### nature nanotechnology

Article

https://doi.org/10.1038/s41565-023-01321-6

# Structure, folding and flexibility of cotranscriptional RNA origami

In the format provided by the authors and unedited

### **Content:**

| Supplementary Video 1. Cryo-EM reconstruction of the 5HT-A RNA origami                                               | 3         |
|----------------------------------------------------------------------------------------------------------------------|-----------|
| Supplementary Video 2. 6HBC maturation necessitates the breaking of the H6 KL                                        | 3         |
| Supplementary Video 3. Local dynamics of the 5HT-A RNA origami                                                       | 4         |
| Supplementary Video 4. Local dynamics of the 6HBC Young and Mature conformers                                        | 4         |
| Supplementary Table 1. RNA sequence and blueprint for 5-helix tile A (5HT-A)                                         | 5         |
| Supplementary Table 2. RNA sequence and blueprint for 5-helix tile A with twist correct (5HT-A-TC).                  | tion<br>6 |
| Supplementary Table 3. RNA sequence and blueprint for 5-helix tile B (5HT-B)                                         | 7         |
| Supplementary Table 4. RNA sequence and blueprint for 5-helix tile B (5HT-B-V2)                                      | 8         |
| Supplementary Table 5. RNA sequence and blueprint for 5-helix tile B with 3 KL colum (5HT-B-3X).                     | ns<br>9   |
| Supplementary Table 6. RNA sequence and blueprint for 6-helix bundle (6HB)                                           | 10        |
| Supplementary Table 7. RNA sequence and blueprint for 6-helix bundle with clasp (6HE                                 | 3C).      |
|                                                                                                                      | 11        |
| Supplementary Table 8. RNA sequence and blueprint for 6-helix bundle with clasp and protein binding sites (6HBC-PBS) | 12        |
| Supplementary Table 9. RNA sequence and blueprint for 16-helix satellite (6HS)                                       | 13        |
| Supplementary Table 10. Cryo-EM data collection, refinement and validation statistics                                | 14        |
| Supplementary Table 11. Seam curvature angles $\phi$ measured from 3DVA of 5HT-A                                     | 15        |
| Supplementary Table 12. Crossover angles $\theta$ measured from 3DVA of 5HT-A                                        | 17        |
| Supplementary Fig. 1. Cryo-EM data and reconstruction of 5HT-A.                                                      | 19        |
| Supplementary Fig. 2. Cryo-EM data and reconstruction of 5HT-A-TC                                                    | 20        |
| Supplementary Fig. 3. Cryo-EM data and reconstruction of 5HT-B                                                       | 21        |
| Supplementary Fig. 4. Cryo-EM data and reconstruction of 5HT-B-3X                                                    | 22        |
| Supplementary Fig. 5. Cryo-EM data and reconstruction of 6HB.                                                        | 23        |
| Supplementary Fig. 6. Cryo-EM data and reconstruction of 6HBC-Young1                                                 | 24        |
| Supplementary Fig. 7. Cryo-EM data and reconstruction of 6HBC-PBS-Mature1                                            | 25        |
| Supplementary Fig. 8. Cryo-EM data and reconstruction of 6HBC-Young2                                                 | 26        |
| Supplementary Fig. 9. Cryo-EM data and reconstruction of 6HBC-Mature2                                                | 27        |
| Supplementary Fig. 10. Map to model correlation of 5HT-A.                                                            | 28        |
| Supplementary Fig. 11. Map to model correlation of 5HT-A-TC                                                          | 29        |
| Supplementary Fig. 12. Map to model correlation of 5HT-B                                                             | 30        |
| Supplementary Fig. 13. Map to model correlation of 6HBC-Young1.                                                      | 31        |
| Supplementary Fig. 14. Map to model correlation of 6HBC-PBS-Mature1.                                                 | 32        |
| Supplementary Fig. 15. Cryo-EM 2D class averages of the 16H-satellite sample                                         | 33        |
| Supplementary Fig. 16. IPET 3D reconstruction of individual particle #1 of 16HS                                      | 34        |



### Legends and stills for supplementary videos

### Supplementary Video 1. Cryo-EM reconstruction of the 5HT-A RNA origami.

Depicted first is the map from a local refinement using a mask covering the entire structure, autogenerated by cryoSPARC. Coloring has been applied to the map through the motifs modeled into the map. Tetraloops are depicted in yellow, crossovers in blue and KLs in magenta. The map is further refined by local refinement using a mask covering only H2-H4 (shown in grey 0:47-0:51). This results in better local resolution at the crossovers and central KL. Local resolutions are colored on the map surface.



### Supplementary Video 2. 6HBC maturation necessitates the breaking of the H6 KL.

Depicted first are the reconstructions of the young and mature 6HBC conformers with the surface near the A2:A2' stack colored red. The A2:A2' stack of the young conformer faces inward but the A2:A2' stack of the mature conformer faces outward. Rotation of each half of H6 in opposite directions is required to transition between the two conformers, when visualized by interpolation it becomes clear that the central KL must break for this to occur.



### Supplementary Video 3. Local dynamics of the 5HT-A RNA origami.

Three principal modes of variability were solved using cryoSPARC's 3D variability analysis algorithms. Each mode is displayed as a volume series comprised of 20 different volumes reconstructed from particle sets classified along a given motion trajectory.



### Supplementary Video 4. Local dynamics of the 6HBC Young and Mature conformers.

Three principal modes of variability were solved from both the 6HBC-Young and 6HBC-Mature datasets, using cryoSPARC's 3D variability analysis algorithms. Each mode is displayed as a volume series comprised of 20 different volumes reconstructed from particle sets classified along a given motion trajectory.

### Supplementary Table 1. RNA sequence and blueprint for 5-helix tile A (5HT-A).



# Supplementary Table 2. RNA sequence and blueprint for 5-helix tile A with twist correction (5HT-A-TC).

### 5HT-A-TC

GGGCACUUACCCUUUAGUGCGAAGGUUUCGACCUUCGAUCCAUUUGUUCGCAAAUGGGAUGAUCUUCG GAUCAUCCGCGUAGUCUGUUCAGUCGUUUCGACGACUGGCCCCACUUCGGUGGGGCCACGGUACUUAG AAGUGAACACUAAGUGUCGUGAACACCAUUUGGUUAACUGCUCAAACUAAAUGGUGAUGAGGGAAGGA AUGACCCUCAUCGGACUACGCGAUCCGAGUGAUGGGAAUGGCUGACCCAUCGCUCGGCACUGGAGGGU GAGUGCCCCUCAUUCGCAUAAGGGCCGACCCAGACAACAGCCAAGUUUGGGUCGGAGAUGCGAACAUU CCACGCAUCUGAACGGUUGAGAACUUACAAGGGCAAGAGCAGAGUCCUUGUAAGGGCUUUACACGUCA AGUUCACAGACGUGUAAGGCCCGUCGCCCUUCGGGGCGACGUUCACGGCAUUUCGAUGCCGUGCAGCC UGUUCGCAGGCUGCUUGACCGUUCCCCUGCCCUUUCGAGGGCAGACUCUUCGGAGUAGUCUUAUG UGAAUGAG



### Supplementary Table 3. RNA sequence and blueprint for 5-helix tile B (5HT-B).



### Supplementary Table 4. RNA sequence and blueprint for 5-helix tile B (5HT-B-V2).



# Supplementary Table 5. RNA sequence and blueprint for 5-helix tile B with 3 KL columns (5HT-B-3X).

#### 5HT-B-3X

GGAACCUAAUCAUAAUUCCCUUUUCAUCCUCUCUCAACUCUACUUUUCUUGAUCUUCCGCCUCUCAU CCUUUCAUUAUCUUCAUCCUGCUUGCAUAUAGUGCCUUCGGGUACUAUGUGCAAGUAGGGGCGUCUG UGAUUCGUGGCUGUUCGCAGUCACGAAUUACAGACCAGGCUGUCGGAGAUGGGUUUUCGAAUCCAUCU GGCCAGGGGUUCGCCCUUGGGAACUUUUAUUCGUAGAAGUUCAAAAGUUUAGGAAUGGACAACCUAAG CUUUUCCAUCAGUCGUGCAAGAACGGAGCACGGCUGAUCCGACGGCCUGCGCUACAAACUGACAGUAG CGGCUGGGAUGCGCUAAACGUUGAAGCGCGUCCCAAUGAAGGUAAUGGAAGGAUGAGGGGCGGAGGAU GGUACAGGUGAAGAACAACGUACUUCAUCUGUAGGUUGGGUGUGACGUAACAAGUCAGUAGUUGCGUG GAGGAUUAUCCGAACCGUUCACGGAUGAUCCUACUUCGUGGUAGGAAUGUCCAACCUACCGCGAAGUG GACUUCAAACAAUGGCUAAGUUUGGAGUCCCCGAGUGGGGACGAAUUUCCCACGUCCUCACUCCACAC UCAACCACGGUCAAGGUGUAAGACCGUCCUUAGAUCGGCUAACUAGUGAAGCCGGUCUAACAAGAAGA GUAGGGUUGAGAAGGGGAUGAGAAGCCCGAAAUGUGACAACACUAGAGUCACGUUUCGCAUACUCACG ACUAGAACAAUACACCAGUUUUAGGGCUCCAUGCUACAAGGGAAAAGUAGCGUGGAGGGUCCCGAUAC GCAAUAGCCAAGCGUAUUGGGACCUAGCAUACCCUAACUCCACAAGGGUGUGCUACCGAGUGUACGGG AACGGAUAACCCGUGCACUCUCGUGGGUAUGACAACAAAAGGUAGAUGUUGUGGUUCCUGACGGGAAU CGUCUACCCGUUAGGAAGGAAUUGUGAUUGGGUUCCAAAUUUCACCUAAUCCUGUCCUACUCAAAAGA CGACGCUUUCUGAGCUAGUCUUUCGGAAAGUGGAGAUCCGAAGGACUAGUAUGGCAGUCAUGAUGGUG GUUCGCCACCGUCAUGAUUGCCAUAGCGAUGCGCGGGUGAGCUGCUUCGGCGGCUCGCCCGUGCAUCU UAGACCAUUGGGUGAAGUUU

|                                                                                                                                              | AA                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              | IAACUUCAGG——UGAAGCGCCAUCCA, <sup>L</sup> UGGACA—, <sup>L</sup> GGAUUUGAAAA——CUUGAAGAUGC                                   |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              |                                                                                                                           |
| uucgucgagugggcgcguag—cg <sup>j</sup> L_gagucuuucgca <sub>1</sub> Lcggaua— Lgggcaugugag—cc <sup>j</sup> Lgaggugcgauga <sub>1</sub> Luuuccc— L | SCAGGGGUGAG——CC <sup>J L</sup> UCCUAGUAGGCA <sub>2</sub> LGAACGG— LCGUGCUGACUA——CC <sup>J L</sup> GGUUCCCGC <sub>2</sub>  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                        | (                                                                                                                         |
| receeeeencecceneeven lee                                                                                                                     | CONCERCENCE CONCERCE            |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              |                                                                                                                           |
| Logdaaccuucu, Locdgaaccuaa Locdgaga Luccauc, La-uguugu, Lauacucacga Luccacau, La-Gac                                                         | CGU1 _ GGUUGGGUGUG—ACGUAAC1 _ UGACUG1 LA-GUAGCG1 _CAGGCUGUCGG—AGAUGGGUUUU                                                 |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              | JU——CC <sup>3</sup> 'AUGUCUACUUCA <sub>1</sub> 'ACGUUG—1 'UCGCGUAGGGU——CG <sup>3</sup> 'CAGACAUUAAGCACUGACGC <sub>1</sub> |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              |                                                                                                                           |
|                                                                                                                                              |                                                                                                                           |
| LOUGGAUUUAAG — LAUUCCACUUUAAA — CCUUGGGUUAAGUGUGAGGGAAGAGUGGGGAAGAGUGGGGAUGAG                                                                | AAGAAC— <sup>j</sup> UAGGAGGCGGGGGAG———UAGGAAGGUAAUGGAAGUA— <sup>j</sup> LGGGAUGAACGUGUAUCAUGGGC <sub>1</sub>             |
|                                                                                                                                              |                                                                                                                           |
| CGCCUUAGACC—AUUGGGUGAAGUUU3 5GGAACCUAAUCAUAAUUCC—CUUUUCAUCCUCUU—CUCAACUCUACUU                                                                | JUCUUG—AUCUUCCGCCUCUC—AUCCUUUCAUUAUCUUCAU—CCCUGCUUGCAUAUAGUGCCUU <sup>3</sup>                                             |

### Supplementary Table 6. RNA sequence and blueprint for 6-helix bundle (6HB).

| 6HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGGAAAUCCCGCCCUGAUACGGUUCACGUUCGCGUGGACCGUCGGGUGGUCCGCUUACGAGCGGGCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CGGCGACCGUGCAAUGCGUUGCAUGGUCCGGGCUUGCUCGCUACGGCGAGUAAGCGGGGAACUAGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UGCGCCUCUGGUUCGGCGCUAUGUGGCUCCGGCUACAUAGUGCCCCGAUUGGGGAACCCCUAACCCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GUCGGCCCGUUGGGUCACAACGGUUCAGUGAUCCAACCCGGGUAUGGCACAACGCGAUAGUGCUAUAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CGCCGUAUGUUCGGAAUGAUGGACCGAGCAUACCCGCACGUGGUGGAACACUCGACCACUACGUGAUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AGGGUGGGGUUUCCCAGAAUUUGUAUCGUGGCCGACUGAGAACUAACGAGUGAAGUUCUUAGUCCCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UUUUGAGAUGAACCAUCAACAUCUCGAAACCCCGGAUAUCGGUGUAAAUCGCGAACACCGGUAUCGCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AGCUAACUGUAAGAACCGAACAGUUGGCUCCAUGUUUAAACGGCAAUAGGGGAGCUGUUUAGACAUGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GCAGCGGCGUUCGCGCCGUUGCUGGCGUCCGUUUGAUCCGUCAAAUGGACCGGGCAGUUUAUCUCCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AUAAGCUGCGGGGUCCGAUGAUUCCGAUCAUUGGACGGCGUCGGGUUGGUGCGCCAACUCGACUGAUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CUUUUACCUACGGGUAGAAGGAUCACAUGAUGCAAGUUCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lengereancase Contraction Cont |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CGGCGAGUAAGC <sup>J L</sup> CCG—GGUAUGGCAC <sup>J</sup> –UAGCGC <sup>J</sup> AACACCGGUAUC <sup>J L</sup> CGG—GCAGUUUAUCUC <sub>J</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L LILILILI LILILILILILILILILILILILILILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOBAGUGODUGODUGODUGODUGOUGOT كABCUCOT وCOLORA COLOCOT وCOLOCOT COLOCOT COLOCOT COLOCOT COLOCOT COLOCOT COLOCOT C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lauucgccugauga_ <sub>r</sub> cgaguadaadau_l_cgaguadaadau_l_cgaguadadau_l_cgaguadaadau_l_cgaguadaadau_l_cgaguadaadau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rcgcguggaccgu <sup>」 L</sup> auu—agggugggguuuccc—agaauuuguaucgug <sup>」 L</sup> uga—uccuuuuaccua <sub>n</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Supplementary Table 7. RNA sequence and blueprint for 6-helix bundle with clasp (6HBC).



# Supplementary Table 8. RNA sequence and blueprint for 6-helix bundle with clasp and protein binding sites (6HBC-PBS).



### Supplementary Table 9. RNA sequence and blueprint for 16-helix satellite (6HS).



|                                          | 5HT-A        | 5HT-A-TC     | 5HT-B        | 5HT-B-3X     | 6HB          | 6HBC-Y1      | 6HBC-PBS     | 6HBC-Y2      | 6HBC-M2      |
|------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                          | EMD-13633    | EMD-13926    | EMD-13636    | EMD-13592    | EMD-13627    | EMD-13628    | EMD-13630    | EMD-13626    | EMD-13625    |
|                                          | PDB 7PTQ     | PDB 7QDU     | PDB 7PTS     |              |              | PDB 7PTK     | PDB 7PTL     |              |              |
| Data collection and processing           |              |              |              |              |              |              |              |              |              |
| Magnification                            | 130000       | 130000       | 130000       | 130000       | 130000       | 130000       | 130000       | 130000       | 130000       |
| Voltage (kV)                             | 300          | 300          | 300          | 300          | 300          | 300          | 300          | 300          | 300          |
| Electron exposure $(e - / Å^2)$          | ~60          | ~60          | ~60          | ~60          | ~60          | ~60          | ~60          | ~60          | ~60          |
| Defocus range (µm)                       | -0.7 to -2.2 |
| Pixel size (Å)                           | 0.647        | 0.647        | 0.647        | 0.647        | 0.647        | 0.647        | 0.647        | 0.86         | 0.86         |
| Symmetry imposed                         | None         |
| Initial particle images (no.)            | 1434423      | 605848       | 229472       | 588769       | 258034       | 2037822      | 229472       | 332956       | 332956       |
| Final particle images (no.)              | 471934       | 166751       | 54260        | 173322       | 92383        | 375961       | 54260        | 55036        | 55657        |
| Map resolution (Å)                       |              |              |              |              |              |              |              |              |              |
| FSC threshold (0.143)                    | 4.08         | 5.14         | 5.71         | 6.50         | 6.61         | 5.18         | 5.71         | 7.04         | 7.43         |
| Refinement                               |              |              |              |              |              |              |              |              |              |
| Initial model used (PDB code)            | None         | None         | None         | N/A          | N/A          | None         | None         | N/A          | N/A          |
| Model resolution (Å)                     | rone         | TUNE         | TONE         | 1.0/1.1      | 1 1/2 1      | Tone         | TUNE         | 1.1/11       | 10/21        |
| FSC threshold (0.143)                    | 3.9          | 4.8          | 5.3          | N/A          | N/A          | 5            | 4.7          | N/A          | N/A          |
| Map sharpening <i>B</i> factor ( $Å^2$ ) | 303          | 252          | 306          | N/A          | N/A          | 303          | 302          | N/A          | N/A          |
| Model composition                        |              |              |              |              |              |              |              |              |              |
| Non-hydrogen atoms                       | 17434        | 17693        | 17906        | N/A          | N/A          | 23080        | 23080        | N/A          | N/A          |
| Hydrogen atoms                           | 5847         | 5941         | 6006         | N/A          | N/A          | 7743         | 7743         | N/A          | N/A          |
| Nucleotide residues                      | 544          | 552          | 558          | N/A          | N/A          | 720          | 720          | N/A          | N/A          |
| R.m.s. deviations                        |              |              |              |              |              |              |              |              |              |
| Bond lengths (Å)                         | 0.014 (0)    | 0.014 (2)    | 0.015 (0)    | N/A          | N/A          | 0.014 (0)    | 0.014 (1)    | N/A          | N/A          |
| Bond angles (°)                          | 1.954 (184)  | 2.107 (250)  | 2.307 (798)  | N/A          | N/A          | 2.075 (606)  | 2.051 (332)  | N/A          | N/A          |
| Validation                               |              |              |              |              |              |              |              |              |              |
| MolProbity score                         | 1.99         | 2.38         | 2.49         | N/A          | N/A          | 2.25         | 2.33         | N/A          | N/A          |
| Clashscore                               | 1.20         | 4.58         | 6.22         | N/A          | N/A          | 3.08         | 3.95         | N/A          | N/A          |

### Supplementary Table 10. Cryo-EM data collection, refinement and validation statistics.

#### Supplementary Table 11. Seam curvature angles φ measured from 3DVA of 5HT-A.

Each row in the table corresponds to two seams of a given RNA origami structure. The seams (S) are numbered from 5' to 3' and helices (H) are numbered from helix 1, which contain the transcription start site.

| Component 1 |          |          |          |          |          |          |  |  |  |
|-------------|----------|----------|----------|----------|----------|----------|--|--|--|
| Seam        |          | S1       |          | S2       |          |          |  |  |  |
| Theta       | H1-H2-H3 | H2-H3-H4 | H3-H4-H5 | H1-H2-H3 | H2-H3-H4 | H3-H4-H5 |  |  |  |
| 1           | 179      | 140      | 141      | 164      | 145      | 175      |  |  |  |
| 2           | 179      | 139      | 143      | 160      | 146      | 176      |  |  |  |
| 3           | 180      | 139      | 144      | 157      | 147      | 175      |  |  |  |
| 4           | 180      | 138      | 145      | 153      | 147      | 176      |  |  |  |
| 5           | 179      | 137      | 147      | 149      | 146      | 177      |  |  |  |
| 6           | 179      | 137      | 148      | 146      | 146      | 177      |  |  |  |
| 7           | 178      | 136      | 149      | 145      | 146      | 177      |  |  |  |
| 8           | 177      | 136      | 151      | 143      | 146      | 177      |  |  |  |
| 9           | 177      | 136      | 152      | 141      | 146      | 178      |  |  |  |
| 10          | 176      | 135      | 154      | 139      | 146      | 178      |  |  |  |
| 11          | 176      | 135      | 155      | 138      | 146      | 180      |  |  |  |
| 12          | 176      | 135      | 156      | 136      | 146      | 180      |  |  |  |
| 13          | 175      | 135      | 157      | 134      | 146      | 179      |  |  |  |
| 14          | 174      | 135      | 158      | 133      | 146      | 179      |  |  |  |
| 15          | 175      | 133      | 161      | 132      | 146      | 178      |  |  |  |
| 16          | 175      | 133      | 162      | 131      | 146      | 177      |  |  |  |
| 17          | 175      | 132      | 164      | 130      | 146      | 177      |  |  |  |
| 18          | 175      | 131      | 166      | 129      | 146      | 176      |  |  |  |
| 19          | 175      | 129      | 168      | 127      | 146      | 175      |  |  |  |
| 20          | 175      | 130      | 169      | 127      | 145      | 173      |  |  |  |
| Range       | 6.19     | 10.63    | 28.05    | 37.02    | 1.67     | 6.97     |  |  |  |

| Component 2 |          |          |          |          |          |          |  |  |  |  |
|-------------|----------|----------|----------|----------|----------|----------|--|--|--|--|
| Seam        |          | S1       |          | S2       |          |          |  |  |  |  |
| Theta       | H1-H2-H3 | H2-H3-H4 | H3-H4-H5 | H1-H2-H3 | H2-H3-H4 | H3-H4-H5 |  |  |  |  |
| 1           | 150      | 158      | 149      | 143      | 155      | 175      |  |  |  |  |
| 2           | 159      | 160      | 147      | 144      | 155      | 175      |  |  |  |  |
| 3           | 158      | 160      | 147      | 142      | 156      | 174      |  |  |  |  |
| 4           | 157      | 158      | 149      | 142      | 156      | 173      |  |  |  |  |
| 5           | 154      | 158      | 151      | 143      | 154      | 173      |  |  |  |  |
| 6           | 155      | 159      | 146      | 144      | 153      | 174      |  |  |  |  |
| 7           | 155      | 156      | 148      | 143      | 153      | 174      |  |  |  |  |
| 8           | 155      | 155      | 149      | 143      | 151      | 174      |  |  |  |  |
| 9           | 154      | 154      | 150      | 142      | 151      | 174      |  |  |  |  |
| 10          | 153      | 154      | 150      | 142      | 151      | 173      |  |  |  |  |
| 11          | 151      | 154      | 150      | 142      | 151      | 173      |  |  |  |  |
| 12          | 150      | 154      | 149      | 142      | 148      | 174      |  |  |  |  |
| 13          | 151      | 154      | 148      | 142      | 143      | 178      |  |  |  |  |
| 14          | 151      | 153      | 148      | 144      | 140      | 175      |  |  |  |  |
| 15          | 150      | 151      | 150      | 143      | 140      | 176      |  |  |  |  |
| 16          | 147      | 150      | 152      | 144      | 145      | 172      |  |  |  |  |
| 17          | 147      | 149      | 153      | 144      | 140      | 180      |  |  |  |  |

| 18       | 148      | 148      | 152      | 143      | 140      | 179      |  |  |  |  |
|----------|----------|----------|----------|----------|----------|----------|--|--|--|--|
| 19       | 148      | 150      | 147      | 143      | 141      | 179      |  |  |  |  |
| 20       | 149      | 146      | 152      | 143      | 142      | 175      |  |  |  |  |
| Range    | 11.42    | 13.81    | 7.43     | 2.15     | 16.30    | 7.85     |  |  |  |  |
| g-       |          |          |          |          |          |          |  |  |  |  |
| Componen | t 3      |          |          |          |          |          |  |  |  |  |
| Seam     | S2       |          |          |          |          |          |  |  |  |  |
| Theta    | H1-H2-H3 | H2-H3-H4 | H3-H4-H5 | H1-H2-H3 | H2-H3-H4 | H3-H4-H5 |  |  |  |  |
| 1        | 174      | 144      | 153      | 155      | 149      | 174      |  |  |  |  |
| 2        | 170      | 140      | 151      | 145      | 153      | 173      |  |  |  |  |
| 3        | 170      | 142      | 146      | 144      | 152      | 174      |  |  |  |  |
| 4        | 178      | 149      | 144      | 143      | 152      | 173      |  |  |  |  |
| 5        | 180      | 150      | 144      | 150      | 146      | 173      |  |  |  |  |
| 6        | 178      | 146      | 146      | 148      | 145      | 172      |  |  |  |  |
| 7        | 174      | 141      | 145      | 144      | 146      | 172      |  |  |  |  |
| 8        | 175      | 140      | 144      | 145      | 144      | 172      |  |  |  |  |
| 9        | 177      | 139      | 145      | 144      | 141      | 170      |  |  |  |  |
| 10       | 175      | 138      | 144      | 143      | 141      | 173      |  |  |  |  |
| 11       | 176      | 138      | 142      | 141      | 141      | 172      |  |  |  |  |
| 12       | 179      | 138      | 141      | 140      | 140      | 172      |  |  |  |  |
| 13       | 179      | 137      | 140      | 140      | 137      | 171      |  |  |  |  |
| 14       | 179      | 137      | 140      | 139      | 135      | 169      |  |  |  |  |
| 15       | 179      | 137      | 139      | 136      | 137      | 171      |  |  |  |  |
| 16       | 178      | 135      | 137      | 136      | 137      | 173      |  |  |  |  |
| 17       | 175      | 138      | 137      | 137      | 136      | 175      |  |  |  |  |
| 18       | 179      | 135      | 137      | 137      | 136      | 176      |  |  |  |  |
| 19       | 177      | 134      | 136      | 134      | 136      | 175      |  |  |  |  |
| 20       | 177      | 130      | 137      | 133      | 135      | 175      |  |  |  |  |
| Range    | 9.68     | 20.38    | 17.34    | 22.37    | 17.71    | 7.05     |  |  |  |  |

### Supplementary Table 12. Crossover angles $\theta$ measured from 3DVA of 5HT-A.

Each row in the table corresponds to two seams of a given RNA origami structure. The seams (S) are numbered from 5' to 3' and helices (H) are numbered from helix 1, which contain the transcription start site.

| Component 1 |       |       |       |       |       |       |       |       |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Seam        |       | S     | 51    |       |       | S     | 62    |       |
| Theta       | H1-H2 | H2-H3 | H3-H4 | H4-H5 | H1-H2 | H2-H3 | H3-H4 | H4-H5 |
| 1           | 15.2  | 16.3  | 25.1  | 22.3  | 15.7  | 20.5  | 11.4  | 28.4  |
| 2           | 16.6  | 16.7  | 25.0  | 22.0  | 16.8  | 20.6  | 11.0  | 28.0  |
| 3           | 18.2  | 17.0  | 25.0  | 21.5  | 17.6  | 20.6  | 10.8  | 27.5  |
| 4           | 19.4  | 17.3  | 25.0  | 21.1  | 18.4  | 20.6  | 10.7  | 27.0  |
| 5           | 20.6  | 17.6  | 25.1  | 20.7  | 19.2  | 20.6  | 10.4  | 26.5  |
| 6           | 22.1  | 17.8  | 25.0  | 20.1  | 19.9  | 20.7  | 10.1  | 25.9  |
| 7           | 23.3  | 18.1  | 24.8  | 19.6  | 20.5  | 20.6  | 9.8   | 25.3  |
| 8           | 24.5  | 18.4  | 24.7  | 19.1  | 21.1  | 20.7  | 9.5   | 24.6  |
| 9           | 25.6  | 18.6  | 24.5  | 18.2  | 21.7  | 20.6  | 9.1   | 24.0  |
| 10          | 26.9  | 18.8  | 24.5  | 17.7  | 22.2  | 20.6  | 8.9   | 23.5  |
| 11          | 25.9  | 19.0  | 24.4  | 17.2  | 22.7  | 20.6  | 8.5   | 22.9  |
| 12          | 26.9  | 19.4  | 24.5  | 16.4  | 23.3  | 20.5  | 8.2   | 22.2  |
| 13          | 28.0  | 19.8  | 24.3  | 15.7  | 23.6  | 20.5  | 7.9   | 21.6  |
| 14          | 28.9  | 20.0  | 24.3  | 15.1  | 24.1  | 20.6  | 7.6   | 20.9  |
| 15          | 29.8  | 20.2  | 24.1  | 14.3  | 24.4  | 20.6  | 7.1   | 20.2  |
| 16          | 30.6  | 20.5  | 24.1  | 13.6  | 24.9  | 20.6  | 6.8   | 19.5  |
| 17          | 31.6  | 20.7  | 23.9  | 12.9  | 25.3  | 20.7  | 6.5   | 18.9  |
| 18          | 32.3  | 21.0  | 23.7  | 12.0  | 25.7  | 20.6  | 6.1   | 18.2  |
| 19          | 32.9  | 21.3  | 23.5  | 11.2  | 26.0  | 20.7  | 5.7   | 17.6  |
| 20          | 33.6  | 21.7  | 23.5  | 10.5  | 26.3  | 20.5  | 5.4   | 16.9  |
| Range       | 18.5  | 5.4   | 1.6   | 11.9  | 10.5  | 0.2   | 6.0   | 11.5  |

| Component 2 |       |       |       |       |       |       |       |       |  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Seam        |       | S     | 51    |       |       | S     | 52    |       |  |
| Theta       | H1-H2 | H2-H3 | H3-H4 | H4-H5 | H1-H2 | H2-H3 | H3-H4 | H4-H5 |  |
| 1           | 25.9  | 20.1  | 26.4  | 16.7  | 21.9  | 22.2  | 7.2   | 24.6  |  |
| 2           | 26.1  | 20.0  | 26.3  | 17.0  | 21.9  | 22.2  | 7.3   | 24.6  |  |
| 3           | 25.8  | 19.6  | 26.1  | 17.0  | 22.2  | 22.2  | 7.5   | 24.5  |  |
| 4           | 25.3  | 19.4  | 25.7  | 16.9  | 22.3  | 21.9  | 7.6   | 24.4  |  |
| 5           | 25.3  | 19.2  | 25.4  | 17.0  | 22.4  | 21.8  | 7.8   | 24.3  |  |
| 6           | 25.2  | 19.0  | 24.9  | 17.0  | 22.4  | 21.6  | 8.0   | 24.2  |  |
| 7           | 25.1  | 18.7  | 24.7  | 17.1  | 22.4  | 21.5  | 8.2   | 24.0  |  |
| 8           | 25.2  | 18.4  | 24.2  | 17.2  | 22.6  | 21.5  | 8.5   | 24.0  |  |
| 9           | 25.1  | 18.2  | 24.0  | 17.2  | 22.7  | 21.3  | 8.8   | 24.0  |  |
| 10          | 25.2  | 18.1  | 23.7  | 17.2  | 22.8  | 21.4  | 9.1   | 23.9  |  |
| 11          | 25.4  | 18.0  | 23.2  | 17.2  | 22.9  | 21.3  | 9.4   | 23.7  |  |
| 12          | 25.9  | 17.6  | 23.1  | 17.5  | 23.0  | 21.3  | 9.9   | 23.7  |  |
| 13          | 26.3  | 17.3  | 22.7  | 17.6  | 23.0  | 21.2  | 10.2  | 23.5  |  |
| 14          | 26.7  | 17.0  | 22.6  | 17.8  | 23.1  | 21.2  | 10.5  | 23.5  |  |
| 15          | 27.5  | 16.7  | 22.4  | 17.9  | 23.3  | 21.5  | 11.3  | 23.4  |  |
| 16          | 28.8  | 16.5  | 22.1  | 18.0  | 23.3  | 21.7  | 12.1  | 23.4  |  |
| 17          | 30.6  | 16.4  | 21.8  | 17.9  | 23.4  | 22.0  | 13.1  | 23.5  |  |
| 18          | 31.9  | 16.4  | 21.5  | 18.2  | 23.5  | 22.6  | 14.4  | 23.4  |  |

| 19          | 33.7  | 16.1  | 21.2  | 18.3  | 23.5  | 22.8  | 14.9  | 23.4  |  |  |  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| 20          | 35.7  | 15.7  | 21.0  | 18.2  | 23.5  | 23.3  | 15.8  | 23.4  |  |  |  |
| Range       | 10.6  | 4.4   | 5.4   | 1.6   | 1.6   | 2.1   | 8.6   | 1.3   |  |  |  |
|             |       |       |       |       |       |       |       |       |  |  |  |
| Component 3 |       |       |       |       |       |       |       |       |  |  |  |
| Seam        |       | S     | 1     |       |       | S     | 2     |       |  |  |  |
| Theta       | H1-H2 | H2-H3 | H3-H4 | H4-H5 | H1-H2 | H2-H3 | H3-H4 | H4-H5 |  |  |  |
| 1           | 20.0  | 17.5  | 24.7  | 16.8  | 22.2  | 20.7  | 9.3   | 22.2  |  |  |  |
| 2           | 21.0  | 17.6  | 24.6  | 16.7  | 22.0  | 20.6  | 9.3   | 22.4  |  |  |  |
| 3           | 22.1  | 17.6  | 24.3  | 16.6  | 22.0  | 20.7  | 9.2   | 22.6  |  |  |  |
| 4           | 22.6  | 17.6  | 24.3  | 16.7  | 22.0  | 20.7  | 9.1   | 22.7  |  |  |  |
| 5           | 23.2  | 17.7  | 24.2  | 16.9  | 22.1  | 20.8  | 9.0   | 22.9  |  |  |  |
| 6           | 24.1  | 17.7  | 24.0  | 17.2  | 22.1  | 20.8  | 9.2   | 23.1  |  |  |  |
| 7           | 24.9  | 17.7  | 23.6  | 17.2  | 22.3  | 21.1  | 9.2   | 23.3  |  |  |  |
| 8           | 25.7  | 17.6  | 23.4  | 17.2  | 22.4  | 21.0  | 9.1   | 23.5  |  |  |  |
| 9           | 26.8  | 17.6  | 23.3  | 17.2  | 22.6  | 21.2  | 9.1   | 23.7  |  |  |  |
| 10          | 27.6  | 17.6  | 23.2  | 17.3  | 22.8  | 21.1  | 9.0   | 23.9  |  |  |  |
| 11          | 28.2  | 17.6  | 23.0  | 17.4  | 22.8  | 21.3  | 8.9   | 24.1  |  |  |  |
| 12          | 28.7  | 17.7  | 22.8  | 17.4  | 22.9  | 21.2  | 8.8   | 24.3  |  |  |  |
| 13          | 29.5  | 17.9  | 22.6  | 17.6  | 23.1  | 21.2  | 8.7   | 24.5  |  |  |  |
| 14          | 30.3  | 17.8  | 22.4  | 17.8  | 23.2  | 21.4  | 8.7   | 24.7  |  |  |  |
| 15          | 30.9  | 17.9  | 22.0  | 17.7  | 23.4  | 21.4  | 8.8   | 25.0  |  |  |  |
| 16          | 31.5  | 17.8  | 21.8  | 17.8  | 23.4  | 21.6  | 8.8   | 25.3  |  |  |  |
| 17          | 32.1  | 17.8  | 21.8  | 17.9  | 23.8  | 21.6  | 8.7   | 25.4  |  |  |  |
| 18          | 32.9  | 18.0  | 21.6  | 18.0  | 23.9  | 21.6  | 8.6   | 25.5  |  |  |  |
| 19          | 31.1  | 18.0  | 21.5  | 18.2  | 24.0  | 21.6  | 8.7   | 25.9  |  |  |  |
| 20          | 31.4  | 17.9  | 21.3  | 18.3  | 24.1  | 21.7  | 8.7   | 26.3  |  |  |  |
| Range       | 12.9  | 0.5   | 3.4   | 1.7   | 2.1   | 1.1   | 0.7   | 4.1   |  |  |  |



Supplementary Fig. 1. Cryo-EM data and reconstruction of 5HT-A.

**a**, Example cryo-EM micrograph from the 5HT-A dataset. **b**, Gold-Standard Fourier Shell Correlation for the 5HT-A reconstruction. **c**, 2D classes from the final particle stack of the 5HT-A dataset. **d**, Three alternate views of the 5HT-A reconstruction.





Supplementary Fig. 2. Cryo-EM data and reconstruction of 5HT-A-TC.

**a**, Example cryo-EM micrograph from the 5HT-A-TC dataset. **b**, Gold-Standard Fourier Shell Correlation for the 5HT-A-TC reconstruction. **c**, 2D classes from the final particle stack of the 5HT-B-3X dataset. **d**, Three alternate views of the 5HT-A-TC reconstruction.



### Supplementary Fig. 3. Cryo-EM data and reconstruction of 5HT-B.

**a**, Example cryo-EM micrograph from the 5HT-B dataset. **b**, Gold-Standard Fourier Shell Correlation for the 5HT-B reconstruction. **c**, 2D classes from the final particle stack of the 5HT-B dataset. **d**, Three alternate views of the 5HT-B reconstruction.



### Supplementary Fig. 4. Cryo-EM data and reconstruction of 5HT-B-3X.

**a**, Example cryo-EM micrograph from the 5HT-B-3X dataset. **b**, Gold-Standard Fourier Shell Correlation for the 5HT-B-3X reconstruction. **c**, 2D classes from the final particle stack of the 5HT-B-3X dataset. **d**, Three alternate views of the 5HT-B-3X reconstruction.







d



### Supplementary Fig. 5. Cryo-EM data and reconstruction of 6HB.

**a**, Example cryo-EM micrograph from the 6HB dataset. **b**, Gold-Standard Fourier Shell Correlation for the 6HB reconstruction. **c**, 2D classes from the final particle stack of the 6HB dataset. **d**, Three alternate views of the 6HB reconstruction.







#### Supplementary Fig. 6. Cryo-EM data and reconstruction of 6HBC-Young1.

**a**, Example cryo-EM micrograph from the 6HBC-Young1 dataset. **b**, Gold-Standard Fourier Shell Correlation for the 6HBC-Young1 reconstruction. **c**, 2D classes from the final particle stack of the 6HBC-Young1 dataset. **d**, Three alternate views of the 6HBC-Young1 reconstruction.





#### Supplementary Fig. 7. Cryo-EM data and reconstruction of 6HBC-PBS-Mature1.

**a**, Example cryo-EM micrograph from the 6HBC-PBS-Mature1dataset. **b**, Gold-Standard Fourier Shell Correlation for the 6HBC-PBS-Mature1 reconstruction. **c**, 2D classes from the final particle stack of the 6HBC-PBS-Mature1dataset. **d**, Three alternate views of the 6HBC-PBS-Mature1reconstruction.



d



#### Supplementary Fig. 8. Cryo-EM data and reconstruction of 6HBC-Young2.

**a**, Example cryo-EM micrograph from the 6HBC-Young2 dataset. **b**, Gold-Standard Fourier Shell Correlation for the 6HBC-Young2 reconstruction. **c**, 2D classes from the final particle stack of the 6HBC-Young2 dataset. **d**, Three alternate views of the 6HBC-Young2 reconstruction.





### Supplementary Fig. 9. Cryo-EM data and reconstruction of 6HBC-Mature2.

**a**, Example cryo-EM micrograph from the 6HBC-Mature2 dataset. **b**, Gold-Standard Fourier Shell Correlation for the 6HBC-Mature2 reconstruction. **c**, 2D classes from the final particle stack of the 6HBC-Mature2 dataset. **d**, Three alternate views of the 6HBC-Mature2 reconstruction.



### Supplementary Fig. 10. Map to model correlation of 5HT-A.

**a**, Per residue cross correlation (CC) and **b**, Fourier shell correlation (FSC) between atomic model and cryo-EM map for 5HT-A.



### Supplementary Fig. 11. Map to model correlation of 5HT-A-TC.

**a**, Per residue cross correlation (CC) and **b**, Fourier shell correlation (FSC) between atomic model and cryo-EM map for 5HT-A-TC.



Supplementary Fig. 12. Map to model correlation of 5HT-B.

**a**, Per residue cross correlation (CC) and **b**, Fourier shell correlation (FSC) between atomic model and cryo-EM map for 5HT-B.



Supplementary Fig. 13. Map to model correlation of 6HBC-Young1.

**a**, Per residue cross correlation (CC) and **b**, Fourier shell correlation (FSC) between atomic model and cryo-EM map for 6HBC-Young1.



Supplementary Fig. 14. Map to model correlation of 6HBC-PBS-Mature1.

**a**, Per residue cross correlation (CC) and **b**, Fourier shell correlation (FSC) between atomic model and cryo-EM map for 6HBC-PBS-Mature1.



20 nm

### Supplementary Fig. 15. Cryo-EM 2D class averages of the 16H-satellite sample.

The reference-free 2D class averages are only able to capture subdomains of the 16H-satellite structure indicating that the sample is not useful for 3D reconstruction. The two numbers on purple rectangle are the index of the class (the first number), and the number of the images used for this class averages (the second number), respectively.



Supplementary Fig. 16. IPET 3D reconstruction of individual particle #1 of 16HS.



Supplementary Fig. 17. IPET 3D reconstruction of individual particle #2 of 16HS.



Supplementary Fig. 18. IPET 3D reconstruction of individual particle #3 of 16HS.



Supplementary Fig. 19. IPET 3D reconstruction of individual particle #4 of 16HS.



Supplementary Fig. 20. IPET 3D reconstruction of individual particle #5 of 16HS.



Supplementary Fig. 21. IPET 3D reconstruction of individual particle #6 of 16HS.



Supplementary Fig. 22. IPET 3D reconstruction of individual particle #7 of 16HS.



Supplementary Fig. 23. IPET 3D reconstruction of individual particle #8 of 16HS.



Supplementary Fig. 24. IPET 3D reconstruction of individual particle #9 of 16HS.



Supplementary Fig. 25. IPET 3D reconstruction of individual particle #10 of 16HS.



Supplementary Fig. 26. IPET 3D reconstruction of individual particle #11 of 16HS.



Supplementary Fig. 27. IPET 3D reconstruction of individual particle #12 of 16HS.



Supplementary Fig. 28. IPET 3D reconstruction of individual particle #13 of 16HS.



Supplementary Fig. 29. IPET 3D reconstruction of individual particle #14 of 16HS.



Supplementary Fig. 30. IPET 3D reconstruction of individual particle #15 of 16HS.



Supplementary Fig. 31. IPET 3D reconstruction of individual particle #16 of 16HS.