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1. Quantifying Assembly Paths in Expanding Linear Space 
 

The Assembly pool at a given step is a set of possible structures that have been formed previously 

along an assembly path and are accessible at the next assembly step to create higher-order structures. 

To illustrate this process, here we generate a complete combinatorial assembly pool for linear chains 

defined as integers which are equivalent to linear polymers constructed from a single monomeric unit. 

To minimize the cost of enumeration, at each step of the forward process, we consider all possible 

combinations between the objects created at the last step with all the objects present in the assembly 

pool. 

As an example, the assembly pool after three full combinatorial steps is given by,    

𝑃 = {1, 2, 3, 4, 5, 6, 7, 8}  

with connections based on joining operations are given by, 

𝐶 = {{1 → 2}, {2 → 3, 2 → 4}, {3 → 4, 3 → 5, 3 → 6, 3 → 7, 4 → 5, 4 → 6, 4 → 7, 4 → 8}}. 

 

It is important to note that these combination steps do not necessarily correspond to the assembly 

index which represents the shortest path to create an object. In general, within the assembly pool 

generated by forward steps, any object will only appear as an outcome of the assembly process 

(combining integers) until the slowest path to form the object has been achieved. The slowest step is 

the one where at each step, one fundamental unit adds to the current structure along the assembly 

path. For example, in a linear chain, the slowest path to create a chain length 3 is 1 → 2 → 3, which 

includes two steps. The complete assembly pool at the end of the two steps is 0{1}, {2}, {3,4}1 which 

is formed from the combinations {1, 2, {1 + 2, 2 + 2}}. Here, we also assume parallel concurrent 

processes exist such that {3,4} both coexist at the end of two steps. Considering the third step, by 

enumerating all the combinations between the integer {3} and {1, 2, 3, 4}, the new unique chains that 

will be added to the assembly pool are {4, 5, 6, 7} and the formation chain length 3 is not possible as 

a new forward step. In a similar way, for integer {4}, the new unique chains in the next forward step 

will be {5, 6, 7, 8}. The fastest-growing assembly path in the assembly pool is when at each step the 

highest assembly object combines with itself, for example in a linear chain the fastest-growing path 

is 1 → 2 → 4 → 8 → 16. So, starting with a chain length 1 as the fundamental object, after 𝑛 steps, 

the shortest and the longest chain lengths are 𝑛 + 1 and 2!, respectively. As an example, Fig. S1 

shows the fully combinatorial assembly pool after four steps with the shortest and longest paths 

highlighted in red and blue, and examples for chain lengths 6 and 7. 
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Fig. S1 Assembly Space for linear chains. (a) The figure shows the assembly space of one-
dimensional linear chains up to four assembly steps. The path in red (up to 5) and blue (up to 16) 
shows the slowest and fastest assembly steps. (b, c) Figure shows the shortest path for linear chains 
of lengths 6 and 7. Note that assembly index which represents the shortest path in a serial process for 
chain length 6 and 7 is 3 and 4 respectively. 
 

In another way, the slowest path to create a chain with length 𝑛, starting with the fundamental object 

with length 1 (single monomer), consists of  𝑛 − 1 steps. Hence, enumerating all the possible paths 

to create a chain of length 𝑛, requires enumeration of the combinatorial space up to 𝑛 − 1 steps only. 

All the chains with length < 𝑛, will contribute to the possible assembly paths to create a chain of 

length 𝑛. The longest chain length possible in a similar number of steps is 2!"#. Hence, in a fully 

combinatorial assembly space, to create a chain length 𝑛 with all possible pathways, the number of 

additional chains which can potentially form during the combination steps is 2!"# − 𝑛. This can be 

approximated as 2!"# which indicates that the potential additional chains increase exponentially with 
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𝑛. This shows that in the absence of selection, the combinatorial space expands exponentially for 

integers. For example, Fig. S2 (a-c) shows combinatorial assembly space for chain lengths 4, 5, and 

6 together with additional chains which can also be formed in 𝑛 − 1 steps. 

 
Fig. S2 Combinatorial assembly space of linear chains. (a-c) shows combinatorial assembly space 
for chain lengths 4, 5, and 6. The coloured paths represent potential assembly paths to reach the 
specific chain length and paths in the grey lead to the formation of additional chains. For chain lengths 
4, 5, and 6, the number of additional chains formed is 2$ − 4 = 4, 2% − 5 = 11, and 2& − 6 = 26 
respectively. 
 

2. Estimating the shortest assembly path for a linear chain 
 

For a linear chain of length 𝑛, the assembly index (number of steps required by the shortest path to 

construct the chain) which quantifies that both upper and lower bounds scales as log'(𝑛) in the 

leading order. The exact assembly index can be estimated by generating the pathway and counting 

the number of steps. At various calculations, we approximate assembly index as 𝑎~log'(𝑛) for 

simplicity. As an example, for a simple chain, the assembly path to construct a chain of length 7 is 

1 → 2 → 3 → 4 → 7, hence the assembly index is 4. Similarly, the pathway to construct a chain of 

length 8 is given by 1 → 2 → 4 → 8 and hence its assembly index is 3. The scaling of the assembly 

index at the leading order with chain length is shown in Fig. S3.  

 
Fig. S3 Assembly Index of linear chains. The figure shows the assembly index of linear chains vs. 
chain length estimated using 𝑎~log'(𝑛) where 𝑛 is the chain length. 
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To estimate the potential pathways and search the shortest path to the assembly of a chain of length 

𝑛, first, the assembly pool is generated up to 𝑛 − 1 steps such that slowest step can be included. All 

the chains in the assembly pool with lengths longer than the given chain length can be excluded. For 

example, considering chain length 5, the generated combinatorial assembly pool is shown in Fig. S2 

(b) by enumerating combinations up to 4 steps. The example pathways for chain lengths 4, 5, and 6 

are given below. 

 

Example pathways for chain length 5: 

{1 → 2 → 3 → 4 → 5}, 

{1 → 2 → 4 → 5}, 

{1 → 2 → 3 → 5}, 

 

 

Example pathways for chain length 6: 

{1 → 2 → 3 → 4 → 5 → 6},  

{1 → 2 → 3 → 4 → 6}, 

{1 → 2 → 3 → 5 → 6}, 

{1 → 2 → 3 → 6}, 

{1 → 2 → 4 → 5 → 6}  

{1 → 2 → 4 → 6} 

 

 

Example pathways for chain length 7: 

{1 → 2 → 3 → 4 → 7}, 

{1 → 2 → 3 → 5 → 7}, 

{1 → 2 → 3 → 5 → 6 → 7}, 

{1 → 2 → 4 → 5 → 7}, 

{1 → 2 → 4 → 6 → 7}, 

{1 → 2 → 3 → 6 → 7}, 

{1 → 2 → 3 → 4 → 6 → 7}, 

{1 → 2 → 3 → 4 → 5 → 6 → 7} 
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While creating all the possible paths, as explained previously, the number of additional possible 

polymeric chains which can be created while assembling a chain length 𝑛 are given by 2!"# − 𝑛, see 

Fig. S4. 

 
Fig. S4 Enumeration of the additionally generated chains up to the longest path at different 
chain lengths. The number of additional chains is given by (2!"# − 𝑛). 
 

To calculate the shortest path for a given chain length 𝑛, we start with chain length 𝑛 and split it into 

sub-chains depending on if 𝑛 is odd or even. If 𝑛 is even, the sub-chain is 𝑛/2 and if 𝑛 is odd, sub-

chains are {⌊n/2⌋, ⌈n/2⌉}. This splitting operation is performed recursively for 𝑝 times, where 𝑝 is 

given by ⌈log'(𝑛)⌉, where the final sub-chains will be the fundamental chains of length 1. Using the 

sub-chains, the assembly pathway can be generated.  

  

As an example, to generate the shortest path for chain length 7 (assembly index 4) as described above 

the set of sub-chains created is given by D{7}, {3,4}, 0{1,2}, {2}1, {1}	F. Hence, the shortest pathway to 

create chain length 7 involve {1,2,3,4,7}, hence the assembly index can be estimated by counting the 

number of edges in the graph representing the set of sub-chains. It is important to note that for a 

simple system like linear chains, there is more than one possible shortest pathway, and the current 

scheme only quantifies one possible shortest pathway which is used to describe here as the assembly 

path. For more complex and heterogeneous systems like molecules, the shortest path becomes more 

unique. 

 

 The combinatorial assembly space for linear chains formed from one monomeric unit is exponential 

at the leading order with respect to the assembly index. As described previously, for a linear chain of 
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length 𝑛, the assembly index at the leading order can be approximated by 𝑎	~log	'(𝑛). So, at each 

assembly step (𝑎) there are approximately 2( possible chains. To keep the terminology clear, 

assembly index represents the minimum number of steps to create an object in a serial process, 

however here assembly steps represent combinatorial process which also includes concurrent steps. 

 

Additionally, if we introduce two (A, B) or three monomers (A, B, C), the fully combinatorial 

assembly space grows faster as various configurations of polymer sequences could have the same 

assembly index. To enumerate all the polymeric sequences up to a given step 𝑎, the total number of 

2( combinatorial steps are required. We used the String Assembly Calculator1 to calculate the 

assembly index of all possible polymeric sequences with two monomers up to length 16. The total 

number of possible polymeric sequences using two monomers A and B created up to length 16 is 

given by geometric sum  2 G'
!""#
'"#

H = 131,070 where all the sequences were considered distinct. 

Similarly, the total number of sequences up to three monomeric units up to length 16 is 3 G$
!""#
$"#

H =

64,570,080. We generated all these polymeric sequences using a Python code and calculated the 

assembly index using the String Assembly Calculator which enumerates all combinations up length 

16. The distribution of polymeric sequences with respect to assembly indices is shown in Fig. S5. 

 

 
Fig. S5 Enumerating possible structures in polymer space with one, two, and three monomers. 
The figure shows the number of structures in the fully combinatorial assembly space vs. assembly 
index for polymeric sequences with one, two, and three monomeric units. The data points to the left 
of the blue line up to assembly index 4 show complete enumeration and on the right show partial 
enumeration. 
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3. Quantifying Assembly of an Ensemble 
 

3.1 Exponential Dependence on Assembly Index 

The assembly pool constitutes the number of unique objects that emerged from the contingent history 

and can be used further along the assembly path. For a single isolated chain, at assembly step 𝑎 →

𝑎 + 1, the set of objects available from the contingent history is {𝑝), 𝑝#, 𝑝', 𝑝$…𝑝(}, which increases 

linearly with the number of assembly steps. Here, 𝑝) represent the fundamental particle or building 

block. When a limited number of multiple objects coexist and have been observed/measured, in 

principle, the assembly pool of the joint assembly space also expands linearly in the forward process. 

Also, in the case of two shared assembly pathways, the number of objects in the assembly pool is 

given by {𝑝), 𝑝#, 𝑝', 𝑝$, 𝑝%, 𝑝&…𝑝* , 𝑞+, 𝑞,, 𝑞-…𝑞.}, assuming 𝑞+ is formed from 𝑝&, and 

{𝑝#, 𝑝', 𝑝$, 𝑝%, 𝑝&} constitutes objects in the shared assembly space, see Fig. S6.  

 
Fig. S6 Growth of Assembly Pool with assembly steps. (a) An isolated assembly path up 𝑝*/# 
contingent nodes. (b) Joint Assembly space with two branches up to 𝑝*/# and 𝑞., splitting at 𝑝&, 𝑝& →
𝑝+ and 𝑝& → 𝑞+. In both cases, the assembly pool expands linearly (note that in the figure, 
fundamental particles are not shown in the assembly pool however they also constitute the assembly 
pool). 
 
In this case, as well, the assembly pool increases faster than the single isolated chain, however, the 

expansion is still linear. The linear expansion of the assembly pool along an isolated assembly path, 

or in a joint assembly space splitting into two assembly paths, is shown in Fig. S6. In the case of the 

joint assembly space, the larger the shared assembly paths of the observed objects, the smaller the 

growth rate of the expansion of the assembly pool. In the extreme case which is unlikely to be 
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observed in most physical systems, where each object along the assembly path is observed and 

generates 𝑘 unique objects at each assembly step, in that case, the assembly pool (excluding the 

fundamental particles) available at step 𝑎 → 𝑎 + 1 is given by the summation of a geometric sequence 
0#"#
0"#

, where 𝑘 is the number of unique objects formed at the (𝑎 + 1)12  step from each object at the 

𝑎12 step.  

 
While considering a linearly expanding assembly pool where at step 𝑎 → 𝑎 + 1, when the object at 

assembly index 𝑎 combines with another object from the assembly pool, we excluded the internal 

structure of the objects for the combination operation. When two objects from the assembly pool 

combine along the assembly path, the combination process comprises two aspects: object selection 

and object construction. Object selection determines which two objects are to be combined at a given 

assembly step along the assembly path, and object construction defines how two selected objects are 

combined.  

 
Fig. S7 Combinatorial Assembly Space with linearly increasing Assembly Pool. (a) An isolated 
assembly path where at each assembly step, the structure from the previous assembly step combines 
with a single fundamental particle. (b) An isolated assembly path where at each assembly step, the 
structure from the previous assembly step combines with itself. In both cases, after three steps, the 
potential pairwise combinations from the objects present in the assembly pool are shown. In both 
cases, we assume the building blocks (fundamental particles) are the point particles. 
 

Consider the simplest case of a one-dimensional polymeric string of length 𝑛 that needs to be 

connected to a single monomer. If there is a constraint of a single bond, there are 𝑛 possible ways to 

connect the string with the monomer. In the absence of any bond constraints, there are 2! − 1 ways 



11 
 

to connect the monomer to the polymeric string. The combinatorial space for object construction for 

two selected objects will expand much faster when two extended objects such as two polymeric units 

are present instead of a monomeric unit. Fig. S7 shows the potential combinatorial space for object 

construction in a slow and fast-growing assembly space. Hence, even with linearly expanding 

assembly pool, the number of potential combinations of new objects at any assembly index 

considering object selection and construction is at least exponential. This suggests that the 

contribution of the construction process to the contingent power of an observed object must have at 

least exponential dependence on the assembly index 𝐴 ∝ 𝑒3(($).                    

 
3.2 Linear dependence on copy number 

In the assembly process, there are two distinct characteristic time scales which govern the dynamics 

of the discovery of unique objects, and their copy numbers. These time scales are defined as discovery 

time scale (𝜏6) and production timescale (𝜏7). The characteristic timescale 𝜏6 of the discovery 

dynamics represents the time scale required by the assembly process to explore the potential 

combinatorial space of the objects present in the assembly pool toward creating novel unique objects. 

At this timescale, assuming there is no selectivity (emerging from the internal structure of the objects 

and their interactions) within the physical process to build a specific object or there is no optimized 

process to create a specific object, in that case, the chances of formation of all possible objects 

utilizing the assembly pool are equally likely. Or, even in the presence of selectivity to a specific set 

of objects over the others in the assembly pool, the probability of the selection of objects for the 

assembly process is higher, however, the assembly process is still not optimized for building a specific 

object. This signifies that the amount of work done to assemble a specific object (with or without 

selectivity) at the discovery time scale could be assumed independent of the object type if the 

assembly process is not optimized for creating that specific object. Considering the amount of work 

done by an unoptimized assembly process to create each copy of the observed object is equal, the 

dependence of the copy number to the quantification of Assembly should be linear (𝐴 ∝ 𝑛*). 

 

The production timescale (𝜏7) is usually specific to a given object and generates copies at the 

production rate which could be assumed faster than the discovery rate in the case of large copy 

numbers of specific objects. In this case, the production process for the specific object has been 

optimized (no competition) or at least partially optimized (partial competition) such that a large 

number of copies of an observed object can be produced. In principle, the production process of 

observing two copies after the discovery of an object is more significant than observing 1001 copies 

given that 1000 copies already exist. This is because, after the discovery of an object (its assembly 

pathway), it takes time to optimize the production process. At a lower copy number, when the 
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production process has not been optimized, the probabilities of the production of a specific object or 

the discovery of a new unique object could be considered similar. However, the presence of a large 

number of copies of a specific object represents an optimized process. Hence, for an already 

optimized process, the dependence of the copy number of a specific object on the overall Assembly 

should be logarithmic (𝐴 ∝ log	(𝑛*)). Additionally, the unique objects discovered along the assembly 

paths can have different times scales of production and these timescales can potentially change with 

time due to an increase in the competition with the arrival of newly discovered objects. This suggests 

that the discovery time scale with an unoptimized assembly process is more suitable for quantifying 

the total contingency within the ensemble, hence we chose a linear dependence of the copy number 

of an observed object on the Assembly of the ensemble. 

 

3.3 Assembly in Joint Assembly Space 

For an isolated assembly path, with an exponential dependence on the assembly index and linear 

dependence on the copy number, for 𝑁 observed unique objects, the Assembly (𝐴) is given by  

 
𝐴 = 	R𝑒($ 	

8

*

S
𝑛* − 1
𝑁9

T 
(1) 

where 𝑎* and 𝑛* are the assembly index and the copy number of the ith object and 𝑁9 is the total 

number of objects in the ensemble. The exponential 𝑒($ quantifies the contingency along the path by 

summing the contribution at each step as +1. Along the assembly path, the information required at an 

assembly step to construct an object gets “stored” within an object during the assembly process, and 

hence can be efficiently utilized again for further construction. This suggests that at each assembly 

step, the assembly process utilizes the “stored” information together with the additional information 

to construct the object with higher assembly.  

 
Fig S8. Assembly of an ensemble. (a) and (b) show the Assembly of the ensemble assuming isolated 
chains up to 50 assembly steps  when  𝜙( is constant with the assembly index  and when 𝜙( scales 
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with assembly index 𝑎 as 𝜙( = 𝜙)𝑓("#, where  𝜙) is a fraction at the first step (see legend) and  𝑓 =
0.33 represents the increase in constraints with assembly steps. In both cases, the summation was 
performed up to additional 100 assembly indices, such that 𝑎:(; = 101, with an initial number of 
objects at assembly index 𝑎 = 1 set as 1012. Due to large initial number of objects, for simplicity all 
copy numbers > 1 including non-integer values, were considered in calculating Assembly 𝐴. Cases 
with copy numbers < 1 were excluded. With the increase in 𝜙 conversion fraction, objects at higher 
assembly emerge with higher copy numbers which for an isolated chain represents the efficiency of 
the forward process to construct complex objects. 
 

As an example for estimating Assembly, consider a simple forward process, where at each step a 

fraction of objects (𝜙() at assembly index 𝑎 combines with building blocks and transforms into a 

higher assembly object 𝑎 → 𝑎 + 1 such that at assembly step 𝑡, the copy numbers 𝑛((𝑡) of objects 

with assembly index 𝑎 is given by (1 − 𝜙()𝑛((𝑡) + 𝜙("#𝑛("#(𝑡) in the presence and the absence of 

constraints. The estimated assembly (𝐴) up to 50 assembly steps in two different cases is shown in 

Fig. S8a and S8b.  

 

The formulation of Assembly 𝐴 is general and could be modified in different ways for specific 

problems. Here, as one of the possible extensions, we expand the formulation to introduce strict 

quantification of shared paths in a joint assembly space. We define the path-dependent contribution 

of step 𝑎 → 𝑎 + 1 for an object as  ∏ 𝑝!"
!#$ , where 𝑝. is the contribution at the jth step. Hence, for an 

object with an assembly index 𝑎, the exponential contribution is defined as the summation of all the 

construction steps along the assembly path ∑ ∏ 𝑝𝑘
𝑗
𝑘=1

(
.<# . Hence, for 𝑁 unique objects, the 

generalized formulation for the assembly can be defined by modifying equation 1 as, 

 
𝐴 = 	R𝑒∑ ∏ 𝑝𝑘

𝑗
𝑘=1

#
%&! 	

8

*

S
𝑛* − 1
𝑁9

T 
(2) 

when the chain is isolated, for each construction step ∏ 𝑝*
!
*#$ = 1 and hence ∑ 1(

.<# = 𝑎 and equation 

2 simplifies to equation 1. When the chain is isolated, the selection process at each step along the 

assembly path is implicit and quantified within the assembly process. However, in the case of joint 

assembly space, when multiple objects coexist and have been observed, the selection process has 

explicit dependence. In the case of joint assembly space, ∏ 𝑝!
"%
!#$   must quantify both the explicit 

selection and assembly process at that step, see Fig. S9(a) for comparison. To quantify the explicit 

selection, at a given contingent node of the assembly pathway, we assume that the contribution to the 

selection process scales with the number of observed paths. This is based on the fact that the higher 

the number of observed paths at a given contingent node, the higher the utilization and hence, the 

higher the selectivity has been acquired at that node. Another consideration in quantifying selection 

is the assembly step number at which selection occurs along the assembly path. With the increase in 
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the number of construction steps along the assembly path, the probability of the emergence of 

selectivity is higher due to the increase in the complexity of the structure, which is a natural process. 

Hence, even if the assembly process at the lower assembly index is easier, the emergence of selectivity 

at lower assembly indices is a unique process and must be quantified as a higher contribution as 

compared to selectivity at higher indices. We defined the selection contribution for the step 𝑘 − 1 →

𝑘 as 𝑠0 =
?
0
	G1 − #

@'(!→'
H, where 𝑝0"#→0 is the total number of the observed paths along the assembly 

path at the kth contingent node and 𝛾 is a constant, which quantifies the relative contribution of explicit 

selection over the construction as a given step. So, with the total contribution (construction (+1) and 

selection (𝑠0)) from the kth node is 1 + ?
0
	G1 − #

@'(!→'
H and the path-dependent contribution of step 

𝑎 → 𝑎 + 1 is quantified by ∏ ]1 + 𝛾
𝑘
	S1 − 1

𝑝𝑘−1→𝑘
T^(

0<# . So, for an object with an assembly index 𝑎, 

in the case of joint assembly space, the exponential contribution to the can be modified as 

∑ ∏ ]1 + 𝛾
𝑘
	S1 − 1

𝑝𝑘−1→𝑘
T^𝑗

𝑘=1
(
.<# . With an addition of 𝑎,- as the characteristic assembly constant 

(refers to the assembly index of building blocks or fundamental particles), the generalized formulation 

of the Assembly equation for 𝑁 unique objects in the joint assembly space is given by 

 

 
𝐴(𝑡) =R𝑒

B∑ ∏ B1+𝛾𝑘	C1−
1

𝑝𝑘−1→𝑘
DE𝑗

𝑘=1
#$
%&! "𝑎𝑐ℎE

	S
𝑛*(𝑡) − 1

𝑁9
T

8

*<#

 
(3) 

 

As an example, consider three cases as shown in Fig. S9(b) with one isolated and two shared assembly 

processes. In the isolated assembly path, with 𝑎FG = 0, the total contribution in the exponential for 

the object 𝑎& is 5. However, in case 2 with one shared event at 𝑎', the total contribution in the 

exponential for the object 𝑎&'# is stepwise along the path is ]1 + (1 × 1) + S1 × 1 × G1 + 𝛾 #
+
HT +

G1 × 1 × G1 + 𝛾 #
+
H × 1H + S1 × 1 × G1 + 𝛾 #

+
H × 1 × G1 + 𝛾 #

#)
HT^. Similarly, in case 3, the total 

contribution in the exponential for the object 𝑎&'# is ]1 + (1 × 1) + S1 × 1 × G1 + 𝛾 '
H
HT +

G1 × 1 × G1 + 𝛾 '
H
H × 1H + S1 × 1 × G1 + 𝛾 '

H
H × 1 × G1 + 𝛾 #

#)
HT^. It should be noted that the 

above formulation is one of the potential extensions in quantifying Assembly over an ensemble to 

quantify the effect to shared assembly space. 
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Fig. S9 Quantifying the Assembly of an ensemble with objects in joint assembly space (a) Joint 
Assembly Space of two observed objects in two different cases, left: splitting at later assembly steps 
right: splitting at the earlier assembly steps, (b) Three different cases with different selection and 
construction processes. Case 1: Isolated chain with no explicit selection, Case 2 & 3: Shared assembly 
paths with explicit selection. 
 

4. Assembly Universe and super-exponential expansion 
 

4.1 Scaling in assembly universe 

We analyze the expansion of the number of all possibilities with the assembly index, which we call 

the Assembly Universe. A simple model of expansion, utilizing the algorithmic nature of assembly 

processes, assumes that the number of objects 𝑁( with a given Assembly Index 𝑎 can combine with 

themselves and with lower Assembly Index objects 𝑁(#/I ways to make objects with assembly index 

𝑎 + 1, leading to the recurrence relation 𝑁(/#~	𝑁(#/I , which, in turn, describes a double-

exponentially expanding Assembly Universe, 

 

 𝑁(~𝑁)[(#/I)
#] = 𝑒LM*#  (4) 

   

With 𝜈 = 𝑙𝑛	𝑁) and 𝜇 = 𝑙𝑛	(1 + 𝛿).	𝛿 can be interpreted as the scaling of the average number of 

other objects 〈𝑘〉(~	𝑁(I  a particular object with assembly index 𝑎 can combine with to form an 

object with assembly index 𝑎 + 1, recovering the recurrence relation above, 𝑁(/#~𝑁(〈𝑘〉(. The 

double-exponential expansion, arising from a constant (i.e., assembly index-independent) expansion 

rate 𝛿>0, is shown in Fig S10a, consistent with statistics of novelty generation in thermodynamics of 

structure forming systems that do not include physical constraints emerging from the past history of 
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what has been assembled and the intrinsic assembly of the objects that exist. The expansion of the 

Assembly Universe is very fast, even when the expansion rate 𝛿 is small. We further analyze a 

generalized growth model where the expansion rate 𝛿(𝑎; 𝜂, 𝜆) decreases with complexity as 𝛿 = N
(+

. 

This is a phenomenologically motivated model of the increasing number of constraints imposed by 

more complex objects being present in the system. In this generalized model, the Assembly Universe 

grows as 𝑁(~𝑁)
∏ !

'+
ON/0+P#(!

'&! , which simplifies to 𝑁(~𝑁)
,(#./)

,(#)	,(!./) when 𝜆 = 1, i.e., for expansion 

rate 𝛿 = 	𝜂𝑎"#. This growth class is illustrated in Fig. S10b. When 𝜆 > 1, that is, when the expansion 

rate decays faster than inversely proportional to assembly index, the Assembly Universe saturates at 

lim	
(→Q

𝑁( =	𝑁)
2345[78/]

78/  , as Fig. S10c demonstrates. The generalized model suggests that while the 

Assembly Universe grows very fast without emerging constraints, when constraints increase with 

complexity this growth can be tamed effectively, leading to sub-exponential growth or even a 

saturating Assembly Universe. 

 
Fig. S10 Expansion of Assembly Universe. (a) Shows the assembly pool size versus the maximum 
assembly index in the absence of constraints, which is defined by a double exponential relation at 
different expansion factors (𝛿). (b) & (c) Shows the assembly pool size versus the maximum assembly 
index with emerging constraints 𝛿~ N

(+
 at 𝜆 = 1 & 𝜆 = 2. The dotted lines are the limiting values 

when 𝑎 → ∞. In all cases, the total number of initial objects was 𝑁) was assumed as 10. 
 

Additionally, an approximate argument that supports a super-exponential growth in generic systems 

that are both combinatorial and compositional is the following. Objects of size 𝑆 come in an 

exponential multiplicity (since objects are combinatorial), 𝑁(𝑆)~𝑒RS. The minimum number of steps 

𝑎 needed to construct an object with size 𝑆 is somewhere between 𝑎(𝑆)~𝑙𝑜𝑔	𝑆 and 𝑎(𝑆)~	𝑆, 

corresponding to constructing by recursive doubling and constructing element-by-element, 

respectively. Inverting 𝑎(𝑆) gives an 𝑆(𝑎) that is between linear and exponential. Taken together, 

𝑁(𝑆(𝑎))~𝑒RS((), which scales between exponential 𝑁(~𝑒R(  and double exponential,  𝑁(~𝑒RM
:#.  A 

better approximation can be given by taking into account the distribution of assembly indices of 
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objects with size S, 𝑃(𝑎|𝑆), which can be inverted following Bayes' rule as 𝑃(𝑆|𝑎) = 𝑃(𝑎|𝑆)𝑃(𝑆)/𝑍, 

where 𝑃(𝑆)~𝑁(𝑆)~𝑒RS as above, and 𝑍 ensures normalization. 𝑃(𝑆|𝑎) then can be used to calculate 

the scaling of Assembly Universe as 𝑁(~∑ 𝑃(𝑆|𝑎)S  𝑒RS.  

5. Assembly Possible and Assembly Contingent 
 

5.1 Dynamics of Assembly Possible 

Quantifying selection and design in spaces of hierarchically modular structures are one of the main 

objectives of this study. It is, therefore, crucial to understand what exploration dynamics to expect in 

the absence of selection and design, which we call undirected dynamics. What is explored via 

undirected dynamics in the assembly spaces is the possibilities that can be realized taking into account 

the contingency of the dynamics but nothing else. That is, we account for the past history of what has 

been assembled to constrain the future space, but do not include biases that arise in selection. This 

dynamically expanding subset of the Assembly Universe is what we call Assembly Possible.  

Microscopically, the Assembly Possible is determined by both the structure of the Assembly Universe 

(all assembly operations and what they make) and the way "undirectedness" is mathematically 

formulated. For example, undirected could correspond to the selection of two objects from a pool and 

combining them in one uniformly selected way or selecting uniformly among the triplets (two objects 

to combine, and a way to combine them). The latter more heavily weights objects that can be 

combined in more possible ways as compared to the former. Instead of going into the details of 

specific systems, here we formulate a simple phenomenological model to define the class of 

undirected assembly in a generic (but approximate) way as follows. When an object with Assembly 

Index 𝑎 combines with its own contingent history, its Assembly Index increases by one, 𝑎 → 𝑎 + 1. 

There are two exceptions having opposing effects. If the resulting object can be made via another, 

shorter path(s), its Assembly Index will be smaller than 𝑎 + 1. If the object combines with another 

which is not in its own contingent history, the combination of them might have an Assembly Index 

that is larger than 𝑎 + 1 (except if there is a shorter path as discussed above). These two effects may 

or may not statistically cancel. In systems that we study here (integers, polymers, graphs, molecules), 

they approximately do, as we show below. Another assumption behind the dynamical model of 

undirected dynamics is that it is microscopically driven by a stochastic rule that uses existing objects 

uniformly: the probability of choosing an object with Assembly Index 𝑎 to be combined with another 

is proportional to 𝑁(, the number of objects with Assembly Index 𝑎. These two arguments suggest 

the following dynamics generating the Assembly Possible: 

 

 

𝑑𝑁(/#(𝑡)
𝑑𝑡 = 𝑘T 	𝑁((𝑡) 

(5) 
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which can be solved analytically, and the solution is given by, 

 

 

 
𝑁((𝑡) = 𝑁)

(𝑡	𝑘T)(

Γ(1 + 𝑎) = 𝑁)
(𝑡	𝑘T)(

𝑎!  
(6) 

where, 𝑘T is the discovery or expansion rate and 𝑁) is the initial number of unique objects. The 

derivative T8#(U)
T(

 is given by,  

 

 

 

𝑑𝑁((𝑡)
𝑑𝑎 	= 𝑁)

(𝑡	𝑘T)(

Γ(1 + 𝑎)
(𝛾 − 𝐻( + log	(𝑡	𝑘T)) 

(7) 

 

where, 𝛾 is the Euler’s constant, and 𝐻( is the ath Harmonic Number. Using the asymptotic expansion, 

the Harmonic Number  𝐻( with an asymptotic expansion, 𝐻(~ log(𝑎) + 𝛾 +
#
'(
−∑ V;'

'0(;'
Q
0<#    where, 

𝐵0 are the Bernoulli numbers. Approximating the Harmonic number as 𝐻(~ log(𝑎) + 𝛾, the time-

dependent assembly index at which the maximum assembly index unique object occurs is given by  

𝑎:(; = 𝑡	𝑘T.  

The number of unique objects at the assembly value 𝑎:(; is 𝑁((𝑡) =
8<(0=	U)'=	>

X(#/0=	U)
. Adding an extra 

correction factor with 𝐻(~ + 𝛾 +
#
'(

 and excluding the infinite series, the assembly at maximum 

unique objects is given by 𝑎:(; = 𝑒
YZ[6\]1^[_	C" !

;'=	>		
D	
𝑘T 	𝑡 where ProductLog is the principle 

solution for 𝑤 in 𝑧 = 𝑤𝑒`	. The number of unique objects at the assembly value 𝑎:(; is 𝑁((𝑡) =

𝑁) 	
(0=U)?

@ABCDEFGBH	I( !
;'=	>		

J	
'=	>

X(#/M
@ABCDEFGBH	I( !

;'=	>		
J	
0=	U)

. 

 

As a proof for the exponential expansion of assembly possible, applying Sterling’s approximation on 

equation 6 gives, 𝑁((𝑡) = 𝑁)
(U	0=)#

(!
 , 𝑙𝑛	 G8#(U)

8<
H = 	𝑎	𝑙𝑛(𝑘T𝑡) 	− 	𝑎	𝑙𝑛	𝑎	 + 𝑎	 = 	𝑎	(𝑙𝑛	(𝑘T𝑡) 	−

	𝑙𝑛	𝑎	 + 1	) ≈ 𝑎	𝑙𝑛	𝑎y. Hence, 𝑁( ≈ 𝑁)	𝑒𝑥𝑝(𝑎	𝑙𝑛	𝑎y). This shows that the dynamics of Assembly 

Possible expand exponentially. The dynamics of Assembly Possible is shown in Figures S11a and 

S11b. 

 

5.2 Dynamics of Assembly Contingent  

By introducing the selection parameter 𝛼 with 0 ≤ 𝛼 ≤ 1, the equation of assembly contingent is 

given by,   
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𝑑𝑁(/#(𝑡)
𝑑𝑡 = 𝑘T(𝑁((𝑡))b 

(8) 

The selection parameter is a phenomenological and observable parameter that characterizes the 

directedness or selectivity of the physical processes. Higher values of 𝛼 ≈ 1 describe the near-random 

dynamics similar to the Assembly Possible, whereas lower 𝛼 values, 𝛼 ≈ 0, describe selective and 

goal-directed processes. The equation can be solved analytically for different assembly indices using 

Wolfram Mathematica 13.0, and the solutions at different assembly indexes are given by, 

 

 𝑁#(𝑡) = (𝑁))b𝑘T 	𝑡 (9) 

 

 

 
𝑁'(𝑡) = (𝑁))b

; (𝑘T 	𝑡)#/b

1 + 𝛼  
(10) 

 

 

 
𝑁$(𝑡) = (𝑁))b

K(1 + 𝛼)"b
(𝑘T 	𝑡)#/b/b

;

1 + 𝛼 + 𝛼'  
(11) 

 

 

 
𝑁%(𝑡) = (𝑁))b

L (1 + 𝛼)"#"b
;(1 + 𝛼 + 𝛼')"b(𝑘T 	𝑡)(#/b)(#/b

;)

1 + 𝛼'  
(12) 

 

 

 

𝑁&(𝑡)

= (𝑁))b
M 𝑡	(1 + 𝛼)"bO#/b

;P(1 + 𝛼')"b(1 + 𝛼 + 𝛼')"b;𝑘T(𝑘T 	𝑡)b(#/b)(#/b
;)

1 + 𝛼 + 𝛼' + 𝛼$ + 𝛼%  

 

(13) 

Based on the solutions 𝑁#(𝑡) − 𝑁&(𝑡) given by equations 9−13, the generalized solution of the 

equation can be derived. With 𝑁) unique objects at 𝑡 = 0, the number of unique objects of assembly 

index 𝑎 at time 𝑡 in the assembly contingent is given by, 

 

 𝑁((𝑡) =
(𝑁))b

#

∑ 𝛼0("#
0<)

}~ ]R 𝛼0
("#".

0<)
^
"b%("#

.<#
�(𝑘T 	𝑡)∑ b'#(!

'&<  

 

(14) 

which, could be simplified further to  
 
 

 𝑁((𝑡) = (𝑁))b
# 𝛼 − 1
𝛼( − 1}~ ]

𝛼(". − 1
𝛼 − 1 ^

"b%("#

.<#
� (𝑘T 	𝑡)

b#"#
b"#  

(15) 
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Equation 15 simplifies to equation 6 when 𝛼 = 1, which is equivalent to the dynamics of Assembly 

Possible. Fig. S11c shows the distribution of the number of unique objects vs. assembly index at 

different selection parameters at a given time t (𝑡 = 10, dimensionless units). The peak of the 

distribution falls and the distribution of unique objects at higher assembly increases with the increase 

in 𝛼 demonstrating the transition from Assembly Possible to Assembly Contingent. The total number 

of objects with time up to 100 dimensionless time steps is shown in Fig. S11d. 

 
Fig. S11 Dynamics of Assembly Possible and Assembly Contingent. (a) The distribution of the 
number of unique objects vs. assembly index with 𝑁) = 1, 𝜅 = 1, 𝑡 = 10 describing Assembly 
Possible. (b) The distribution of the number of unique objects with the same parameters at different 
dimensionless times in the range [2, 20] with a typical assembly index (maximum of the distribution) 
is shown by the dashed line. (c) The distribution of the number of unique objects versus the assembly 
index with 𝑁) = 1, 𝜅 = 0.5, 𝑡 = 10 with different selection parameters 𝛼 describing assembly 
contingent. (d) The total number of unique objects counted to assembly index 100 vs. dimensionless 
time with the same parameters as in (c). 

6. Joint Assembly Space in a Linear Chain Model 
 

6.1 Joint Assembly Space of observed objects 

The Joint Assembly Space defines the combined assembly space formed when multiple objects 

coexist together. In principle, it represents the shortest pathway to construct multiple coexisting 

objects. Given 𝑛 independently observed objects with their assembly paths defined by  
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𝐺#, 𝐺', 𝐺$…𝐺!. Here, for simplicity, we approximate the joint assembly space 𝐽 for the observed 

objects, defined as  𝐽 = 𝐺#⋃𝐺'⋃𝐺$…⋃𝐺!. As an example, consider two linear chains with chain 

lengths 14 and 31. The independent assembly paths (𝐺#and 𝐺') for these linear chains can be 

estimated from the method described in the previous section (Section 2) with assembly indices 4 and 

5. If the two chains coexist, the joint assembly space can be approximated as 𝐽 = 𝐺#⋃𝐺'. The part 

of the assembly path within the joint assembly space shared by the observed objects is called shared 

assembly space. As an example, for two linear chains of lengths 14 and 31, the isolated assembly 

paths 𝐺# and 𝐺' for the two chains are shown in Fig. S12 (a & b). The combined joint assembly space 

when the two chains coexist is shown in Fig. S12c. The nodes {1, 2, 3, 4, 7} are shared between the 

two observed chains and comprise the shared assembly space (shown in green). 

 

 
Fig. S12 Joint Assembly Space of two observed linear chains. (a) and (b) shows the isolated 
assembly paths of observed linear chains of lengths 14 and 31. (c) shows the joint assembly space 
when chains 14 and 31 coexist. The nodes number represents the length of the polymeric chains. The 
nodes in blue represents observed nodes (with assembly index on the right), in black represent 
contingent nodes (not observed but part of assembly space), and in red represent combined nodes 
(joined together). The shared assembly space is shown in green. 
 

6.2 Joint Assembly Space in the forward process 

Similar to in SI Section 1, here we describe a forward process which combines objects in the assembly 

pool to create objects of higher assembly. Here, to distinguish the undirected process from the directed 

process, we consider forward processes in two different ways, 
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1. Undirected Exploration is when two objects from the assembly pool are chosen randomly 

and combined to create a new object. The newly generated object is then added to the list of 

the assembled objects and if it is unique and previously does not exist in the assembly pool, 

it is also added to the assembly pool. 

 

2. Directed Exploration where the last object (longest chain) is selected from the assembly pool 

and combined with the randomly chosen object to create the new object. Similar to the 

undirected exploration, the newly generated object is then added to the list of assembled 

objects and if it is unique and previously does not exist in the assembly pool, then it is also 

added to the assembly pool. 

 

After iterating the undirected and directed exploration over a given number of steps, the assembly 

paths of all the emerged structures in the assembly pool are generated. From the list of assembly 

paths, the joint assembly space is generated by taking the pairwise union over all the assembly paths. 

𝐽 = G�(𝐺#⋃𝐺')⋃𝐺$�…⋃𝐺8H, where 𝐺! represents the assembly path of the nth object with total 

𝑁 objects in the assembly pool. The undirected and directed exploration of the assembly space of 

linear chains was implemented in Mathematica 13 and simulated up to 104 steps. The exploration 

space expands rapidly to higher assembly indices, especially in the case of directed process. Fig. S13 

shows the joint assembly space of all the linear chains generated in undirected and directed processes 

simulated up to 20 assembly steps. 
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Fig. S13 Joint Assembly Space for linear chains. (a & b) Joint assembly space of a forward process 
with undirected exploration and directed exploration after 20 assembly steps. The node number 
represents the length of the polymeric chains. The nodes in blue represent observed nodes (with 
assembly index on the right), in black represent contingent nodes (not observed but part of assembly 
space), and in red represent combined nodes (joined together). 
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7. Distribution of unique objects in a forward process with different selectivity 
 

We extended the linear polymeric chain model by allowing directedness to emerge from a physical 

process more naturally. In this model, at each step, the linear chains in the assembly pool are sorted 

based on their lengths, and then a subset is selected for further exploration using forward dynamics. 

At each assembly step, after sorting, a subset is selected based on the selection index (𝛿) which 

represents the fraction of the assembly pool from which the polymeric sequences will be combined. 

From the selected subset, two polymeric chains are randomly selected and combined. The selection 

index represents the selective process that determines the fraction of the assembly pool with sorted 

chain lengths that can be used by a forward process for the growth process. This selective process 

resembles a physical process which separates the objects (polymeric sequences) based on the length 

of linear chains and selects among them for the assembly process. The exploration in assembly space 

(see Fig. S14) in the absence of selection (𝛿 = 1) is shown below and was implemented in Wolfram 

Mathematica 13. The higher the selection index the lower the selectivity as it represents the fraction 

of the sorted linear chains which can be used for the further assembly process.  

 

 
Fig. S14 Exploration in assembly space. (a) Example exploration of assembly space of linear chains 
with undirected dynamics (with selection index 𝛿 = 1). The figure shows the assembly index 
(approximated by log'	(𝑛)) with assembly steps up to 25000 steps. (b) Distribution of unique objects 
vs. assembly index within the assembly pool. 
 

As shown previously, for a linear polymeric chain comprise of 𝑛 monomeric units, the assembly 

index (𝑎!) can be approximated as  log'(𝑛) in the leading order. Fig. S15a. Fig. S15b shows the 

growth of assembly index in the assembly space at various selection indices (𝛿) in the range (10-4 – 

0.8) over 5×104 assembly steps.  Each point represents an addition step in the formation of polymeric 

chains. A smaller selection index signifies larger information processing in a physical system (by 
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sorting and selecting a smaller subset) leading to stronger selectivity within the assembly pool. With 

the increase in the selectivity in the system (decrease in the value of selection index) the peak value 

of the assembly index distribution of unique linear chains falls however, the number of unique linear 

chains observed at higher assembly index increases, see Fig. S15c and S15d. This shows that the 

observed distribution of the unique objects over the range of assembly indicates the complexity of 

the system, and the amount of contingency utilized to create the observed distribution is signified by 

the selection index. 

 
 

Fig. S15 Linear Chain Model as a forward process at different selection indices (a) Forward 
process describing the assembly paths of possible linear chains. The inset plot shows the assembly 
index vs. length of the linear chains, (b) the growth of assembly index (approximated as log'	(𝑛)) 
over 5×104 steps at different selection indices (𝛿), (c) and (d) shows the distribution of observed 
unique objects over the assembly index after 5×104 assembly steps at different assembly indices. 
 

 



26 
 

8. Assembly Contingent combined with mass transfer kinetics  
 

Consider a forward assembly process where the copy number of the emerging species follows the 

homogeneous kinetics, 

 

𝑁)(𝑡)𝑛)(𝑡) → 𝑁#(𝑡)𝑛#(𝑡) → 𝑁'(𝑡)𝑛'(𝑡) → ⋯𝑁((𝑡)𝑛((𝑡) → 𝑁(/#(𝑡)𝑛(/#(𝑡)… 

 

where  𝑁((𝑡) represents the number of unique objects at the assembly index and 𝑛((𝑡) as the copy 

number of each unique object at assembly index 𝑎. We assume that the forward rate constants 

decrease with the increase in assembly index of the emerging structures by a factor 𝛽 at each step and 

𝑘@) is the initial production rate constant (𝑘@) at the first step (𝑛)(𝑡) → 𝑛#(𝑡)), hence for assembly 

step 𝑎 → 𝑎 + 1, 𝑘( = 𝑘@)𝛽("#. This decrease in the rate constant with assembly steps is introduced 

in the formulation, as with an increase in the assembly index, the object becomes more complex, and 

interactions become more specific, leading to a decrease in production rate. For simplicity, assuming 

all objects at the assembly 𝑎 have the same copy number (for the purpose of understanding discovery-

production dynamics), the total number of objects at the assembly index 𝑎 at a given time 𝑡 is given 

by 𝑁((𝑡)𝑛((𝑡). This is an over simplification of a more complex network of growing branches where 

a single branch is represented by 𝑛)(𝑡) → 𝑛#,*(𝑡) → 𝑛',.(𝑡) → 	𝑛$,0(𝑡) → ⋯𝑛(,@(𝑡) → 𝑛(/#,d(𝑡)… , 

where 𝑛(,@(𝑡) is the copy number of 𝑝12 object at assembly index 𝑎. Is it understandable that at the 

same assembly index, the objects along a single branch which have been discovered earlier should 

have significantly different copy number than the objects which have been discovered later. This 

assumption does not hold in a physical system; however, it simplifies the formulation drastically to 

highlight key features of discovery-production dynamics. Additionally, we like to highlight the 

significance of the time evolution integrated quantity 𝐴, instead of developing a more complicated 

model. The kinetic rate equation describing the time-dependent copy numbers for emerging objects 

is given by, 

 

 

 

𝑑
𝑑𝑡 𝑁(

(𝑡)𝑛((𝑡) = −𝑘@)𝛽(𝑁((𝑡)𝑛((𝑡) + 𝑘@)𝛽("#𝑁("#(𝑡)𝑛("#(𝑡)	 
(16) 

and, 

 

 
𝑁((𝑡)

𝑑𝑛((𝑡)
𝑑𝑡 + 𝑛((𝑡)

𝑑𝑁((𝑡)
𝑑𝑡 = −𝑘@)𝛽(𝑁((𝑡)𝑛((𝑡) + 𝑘@)𝛽("#𝑁("#(𝑡)𝑛("#(𝑡)	 

(17) 

 



27 
 

Using the forward dynamics equation for undirected or directed discovery process, the rate of 

formation of unique objects at assembly 𝑎 is given by, 

 
 

 

𝑑𝑁((𝑡)
𝑑𝑡 = 𝑘T(𝑁("#(𝑡))b 

(18) 

Substituting equation (18) in (17),  
 
 

 
𝑁((𝑡)

𝑑𝑛((𝑡)
𝑑𝑡 + 𝑛((𝑡)𝑘T(𝑁("#(𝑡))b

= −𝑘@)𝛽(𝑁((𝑡)𝑛((𝑡) + 𝑘@)𝛽("#𝑁("#(𝑡)𝑛("#(𝑡)	 

 

(19) 

The equation can be simplified to, 

 

 

𝑑𝑛((𝑡)
𝑑𝑡 = −S𝑘@)𝛽( + 𝑘T

(𝑁("#(𝑡))b

𝑁((𝑡)
T 𝑛((𝑡) + 𝑘@)𝛽("#

𝑁("#(𝑡)
𝑁((𝑡)

𝑛("#(𝑡) 
(20) 

Equation (20) is the combined governing equation which describes the dynamics of discovery and 

production at any assembly index with time. In principle, equation (20) can be solved together with 

equation (15) which is the general solution of forward dynamics equation (8). In all cases, we assume 

𝑁)(𝑡) which describes the initial number of unique objects at any assembly index at 𝑡 = 0 as 1, but 

with copy number 0. In the case, when the forward process performs an undirected discovery, 𝛼 = 1, 

the equation (20) can be simplified by substituting 8#(!(U)
8#(U)

= (
U	0=

, 

 

 

 

𝑑𝑛((𝑡)
𝑑𝑡 = −G𝑘@)𝛽( +

𝑎
𝑡H 𝑛(

(𝑡) + 𝑘@)𝛽("#
𝑎
𝑘T 	𝑡

	𝑛("#(𝑡) 
(21) 

The combined set of equations with the initial conditions can be solved analytically to an extent, 

however, with the increase in the assembly index, the solution becomes too complicated (see 

Mathematica Notebook at https://github.com/croningp/assemblyphysics ). As an example, we solved 

equations (15) and (20) together with 𝛼 = 0.5, the maximum assembly index 𝑎:(; = 25, 𝑘T =

1 × 10"%,	𝑘@) = 1 × 10"&, 𝛽 = 0.5, and the initial copy number of objects at  𝑛)(0) = 1 × 10#' and 

𝑁)(0) = 1 (only one type of object). It should be noted that these initial objects (assumed assembly 

index 𝑎 = 0) 𝑛)(0) are not the only building blocks consumed to increase the assembly process. 

These are the building blocks governs the kinetics. We assume an infinite pool of additional building 

blocks exists which gets consumed along the assembly pathways, and the production kinetics is 

independent of them. The equations were solved numerically using the NDSolve function in Wolfram 

Mathematica 13. The time dependence of the total copy number of all the objects 𝑁((𝑡)𝑛((𝑡) and 

copy number of each object (assuming equal copy number of all unique objects at a given time for 

https://github.com/croningp/assemblyphysics
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each assembly index) 𝑛((𝑡) at an assembly index (𝑎) up to the maximum assembly index 𝑎:(; = 25 

is shown in Fig. S16. It is important to note that as both discovery and production are continuum 

models which means both number of objects and their copy numbers can have values less than 1. 

When the number of objects is less than one, the corresponding copy numbers are not real. So, we 

estimated the time at which number of unique objects at each assembly index is equal to one. The 

maximum time over all the assembly indices was set as the minimum time for plotting all the figures 

representing copy numbers. The key feature we like to observe here is that the faster number of unique 

objects increases, faster their copy number falls (less than one), and the forward process cannot 

propagate to higher assembly indices, and this can be captured by calculating Assembly of the 

ensemble. The equal copy number is only an assumption to observe the features of a physical process 

represented by discovery and production dynamics; it does not represent a realistic case where strong 

inhomogeneity in the copy number could exist among objects at the same assembly index due to 

difference in the discovery time for objects. Additionally, it is important to note that this model is a 

simple continuum description of the physical phenomena involving discovery and mass transfer 

kinetics which could lead to copy number values of less than one. This is the property of the 

continuum model and in principle, a model with stochastic chemical kinetics can be applied to 

generate a more realistic case. However, the continuum model provides important insights into the 

discovery and production kinetics, 

 

1. The model can predict the time-dependent discovery of unique objects at a given assembly 

index and its growth dynamics in a forward process where discovery and production occur 

simultaneously.  

 

2. As the complexity of the object is proportional to its assembly index, the model shows the 

decrease in the maximum possible copy number with the increase in assembly index due to a 

decrease in the production rate kinetics with the increase in assembly step. 

 

3. The observed copy number of a given object at an assembly index strongly depends on the 

number of existing unique objects at a given time which is governed by the discovery 

dynamics (discovery rate constant 𝑘T and the selection parameter 𝛼). 
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Fig. S16 Time dependence of copy number in a forward process. (a) Copy number of individual 
objects (assumed as equal in the model) at different assembly indices in the range 0–25 (dark purple 
to orange). (b) Total copy number of all the objects at different assembly indices in the range 0–25. 
The horizontal dashed black line is the total number of all the objects observed at a given time which 
is equal to the initial number of fundamental particles 𝑛)(0) = 1 × 10#' taking part in production 
kinetics demonstrating that the total number of objects are conserved in the formulation. 
 

From the time-dependent data of the number of unique objects and their copy number in a forward 

process, we could also define a threshold time which is the time at which the copy number of objects 

reaches the threshold value to be detected or measured. As an example, we solve equations 15 and 20 

numerically with various 𝛼 values {0.001, 0.2, 0.5, 0.8, 1.0} with parameters 𝑎:(; = 25, 𝑘T =

1 × 10"%,	𝑘@ = 1 × 10"&, 𝛽 = 0.5,	𝑛)(0) = 1 × 10#',	𝑁)(0) = 1	with a total dimensionless time	

1 × 10H. As a detection limit set by a measurement, we assume the required threshold copy number 

to be detected is 10. In each case, wherever possible the threshold time was estimated by finding 

intercept between the time dependent copy number for objects at assembly indices and the threshold 

value. Fig. S17 shows the copy number of each unique object together with the threshold time for 

detection.  
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Fig. S17 Time-dependent copy numbers with threshold time. (a) – (e) Copy number of individual 
objects (assumed as equal) at different assembly indices in the range 0–25 (dark purple to orange)  
with for 𝛼 = {0.001, 0.2, 0.5, 0.8, 1.0}. The horizontal red dashed line represents threshold copy 
number 10, and the red point are the times at which the copy number reaches the required threshold 
for the first time. 

 

Additionally, the basic discovery-production model also suggests that the nature of different physical 

processes where discovery and production occur simultaneously can be described by the two 
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characteristic time scales 𝜏6 and 𝜏7. Based on the observed unique objects, their assembly index and 

copy numbers, the Assembly (𝐴) of the ensemble can be estimated from the assembly equation (1).  

 
Fig S18. Dynamics in assembly contingent coupled with kinetics. (a)–(e) Observed copy numbers 
of unique objects (assumed as equal) at assembly index 𝑎 = 0 − 25 (dark purple to orange) with 𝛼 =
0.001, 0.2, 0.5, 0.8, 1.0. (f) The total number of objects at different assembly indices, 𝑁((𝑡)𝑛((𝑡), 
𝛼 = 0.001. (g) the threshold time to reach a copy number of 10 for various 𝛼 values at different 
assembly indices starting from 𝑎 = 1. (h) Assembly of the ensembles vs. time at various 𝛼 values 
calculated using equation 1. The summation was performed over all objects from 𝑎 = 0 − 25, where 
only cases when number of copies of individual objects > 1 were considered, such that the numerator 
of the linear term in equation 1 at assembly index  𝑎 is given by: 𝑁((𝑡)(𝑛((𝑡) − 1) if  𝑛((𝑡) > 1. 
Note that 𝛼 = 0.001, 0.2, 0.5 overlap with each other which is an outcome of the simplicity of the 
model. 
 

Fig. S18a–e shows the distribution of copy numbers of unique objects (𝑛((𝑡)) up to the dimensionless 

time 10H for assembly indices up to 25 and for selection parameter 𝛼 = 0.001, 0.2, 0.5, 0.8, 1.0. With 

the increase in 𝛼 (corresponding to a decrease in selectivity), the number of unique objects increases 

rapidly, leading to a rapid decline in the respective copy numbers of objects over time. The total copy 

number at all assembly indices is shown in Fig. 18f.  

 

Fig. S18g shows the discovery time defined as the threshold time when the copy number of an object 

reaches a minimum threshold for detection (in this case we set that value to 10 copies to illustrate 

how this works in the discovery-production model). The threshold time depends on the limitations of 
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measurement (the threshold for detection of the object), the discovery and production time scales and 

the selection parameter 𝛼. As an illustrative example, consider a system with fixed selectivity: a fast 

discovery rate means new objects can be discovered more rapidly, but a slower production rate would 

have the effect that it takes longer to achieve the minimal threshold copy number for detection. By 

contrast, with a slower discovery rate, it would take longer to discover an object, however, that could 

be compensated by a faster production rate where it takes much less time to achieve the threshold 

copy number once an object is discovered for the first time. 

 

To show how Assembly captures when selection has driven the generation of ensembles of high 

complexity, we calculated 𝐴 for ensembles with varying selectivity 𝛼 as shown in Fig. S18h. For a 

physical process with low selection capacity (high 𝛼 values 0.8, 1.0), the production process is not 

sustainable and copy numbers decrease rapidly leading to a fall in Assembly over time as seen in the 

simplified model. With an increase in selectivity, the number of unique products is restricted, and the 

production process is sustainable over higher assembly values as high copy numbers are produced. 

In all the three cases (𝛼 = 0.001,0.2,0.5), in the simplified model at all assembly indices the copy 

number of all objects is > 1, hence Assembly grows similarly for each case. 

 

In this formulation, using a simplified continuum model, we combined discovery dynamics together 

with mass-transfer kinetics as a viable way to describe the potential nature or outcomes of a physical 

process with features emerging over large time scales. Here, for simplicity, we assume that the 

discovery dynamics (equation (8)) directs the mass transfer kinetics (equation (20)) and the rate of 

discovery events defined by the formation of unique products at a given assembly index is 

independent of the copy numbers of existing objects. In principle, to discover unique objects at a 

given assembly index 𝑎 + 1, the discovery process must require a minimum copy number (threshold 

value) for objects as assembly index 𝑎. This effect of copy number can be introduced into the 

discovery equation by defining the modified discovery coefficient 𝜅2,4 = 𝑓(𝜅2 , 𝑛5 ,𝑛𝑎(𝑡)), where  𝜅2 

is the concentration-independent fixed rate constant,  𝑛F is the threshold copy number, and 𝑛((𝑡) is 

the current copy number. One form of the modified discovery coefficient could have sigmoidal 

dependence  𝑘T,:~
0=

#/MNO(N#(>)
, where 𝑘T,: increases gradually to 𝑘T depending on the copy number 

of the observed object at assembly 𝑎.   

 

Based on the discovery coefficient (𝑘T) and mass transfer kinetics coefficient (𝑘@), the two 

characteristic time scales for physical processes can be defined as the discovery time scale G𝜏6~
#
0=
H 
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and production time scale S𝜏@~
#
0P
T. So, the discovery time scale (𝜏7) defines the characteristic time 

for discovering novel unique objects or as the characteristic time for the assembly process to discover 

novel unique objects from the assembly pool along assembly paths. In principle, the discovery 

timescale 𝜏6 is not necessarily constant with the assembly index and the time required to discover 

unique objects should also increase with the assembly index. This is primarily due to an increase in 

the complexity of the object, the combinatorial search space increases and more constraints emerge. 

The discovery process could be directed or undirected which is governed by the selection parameter 

(𝛼) and quantifies the “information processing” capacity of a physical process in selecting objects 

from the assembly pool. For a physical system, this is an outcome of interactions between the various 

objects in the assembly pool or with the external environment. The production time scale (𝜏@) defines 

the characteristic time scale for generating copies of the already discovered object along assembly 

paths or as the characteristic time for an optimized process to mass-produce the discovered object. In 

the case of production timescale, even for the already discovered objects at the same assembly index, 

𝜏@ could be very different for different objects leading to the observation of a high copy number of 

one object over the other. This concludes that for a physical system, the temporal evolution with the 

capacity of selection or no selection is governed primarily by three key parameters: discovery time 

scale (𝜏T), production time scale (𝜏@), and selection parameter (𝛼).  

 

As an example, considering a physical system, with a fixed defined selection parameter (𝛼), the 

temporal evolution over the long timescale could have different outcomes depending on the discovery 

and production time scales. Considering three different cases, 

 

1. 𝜏6 ≪ 𝜏7 : When the discovery time scale is far smaller than the production time scale, in that 

case, the discovery of unique objects is much faster leading to the fast expansion of assembly 

space (assuming 𝛼 is not too small). The production process will lead to a low observed copy 

number of a large set of unique objects. This could lead to the formation very large set of 

unique objects with extremely low copy numbers eventually leading to no selection. 

  

2. 𝜏6 ≫ 𝜏@ : When the discovery time scale is larger than the production time scale, in that case, 

the assembly space expansion is slow and faster production of a smaller set of discovered 

objects could lead to high copy numbers. However, due to the absence of enough unique 

objects, the system will lack the capacity for information processing, also leading to no 

selection. 
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3. 𝜏6 ≈ 𝜏7 : In the two regimes described above, the emergent dynamics with selection and 

evolutionary processes are very unlikely as in the first case, assembly paths can break down 

due to the absence of a sufficient copy number and in the second case, outcomes can be very 

specific as the system lacks novelty due to lack of enough unique objects along casual paths. 

However, when both time scales are comparable or within a certain range, the physical system 

has enough flexibility to create sufficient unique objects with high enough copy numbers to 

move along assembly paths leading to the emergence of evolutionary processes. 

 

9. Code Availability 
 

All the calculations unless specifically mentioned were performed using Wolfram Mathematica 13. 

And the Mathematica Notebooks used for generating figures are available on GitHub. 

https://github.com/croningp/assemblyphysics. 
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