, -0.025] 

 t(11,647) = -4.48 puncorr = 7.67 ´ 10-6 
-0.042** [-0.06, -0.023] 

 t(12,562) = -4.4 puncorr = 1.08 ´ 10-5 

VIIIa Cerebellum (l) 
-0.053** [-0.072, -0.034] 

 t(11,647) = -5.45 puncorr = 5.06 ´ 10-8 
-0.05** [-0.069, -0.032] 

 t(12,562) = -5.31 puncorr = 1.13 ´ 10-7 

VIIIa Cerebellum (r) 
-0.052** [-0.071, -0.032] 

 t(11,647) = -5.31 puncorr = 1.15 ´ 10-7 
-0.048** [-0.067, -0.03] 

 t(12,562) = -5.13 puncorr = 2.99 ´ 10-7 

IX Cerebellum (r) 
-0.038** [-0.056, -0.019] 

 t(11,647) = -4 puncorr = 6.43 ´ 10-5 
-0.036** [-0.054, -0.018] 

 t(12,562) = -3.92 puncorr = 8.93 ´ 10-5 

Ventroanterior Insula (r) 
-0.079** [-0.104, -0.055] 

 t(11,647) = -6.29 puncorr = 3.34 ´ 10-10 
-0.079** [-0.103, -0.055] 

 t(12,562) = -6.43 puncorr = 1.34 ´ 10-10 

Ventroanterior Insula (l) 
-0.068** [-0.093, -0.042] 

 t(11,647) = -5.24 puncorr = 1.66 ´ 10-7 
-0.065** [-0.09, -0.041] 

 t(12,562) = -5.24 puncorr = 1.65 ´ 10-7 

Planum Polare (l) 
-0.039* [-0.06, -0.018] 

 t(11,647) = -3.68 puncorr = 2.36 ´ 10-4 
-0.043** [-0.063, -0.022] 

 t(12,562) = -4.13 puncorr = 3.68 ´ 10-5 
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Supplementary Table 6 | Effect sizes (standardized betas) and the corresponding 95% 

confidence interval (uncorrected) of the associations between grey matter volumes in 23 ROIs 

and individual phenotypes of risky behaviour (N=12,675). Models include all of the standard 

control variables. *FWE-rate of 5 %; **FWE-rate of 1%. 

ROI Risky behaviour Drinks Weekly Speeding 
# Lifetime 

sexual partners Ever Smoked 

vmPFC (l) 

-0.056** [-0.08, -0.031] 
 t(12,562) = -4.44  
puncorr = 8.88 ´ 10-6 

-0.062** [-0.086, -0.038] 
 t(12,562) = -5.12 

 puncorr = 3.08 ´ 10-7 

0.022 [-0.003, 0.046] 
 t(12,562) = 1.73 

 puncorr = 8.31 ´ 10-2 

-0.038* [-0.062, -0.014] 
 t(12,562) = -3.07 

 puncorr = 2.17 ´ 10-3 

-0.057** [-0.081, -0.032] 
 t(12,562) = -4.48 

 puncorr = 7.57 ´ 10-6 

dlPFC (r) 
(BA46) 

-0.065** [-0.086, -0.044] 
 t(12,562) = -6.15  

puncorr = 7.91 ´ 10-10 

-0.056** [-0.076, -0.036] 
 t(12,562) = -5.49 

 puncorr = 4.15 ´ 10-8 

-0.003 [-0.024, 0.017] 
 t(12,562) = -0.31 

 puncorr = 7.54 ´ 10-1 

-0.046** [-0.067, -0.026] 
 t(12,562) = -4.48 
 puncorr = 7.5 ´ 10-6 

-0.051** [-0.071, -0.03] 
 t(12,562) = -4.75 

 puncorr = 2.07 ´ 10-6 

dlPFC (l) (BA46) 

-0.048** [-0.069, -0.027] 
 t(12,562) = -4.44  
puncorr = 8.96 ´ 10-6 

-0.052** [-0.072, -0.031] 
 t(12,562) = -5 

 puncorr = 5.95 ´ 10-7 

0.005 [-0.016, 0.026] 
 t(12,562) = 0.49 

 puncorr = 6.23 ´ 10-1 

-0.032* [-0.053, -0.012] 
 t(12,562) = -3.05 

 puncorr = 2.26 ´ 10-3 

-0.038** [-0.06, -0.017] 
 t(12,562) = -3.53 
 puncorr = 4.1 ´ 10-4 

Precentral 
Gyrus (r) 

-0.061** [-0.082, -0.04] 
 t(12,562) = -5.65  
puncorr = 1.6 ´ 10-8 

-0.075** [-0.095, -0.054] 
 t(12,562) = -7.21 

 puncorr = 6.03 ´ 10-13 

0.013 [-0.008, 0.034] 
 t(12,562) = 1.19 

 puncorr = 2.32 ´ 10-1 

-0.029 [-0.05, -0.008] 
 t(12,562) = -2.72 

 puncorr = 6.48 ´ 10-3 

-0.062** [-0.083, -0.041] 
 t(12,562) = -5.7 

 puncorr = 1.21 ´ 10-8 

Cuneal Cortex 
(l) 

-0.038** [-0.057, -0.02] 
 t(12,562) = -4  

puncorr = 6.48 ´ 10-5 

-0.041** [-0.059, -0.022] 
 t(12,562) = -4.39 

 puncorr = 1.14 ´ 10-5 

-0.009 [-0.028, 0.01] 
 t(12,562) = -0.93 

 puncorr = 3.54 ´ 10-1 

-0.008 [-0.026, 0.011] 
 t(12,562) = -0.83 

 puncorr = 4.06 ´ 10-1 

-0.041** [-0.06, -0.022] 
 t(12,562) = -4.25 

 puncorr = 2.16 ´ 10-5 

Hypothalamus 

-0.068** [-0.089, -0.047] 
 t(12,562) = -6.41  

puncorr = 1.53 ´ 10-10 

-0.084** [-0.104, -0.064] 
 t(12,562) = -8.18 
 puncorr = 3 ´ 10-16 

-0.014 [-0.035, 0.007] 
 t(12,562) = -1.33 

 puncorr = 1.82 ´ 10-1 

-0.034* [-0.055, -0.014] 
 t(12,562) = -3.28 

 puncorr = 1.04 ´ 10-3 

-0.043** [-0.064, -0.022] 
 t(12,562) = -3.98 

 puncorr = 6.89 ´ 10-5 

Putamen (l) 

-0.061** [-0.079, -0.043] 
 t(12,562) = -6.67  

puncorr = 2.69 ´ 10-11 

-0.042** [-0.06, -0.025] 
 t(12,562) = -4.83 

 puncorr = 1.37 ´ 10-6 

-0.022 [-0.04, -0.004] 
 t(12,562) = -2.45 

 puncorr = 1.43 ´ 10-2 

-0.03* [-0.047, -0.012] 
 t(12,562) = -3.3 

 puncorr = 9.56 ´ 10-4 

-0.054** [-0.072, -0.036] 
 t(12,562) = -5.88 

 puncorr = 4.23 ´ 10-9 

Putamen (r) 

-0.055** [-0.073, -0.037] 
 t(12,562) = -5.98  
puncorr = 2.34 ´ 10-9 

-0.035** [-0.052, -0.017] 
 t(12,562) = -3.93 
 puncorr = 8.5 ´ 10-5 

-0.016 [-0.034, 0.002] 
 t(12,562) = -1.79 
 puncorr = 7.3 ´ 10-2 

-0.024 [-0.042, -0.006] 
 t(12,562) = -2.67 

 puncorr = 7.68 ´ 10-3 

-0.057** [-0.075, -0.039] 
 t(12,562) = -6.21 
 puncorr = 5.4 ´ 10-10 

Amygdala (l) 

-0.072** [-0.094, -0.051] 
 t(12,562) = -6.54  

puncorr = 6.34 ´ 10-11 

-0.05** [-0.071, -0.03] 
 t(12,562) = -4.73 

 puncorr = 2.28 ´ 10-6 

-0.006 [-0.028, 0.016] 
 t(12,562) = -0.53 

 puncorr = 5.95 ´ 10-1 

-0.056** [-0.078, -0.035] 
 t(12,562) = -5.2 

 puncorr = 2.06 ´ 10-7 

-0.057** [-0.079, -0.036] 
 t(12,562) = -5.15 

 puncorr = 2.62 ´ 10-7 

Amygdala (r) 

-0.073** [-0.095, -0.051] 
 t(12,562) = -6.58  

puncorr = 4.85 ´ 10-11 

-0.064** [-0.085, -0.043] 
 t(12,562) = -5.97 

 puncorr = 2.41 ´ 10-9 

-0.011 [-0.032, 0.011] 
 t(12,562) = -0.95 
 puncorr = 3.4 ´ 10-1 

-0.042** [-0.064, -0.021] 
 t(12,562) = -3.89 

 puncorr = 1.02 ´ 10-4 

-0.062** [-0.084, -0.04] 
 t(12,562) = -5.51 

 puncorr = 3.68 ´ 10-8 

Ventral 
Striatum (l) 

-0.048** [-0.068, -0.027] 
 t(12,562) = -4.61  
puncorr = 4.16 ´ 10-6 

-0.025 [-0.045, -0.005] 
 t(12,562) = -2.5 

 puncorr = 1.25 ´ 10-2 

-0.012 [-0.032, 0.009] 
 t(12,562) = -1.12 

 puncorr = 2.63 ´ 10-1 

-0.038** [-0.058, -0.018] 
 t(12,562) = -3.76 
 puncorr = 1.7 ´ 10-4 

-0.036** [-0.057, -0.016] 
 t(12,562) = -3.46 

 puncorr = 5.43 ´ 10-4 

Ventral 
Striatum (r) 

-0.053** [-0.074, -0.033] 
 t(12,562) = -5.12  
puncorr = 3.17 ´ 10-7 

-0.028 [-0.048, -0.008] 
 t(12,562) = -2.8 

 puncorr = 5.11 ´ 10-3 

-0.004 [-0.025, 0.016] 
 t(12,562) = -0.42 

 puncorr = 6.74 ´ 10-1 

-0.038** [-0.058, -0.018] 
 t(12,562) = -3.76 

 puncorr = 1.72 ´ 10-4 

-0.052** [-0.073, -0.032] 
 t(12,562) = -4.98 

 puncorr = 6.34 ´ 10-7 

Brain-Stem 

-0.041** [-0.061, -0.022] 
 t(12,562) = -4.15  
puncorr = 3.4 ´ 10-5 

-0.06** [-0.079, -0.041] 
 t(12,562) = -6.22 

 puncorr = 4.98 ´ 10-10 

-0.012 [-0.032, 0.007] 
 t(12,562) = -1.23 

 puncorr = 2.17 ´ 10-1 

-0.032* [-0.052, -0.013] 
 t(12,562) = -3.32 

 puncorr = 9.12 ´ 10-4 

-0.003 [-0.023, 0.017] 
 t(12,562) = -0.3 

 puncorr = 7.62 ´ 10-1 

Crus I 
Cerebellum (l) 

-0.04** [-0.059, -0.02] 
 t(12,562) = -4.05  
puncorr = 5.2 ´ 10-5 

-0.028 [-0.047, -0.01] 
 t(12,562) = -3 

 puncorr = 2.67 ´ 10-3 

0.002 [-0.017, 0.021] 
 t(12,562) = 0.22 

 puncorr = 8.26 ´ 10-1 

-0.03* [-0.049, -0.011] 
 t(12,562) = -3.12 

 puncorr = 1.83 ´ 10-3 

-0.037** [-0.056, -0.017] 
 t(12,562) = -3.71 
 puncorr = 2.1 ´ 10-4 

Crus II 
Cerebellum (l) 

-0.038** [-0.057, -0.02] 
 t(12,562) = -4  

puncorr = 6.45 ´ 10-5 

-0.017 [-0.035, 0.001] 
 t(12,562) = -1.86 

 puncorr = 6.34 ´ 10-2 

-0.012 [-0.03, 0.007] 
 t(12,562) = -1.21 

 puncorr = 2.28 ´ 10-1 

-0.03* [-0.048, -0.011] 
 t(12,562) = -3.17 

 puncorr = 1.53 ´ 10-3 

-0.03* [-0.049, -0.011] 
 t(12,562) = -3.13 

 puncorr = 1.78 ´ 10-3 

VIIb Cerebellum 
(l) 

-0.054** [-0.072, -0.035] 
 t(12,562) = -5.72  
puncorr = 1.12 ´ 10-8 

-0.028* [-0.046, -0.01] 
 t(12,562) = -3.08 

 puncorr = 2.07 ´ 10-3 

-0.017 [-0.036, 0.001] 
 t(12,562) = -1.85 

 puncorr = 6.43 ´ 10-2 

-0.039** [-0.057, -0.021] 
 t(12,562) = -4.23 
 puncorr = 2.3 ´ 10-5 

-0.042** [-0.06, -0.023] 
 t(12,562) = -4.4 

 puncorr = 1.08 ´ 10-5 
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VIIb Cerebellum 
(r) 

-0.042** [-0.06, -0.023] 
 t(12,562) = -4.4  

puncorr = 1.08 ´ 10-5 

-0.018 [-0.036, 0] 
 t(12,562) = -2 

 puncorr = 4.51 ´ 10-2 

-0.012 [-0.031, 0.006] 
 t(12,562) = -1.29 

 puncorr = 1.96 ´ 10-1 

-0.032** [-0.05, -0.014] 
 t(12,562) = -3.45 
 puncorr = 5.7 ´ 10-4 

-0.034** [-0.053, -0.015] 
 t(12,562) = -3.55 

 puncorr = 3.84 ´ 10-4 

VIIIa 
Cerebellum (l) 

-0.05** [-0.069, -0.032] 
 t(12,562) = -5.31  
puncorr = 1.13 ´ 10-7 

-0.026 [-0.044, -0.008] 
 t(12,562) = -2.87 

 puncorr = 4.09 ´ 10-3 

-0.021 [-0.04, -0.003] 
 t(12,562) = -2.24 

 puncorr = 2.52 ´ 10-2 

-0.037** [-0.055, -0.019] 
 t(12,562) = -3.98 

 puncorr = 6.96 ´ 10-5 

-0.034** [-0.053, -0.016] 
 t(12,562) = -3.59 

 puncorr = 3.27 ´ 10-4 

VIIIa 
Cerebellum (r) 

-0.048** [-0.067, -0.03] 
 t(12,562) = -5.13  
puncorr = 2.99 ´ 10-7 

-0.019 [-0.037, -0.002] 
 t(12,562) = -2.14 
 puncorr = 3.2 ´ 10-2 

-0.016 [-0.034, 0.003] 
 t(12,562) = -1.67 

 puncorr = 9.43 ´ 10-2 

-0.033** [-0.051, -0.015] 
 t(12,562) = -3.56 

 puncorr = 3.66 ´ 10-4 

-0.044** [-0.062, -0.025] 
 t(12,562) = -4.62 

 puncorr = 3.81 ´ 10-6 

IX Cerebellum 
(r) 

-0.036** [-0.054, -0.018] 
 t(12,562) = -3.92  
puncorr = 8.93 ´ 10-5 

-0.016 [-0.033, 0.001] 
 t(12,562) = -1.79 

 puncorr = 7.31 ´ 10-2 

-0.024 [-0.042, -0.006] 
 t(12,562) = -2.65 

 puncorr = 8.03 ´ 10-3 

-0.028* [-0.046, -0.011] 
 t(12,562) = -3.19 

 puncorr = 1.42 ´ 10-3 

-0.016 [-0.034, 0.002] 
 t(12,562) = -1.76 
 puncorr = 7.8 ´ 10-2 

Ventroanterior 
Insula (r) 

-0.079** [-0.103, -0.055] 
 t(12,562) = -6.43  

puncorr = 1.34 ´ 10-10 

-0.068** [-0.091, -0.045] 
 t(12,562) = -5.73 

 puncorr = 1.03 ´ 10-8 

0.007 [-0.017, 0.031] 
 t(12,562) = 0.61 

 puncorr = 5.42 ´ 10-1 

-0.035* [-0.059, -0.011] 
 t(12,562) = -2.91 

 puncorr = 3.62 ´ 10-3 

-0.095** [-0.12, -0.071] 
 t(12,562) = -7.74 

 puncorr = 1.07 ´ 10-14 

Ventroanterior 
Insula (l) 

-0.065** [-0.09, -0.041] 
 t(12,562) = -5.24  
puncorr = 1.65 ´ 10-7 

-0.07** [-0.094, -0.047] 
 t(12,562) = -5.85 

 puncorr = 4.93 ´ 10-9 

0.026 [0.001, 0.05] 
 t(12,562) = 2.08 

 puncorr = 3.79 ´ 10-2 

-0.019 [-0.043, 0.005] 
 t(12,562) = -1.56 

 puncorr = 1.19 ´ 10-1 

-0.097** [-0.122, -0.072] 
 t(12,562) = -7.74 

 puncorr = 1.11 ´ 10-14 

Planum Polare 
(l) 

-0.043** [-0.063, -0.022] 
 t(12,562) = -4.13  
puncorr = 3.68 ´ 10-5 

-0.054** [-0.073, -0.034] 
 t(12,562) = -5.42 

 puncorr = 5.96 ´ 10-8 

0.009 [-0.011, 0.029] 
 t(12,562) = 0.9 

 puncorr = 3.68 ´ 10-1 

-0.014 [-0.034, 0.006] 
 t(12,562) = -1.36 

 puncorr = 1.75 ´ 10-1 

-0.05** [-0.07, -0.029] 
 t(12,562) = -4.78 

 puncorr = 1.74 ´ 10-6 
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Supplementary Table 7 | Effect sizes (standardized betas) and the corresponding 95% 

confidence intervals (uncorrected) of the associations between risky behaviour and grey matter 

volume in 23 ROIs, with and without controlling for current drinking level (binned in deciles) and 

current smoking level (binned in 3 categories). Both models include all of our standard controls 

(N = 12,675). *FWE-rate of 5 %; **FWE-rate of 1%. 

ROI 
Risky behaviour 

(with drinking/smoking controls) 
Risky behaviour 

(with standard controls) 

vmPFC (l) 
-0.015 [-0.036, 0.005] 

 t(12,551) = -1.45 puncorr = 0.15 
-0.056** [-0.08, -0.031] 

 t(12,562) = -4.44 puncorr = 8.88 ´ 10-6 

dlPFC (r) (BA46) 
-0.029 [-0.047, -0.012] 

 t(12,551) = -3.32 puncorr = 9.03 ´ 10-4 
-0.065** [-0.086, -0.044] 

 t(12,562) = -6.15 puncorr = 7.91 ´ 10-10 

dlPFC (l) (BA46) 
-0.016 [-0.033, 0.002] 

 t(12,551) = -1.76 puncorr = 7.83 ´ 10-2 
-0.048** [-0.069, -0.027] 

 t(12,562) = -4.44 puncorr = 8.96 ´ 10-6 

Precentral Gyrus (r) 
-0.017 [-0.034, 0.001] 

 t(12,551) = -1.85 puncorr = 6.4 ´ 10-2 
-0.061** [-0.082, -0.04] 

 t(12,562) = -5.65 puncorr = 1.6 ´ 10-8 

Cuneal Cortex (l) 
-0.012 [-0.028, 0.004] 

 t(12,551) = -1.49 puncorr = 0.14 
-0.038** [-0.057, -0.02] 

 t(12,562) = -4 puncorr = 6.48 ´ 10-5 

Hypothalamus 
-0.017 [-0.034, 0.001] 

 t(12,551) = -1.88 puncorr = 6.05 ´ 10-2 
-0.068** [-0.089, -0.047] 

 t(12,562) = -6.41 puncorr = 1.53 ´ 10-10 

Putamen (l) 
-0.034** [-0.049, -0.019] 

 t(12,551) = -4.46 puncorr = 8.15 ´ 10-6 
-0.061** [-0.079, -0.043] 

 t(12,562) = -6.67 puncorr = 2.69 ´ 10-11 

Putamen (r) 
-0.031** [-0.046, -0.016] 

 t(12,551) = -4.09 puncorr = 4.39 ´ 10-5 
-0.055** [-0.073, -0.037] 

 t(12,562) = -5.98 puncorr = 2.34 ´ 10-9 

Amygdala (l) 
-0.041** [-0.059, -0.023] 

 t(12,551) = -4.4 puncorr = 1.1 ´ 10-5 
-0.072** [-0.094, -0.051] 

 t(12,562) = -6.54 puncorr = 6.34 ´ 10-11 

Amygdala (r) 
-0.032 [-0.05, -0.013] 

 t(12,551) = -3.39 puncorr = 6.95 ´ 10-4 
-0.073** [-0.095, -0.051] 

 t(12,562) = -6.58 puncorr = 4.85 ´ 10-11 

Ventral Striatum (l) 
-0.032* [-0.049, -0.015] 

 t(12,551) = -3.66 puncorr = 2.56 ´ 10-4 
-0.048** [-0.068, -0.027] 

 t(12,562) = -4.61 puncorr = 4.16 ´ 10-6 

Ventral Striatum (r) 
-0.033* [-0.05, -0.016] 

 t(12,551) = -3.79 puncorr = 1.53 ´ 10-4 
-0.053** [-0.074, -0.033] 

 t(12,562) = -5.12 puncorr = 3.17 ´ 10-7 

Brain-Stem 
-0.014 [-0.031, 0.002] 

 t(12,551) = -1.71 puncorr = 8.73 ´ 10-2 
-0.041** [-0.061, -0.022] 

 t(12,562) = -4.15 puncorr = 3.4 ´ 10-5 

Crus I Cerebellum (l) 
-0.017 [-0.033, -0.001] 

 t(12,551) = -2.11 puncorr = 3.45 ´ 10-2 
-0.04** [-0.059, -0.02] 

 t(12,562) = -4.05 puncorr = 5.2 ´ 10-5 

Crus II Cerebellum (l) 
-0.027 [-0.043, -0.011] 

 t(12,551) = -3.39 puncorr = 6.98 ´ 10-4 
-0.038** [-0.057, -0.02] 

 t(12,562) = -4 puncorr = 6.45 ´ 10-5 

VIIb Cerebellum (l) 
-0.035** [-0.05, -0.02] 

 t(12,551) = -4.44 puncorr = 9.08 ´ 10-6 
-0.054** [-0.072, -0.035] 

 t(12,562) = -5.72 puncorr = 1.12 ´ 10-8 

VIIb Cerebellum (r) 
-0.03* [-0.045, -0.014] 

 t(12,551) = -3.75 puncorr = 1.76 ´ 10-4 
-0.042** [-0.06, -0.023] 

 t(12,562) = -4.4 puncorr = 1.08 ´ 10-5 

VIIIa Cerebellum (l) 
-0.031** [-0.047, -0.016] 

 t(12,551) = -3.94 puncorr = 8.26 ´ 10-5 
-0.05** [-0.069, -0.032] 

 t(12,562) = -5.31 puncorr = 1.13 ´ 10-7 
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VIIIa Cerebellum (r) 
-0.033** [-0.048, -0.018] 

 t(12,551) = -4.21 puncorr = 2.63 ´ 10-5 
-0.048** [-0.067, -0.03] 

 t(12,562) = -5.13 puncorr = 2.99 ´ 10-7 

IX Cerebellum (r) 
-0.023 [-0.038, -0.008] 

 t(12,551) = -3.04 puncorr = 2.4 ´ 10-3 
-0.036** [-0.054, -0.018] 

 t(12,562) = -3.92 puncorr = 8.93 ´ 10-5 

Ventroanterior Insula (r) 
-0.033 [-0.053, -0.013] 

 t(12,551) = -3.21 puncorr = 1.32 ´ 10-3 
-0.079** [-0.103, -0.055] 

 t(12,562) = -6.43 puncorr = 1.34 ´ 10-10 

Ventroanterior Insula (l) 
-0.018 [-0.039, 0.002] 

 t(12,551) = -1.76 puncorr = 7.79 ´ 10-2 
-0.065** [-0.09, -0.041] 

 t(12,562) = -5.24 puncorr = 1.65 ´ 10-7 

Planum Polare (l) 
-0.011 [-0.028, 0.006] 

 t(12,551) = -1.24 puncorr = 0.22 
-0.043** [-0.063, -0.022] 

 t(12,562) = -4.13 puncorr = 3.68 ´ 10-5 
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Supplementary Table 8 | Effect sizes (standardized betas) and the corresponding 95% 

confidence intervals (uncorrected) of the associations between risky behaviour and ROI-level 

imaging-derived phenotypes (IDPs) of grey matter volume (GMV) in the replication sample (N = 

13,004) and original sample (N=12,675). All beta coefficients are consistently negative across 

samples and 21 of 23 ROIs identified in the original analysis replicate (corrected for multiple 

testing using a permutation test, see Methods). *FWE-rate of 5%; **FWE-rate of 1%. 

ROI 
Risky behaviour 

(Replication Sample) 
Risky behaviour 
(Original Sample) 

vmPFC (l) 
-0.101** [-0.125, -0.077] 

 t(12,892) = -8.24 puncorr = 1.89 ´ 10-16 
-0.056** [-0.08, -0.031] 

 t(12,562) = -4.44 puncorr = 8.88 ´ 10-6 

dlPFC (r) (BA46) 
-0.067** [-0.087, -0.046] 

 t(12,892) = -6.37 puncorr = 2.02 ´ 10-10 
-0.065** [-0.086, -0.044] 

 t(12,562) = -6.15 puncorr = 7.91 ´ 10-10 

dlPFC (l) (BA46) 
-0.051** [-0.072, -0.03] 

 t(12,892) = -4.81 puncorr = 1.53 ´ 10-6 
-0.048** [-0.069, -0.027] 

 t(12,562) = -4.44 puncorr = 8.96 ´ 10-6 

Precentral Gyrus (r) 
-0.073** [-0.094, -0.053] 

 t(12,892) = -7.03 puncorr = 2.17 ´ 10-12 
-0.061** [-0.082, -0.04] 

 t(12,562) = -5.65 puncorr = 1.6 ´ 10-8 

Cuneal Cortex (l) 
-0.02 [-0.038, -0.001] 

 t(12,892) = -2.08 puncorr = 3.73 ´ 10-2 
-0.038** [-0.057, -0.02] 

 t(12,562) = -4 puncorr = 6.48 ´ 10-5 

Hypothalamus 
-0.094** [-0.115, -0.074] 

 t(12,892) = -8.87 puncorr = 8.21 ´ 10-19 
-0.068** [-0.089, -0.047] 

 t(12,562) = -6.41 puncorr = 1.53 ´ 10-10 

Putamen (l) 
-0.039** [-0.056, -0.021] 

 t(12,892) = -4.33 puncorr = 1.52 ´ 10-5 
-0.061** [-0.079, -0.043] 

 t(12,562) = -6.67 puncorr = 2.69 ´ 10-11 

Putamen (r) 
-0.041** [-0.058, -0.023] 

 t(12,892) = -4.49 puncorr = 7.06 ´ 10-6 
-0.055** [-0.073, -0.037] 

 t(12,562) = -5.98 puncorr = 2.34 ´ 10-9 

Amygdala (l) 
-0.037** [-0.059, -0.016] 

 t(12,892) = -3.41 puncorr = 6.52 ´ 10-4 
-0.072** [-0.094, -0.051] 

 t(12,562) = -6.54 puncorr = 6.34 ´ 10-11 

Amygdala (r) 
-0.058** [-0.08, -0.036] 

 t(12,892) = -5.25 puncorr = 1.54 ´ 10-7 
-0.073** [-0.095, -0.051] 

 t(12,562) = -6.58 puncorr = 4.85 ´ 10-11 

Ventral Striatum (l) 
-0.045** [-0.066, -0.025] 

 t(12,892) = -4.39 puncorr = 1.13 ´ 10-5 
-0.048** [-0.068, -0.027] 

 t(12,562) = -4.61 puncorr = 4.16 ´ 10-6 

Ventral Striatum (r) 
-0.046** [-0.066, -0.025] 

 t(12,892) = -4.41 puncorr = 1.02 ´ 10-5 
-0.053** [-0.074, -0.033] 

 t(12,562) = -5.12 puncorr = 3.17 ´ 10-7 

Brain-Stem 
-0.056** [-0.075, -0.037] 

 t(12,892) = -5.79 puncorr = 7.39 ´ 10-9 
-0.041** [-0.061, -0.022] 

 t(12,562) = -4.15 puncorr = 3.4 ´ 10-5 

Crus I Cerebellum (l) 
-0.032** [-0.051, -0.013] 

 t(12,892) = -3.33 puncorr = 8.81 ´ 10-4 
-0.04** [-0.059, -0.02] 

 t(12,562) = -4.05 puncorr = 5.2 ´ 10-5 

Crus II Cerebellum (l) 
-0.019 [-0.038, 0] 

 t(12,892) = -2.01 puncorr = 4.47 ´ 10-2 
-0.038** [-0.057, -0.02] 

 t(12,562) = -4 puncorr = 6.45 ´ 10-5 

VIIb Cerebellum (l) 
-0.039** [-0.057, -0.02] 

 t(12,892) = -4.05 puncorr = 5.18 ´ 10-5 
-0.054** [-0.072, -0.035] 

 t(12,562) = -5.72 puncorr = 1.12 ´ 10-8 

VIIb Cerebellum (r) 
-0.029* [-0.048, -0.01] 

 t(12,892) = -3.02 puncorr = 2.54 ´ 10-3 
-0.042** [-0.06, -0.023] 

 t(12,562) = -4.4 puncorr = 1.08 ´ 10-5 
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VIIIa Cerebellum (l) 
-0.039** [-0.058, -0.02] 

 t(12,892) = -3.98 puncorr = 7.02 ´ 10-5 
-0.05** [-0.069, -0.032] 

 t(12,562) = -5.31 puncorr = 1.13 ´ 10-7 

VIIIa Cerebellum (r) 
-0.048** [-0.067, -0.029] 

 t(12,892) = -4.94 puncorr = 7.87 ´ 10-7 
-0.048** [-0.067, -0.03] 

 t(12,562) = -5.13 puncorr = 2.99 ´ 10-7 

IX Cerebellum (r) 
-0.044** [-0.062, -0.026] 

 t(12,892) = -4.78 puncorr = 1.75 ´ 10-6 
-0.036** [-0.054, -0.018] 

 t(12,562) = -3.92 puncorr = 8.93 ´ 10-5 

Ventroanterior Insula (r) 
-0.102** [-0.125, -0.078] 

 t(12,892) = -8.53 puncorr = 1.56 ´ 10-17 
-0.079** [-0.103, -0.055] 

 t(12,562) = -6.43 puncorr = 1.34 ´ 10-10 

Ventroanterior Insula (l) 
-0.093** [-0.117, -0.069] 

 t(12,892) = -7.6 puncorr = 3.08 ´ 10-14 
-0.065** [-0.09, -0.041] 

 t(12,562) = -5.24 puncorr = 1.65 ´ 10-7 

Planum Polare (l) 
-0.058** [-0.078, -0.038] 

 t(12,892) = -5.7 puncorr = 1.26 ´ 10-8 
-0.043** [-0.063, -0.022] 

 t(12,562) = -4.13 puncorr = 3.68 ´ 10-5 
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Supplementary Table 9 | Summary of studies used for the meta-analysis of fMRI studies on 

risky behaviours (provided by Neurosynth). Neurosynth uses text mining techniques to search 

through published articles for certain keywords (here: ‘risky’) and then quantifies how important 

the keyword is in any particular published article, relative to all other searched articles. 

Specifically, Neurosynth uses a metric (i.e. ‘loading’) to quantify how often the key word (here: 

‘risky’) was used in the respective article relative to all other articles in this meta-analysis. Its 

value ranges from 0 to 1 and increases proportionally with the number of times a word appears 

in the respective published article. Neurosynth typically uses a cutoff of .05 for articles to be 

included in the meta-analysis. For further information see ref 32. 

Title Author Journal Loading Sample 

Size (after 

exclusions) 

Adolescents' Neural 

Processing of Risky Decisions: 

Effects of Sex and behavioural 

Disinhibition. 

Crowley TJ, Dalwani MS, 

Mikulich-Gilbertson SK, 

Young SE, Sakai JT, 

Raymond KM, 

McWilliams SK, Roark 

MJ, Banich MT 

PloS one 0.678 81 

Altered Functional Response 

to Risky Choice in HIV 

Infection. 

Connolly CG, Bischoff-

Grethe A, Jordan SJ, 

Woods SP, Ellis RJ, 

Paulus MP, Grant I 

PloS one 0.622 40 

Attenuated Neural Processing 

of Risk in Young Adults at Risk 

for Stimulant Dependence. 

Reske M, Stewart JL, 

Flagan TM, Paulus MP 

PloS one 0.576 208 
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Learning from other people's 

experience: a neuroimaging 

study of decisional interactive-

learning. 

Canessa N, Motterlini M, 

Alemanno F, Perani D, 

Cappa SF 

NeuroImage 0.564 24 

Children's brain activation 

during risky decision-making: 

A contributor to substance 

problems? 

Crowley TJ, Dalwani MS, 

Sakai JT, Raymond KM, 

McWilliams SK, Banich 

MT, Mikulich-Gilbertson 

SK 

Drug and 

alcohol 

dependence 

0.52 58 

Differences in neural activation 

as a function of risk-taking 

task parameters. 

Congdon E, Bato AA, 

Schonberg T, Mumford 

JA, Karlsgodt KH, Sabb 

FW, London ED, Cannon 

TD, Bilder RM, Poldrack 

RA 

Frontiers in 

neuroscience 

0.49 23 

Are risky choices actually 

guided by a compensatory 

process? New insights from 

FMRI. 

Rao LL, Zhou Y, Xu L, 

Liang ZY, Jiang T, Li S 

PloS one 0.442 23 

Neural mechanisms of risky 

decision making in 

adolescents reporting frequent 

alcohol and/or marijuana use. 

Claus ED, Feldstein Ewing 

SW, Magnan RE, 

Montanaro E, Hutchison 

KE, Bryan AD 

Brain imaging 

and 

behaviour 

0.435 189 

Neural mechanisms of impulse 

control in sexually risky 

adolescents. 

Goldenberg D, Telzer EH, 

Lieberman MD, Fuligni A, 

Galvan A 

Development

al cognitive 

neuroscience 

0.429 20 
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Neural Mechanisms Underlying 

Risk and Ambiguity Attitudes. 

Blankenstein NE, Peper 

JS, Crone EA, van 

Duijvenvoorde ACK 

Journal of 

cognitive 

neuroscience 

0.414 50 

Neural correlates of expected 

risks and returns in risky 

choice across development. 

van Duijvenvoorde AC, 

Huizenga HM, Somerville 

LH, Delgado MR, Powers 

A, Weeda WD, Casey BJ, 

Weber EU, Figner B 

Journal of 

neuroscience 

:  

0.397 72 

Learning to play it safe (or not): 

stable and evolving neural 

responses during adolescent 

risky decision-making. 

Kahn LE, Peake SJ, 

Dishion TJ, Stormshak 

EA, Pfeifer JH 

Journal of 

cognitive 

neuroscience 

0.392 20 

Risky decisions and their 

consequences: neural 

processing by boys with 

Antisocial Substance Disorder. 

Crowley TJ, Dalwani MS, 

Mikulich-Gilbertson SK, 

Du YP, Lejuez CW, 

Raymond KM, Banich MT 

PloS one 0.381 40 

Adolescent neural response to 

reward is related to participant 

sex and task motivation. 

Alarcon G, Cservenka A, 

Nagel BJ 

Brain and 

cognition 

0.38 167 

The neural basis of social 

tactics: An fMRI study. 

Fukui H, Murai T, 

Shinozaki J, Aso T, 

Fukuyama H, Hayashi T, 

Hanakawa T 

NeuroImage 0.353 16 

Neural mechanisms underlying 

urgent and evaluative 

behaviours: An fMRI study on 

Megias A, Navas JF, 

Petrova D, Candido A, 

Maldonado A, Garcia-

Human brain 

mapping 

0.348 57 
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the interaction of automatic 

and controlled processes. 

Retamero R, Catena A 

Acute stress increases risky 

decisions and dampens 

prefrontal activation among 

adolescent boys. 

Uy JP, Galvan A NeuroImage 0.343 44 

Is payoff necessarily weighted 

by probability when making a 

risky choice? Evidence from 

functional connectivity 

analysis. 

Rao LL, Li S, Jiang T, 

Zhou Y 

PloS one 0.335 18 

The neural substrates of 

probabilistic and intertemporal 

decision making. 

Weber BJ, Huettel SA Brain 

research 

0.333 23 

Age-related differences in 

neural activities during risk 

taking as revealed by 

functional MRI. 

Lee TM, Leung AW, Fox 

PT, Gao JH, Chan CC 

Social 

cognitive and 

affective 

neuroscience 

0.323 21 

Neural mechanisms of risky 

decision-making and reward 

response in adolescent onset 

cannabis use disorder. 

De Bellis MD, Wang L, 

Bergman SR, Yaxley RH, 

Hooper SR, Huettel SA 

Drug and 

alcohol 

dependence 

0.321 56 

A cross-sectional and 

longitudinal analysis of reward-

related brain activation: effects 

of age, pubertal stage, and 

van Duijvenvoorde AC, 

Op de Macks ZA, 

Overgaauw S, Gunther 

Moor B, Dahl RE, Crone 

Brain and 

cognition 

0.319 33 
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reward sensitivity. EA 

Effects of outcome on the 

covariance between risk level 

and brain activity in 

adolescents with internet 

gaming disorder. 

Qi X, Yang Y, Dai S, Gao 

P, Du X, Zhang Y, Du G, 

Li X, Zhang Q 

NeuroImage. 

Clinical 

0.316 48 

Risky decision making and the 

anterior cingulate cortex in 

abstinent drug abusers and 

nonusers. 

Fishbein DH, Eldreth DL, 

Hyde C, Matochik JA, 

London ED, Contoreggi 

C, Kurian V, Kimes AS, 

Breeden A, Grant S 

Brain 

research. 

Cognitive 

brain 

research 

0.313 27 

Neural mechanisms underlying 

context-dependent shifts in 

risk preferences. 

Losecaat Vermeer AB, 

Boksem MA, Sanfey AG 

NeuroImage 0.307 26 

An event-related fMRI study on 

risk taking by healthy 

individuals of high or low 

impulsiveness. 

Lee TM, Chan CC, Han 

SH, Leung AW, Fox PT, 

Gao JH 

Neuroscience 

letters 

0.295 18 

Neural responses to emotional 

stimuli are associated with 

childhood family stress. 

Taylor SE, Eisenberger NI, 

Saxbe D, Lehman BJ, 

Lieberman MD 

Biological 

psychiatry 

0.291 30 

Neural correlates of 

Machiavellian strategies in a 

social dilemma task. 

Bereczkei T, Deak A, 

Papp P, Perlaki G, Orsi G 

Brain and 

cognition 

0.276 27 

Sex-related differences in Lee TM, Chan CC, Leung Cerebral 0.272 22 
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neural activity during risk 

taking: an fMRI study. 

AW, Fox PT, Gao JH cortex (New 

York, N.Y. : 

1991) 

Neurocognitive mechanisms 

underlying identification of 

environmental risks. 

Qin J, Han S Neuropsycho

logia 

0.249 14 

Neural representation of 

subjective value under risk and 

ambiguity. 

Levy I, Snell J, Nelson AJ, 

Rustichini A, Glimcher PW 

Journal of 

neurophysiol

ogy 

0.238 29 

The influence of emotion 

regulation on decision-making 

under risk. 

Martin LN, Delgado MR Journal of 

cognitive 

neuroscience 

0.238 30 

Failure to retreat: Blunted 

sensitivity to negative 

feedback supports risky 

behaviour in adolescents. 

McCormick EM, Telzer 

EH 

NeuroImage 0.235 58 

Pre-existing brain states 

predict risky choices. 

Huang YF, Soon CS, 

Mullette-Gillman OA, 

Hsieh PJ 

NeuroImage 0.234 14 

Greater risk sensitivity of 

dorsolateral prefrontal cortex in 

young smokers than in 

nonsmokers. 

Galvan A, Schonberg T, 

Mumford J, Kohno M, 

Poldrack RA, London ED 

Psychopharm

acology 

0.232 43 

Neuronal Correlates of Risk-

Seeking Attitudes to 

Worbe Y, Irvine M, Lange 

I, Kundu P, Howell NA, 

Biological 

psychiatry 

0.231 42 
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Anticipated Losses in Binge 

Drinkers. 

Harrison NA, Bullmore ET, 

Robbins TW, Voon V 

Age differences in the impact 

of peers on adolescents' and 

adults' neural response to 

reward. 

Smith AR, Steinberg L, 

Strang N, Chein J 

Development

al cognitive 

neuroscience 

0.228 40 

Mothers know best: redirecting 

adolescent reward sensitivity 

toward safe behaviour during 

risk taking. 

Telzer EH, Ichien NT, Qu 

Y 

Social 

cognitive and 

affective 

neuroscience 

0.206 25 

Neural substrates of choice 

selection in adults and 

adolescents: development of 

the ventrolateral prefrontal and 

anterior cingulate cortices. 

Eshel N, Nelson EE, Blair 

RJ, Pine DS, Ernst M 

Neuropsycho

logia 

0.202 30 

The neural correlates of risk 

propensity in males and 

females using resting-state 

fMRI. 

Zhou Y, Li S, Dunn J, Li 

H, Qin W, Zhu M, Rao LL, 

Song M, Yu C, Jiang T 

Frontiers in 
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