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In this document, we elucidate a few of the methods and the results that have been
truncated for brevity in the main text.

S1. Methods

In this particular section, we discuss the quantitative specifics and details of the
various methods employed in generating the training dataset for the QRNN model
training and inference.

S1.1. Sample preparation
The ten-step relaxation carried out on the initialized configurations is given by:

• Brownian Dynamics on the initialized configuration for 100 ps at 10 K with a
timestep of 1 fs.

• NVT simulation at 300 K for 50 ps with a timestep of 1 fs.

• NVT simulation at 70 K for 200 ps with a timestep of 1 fs.

• NPT simulation with an external pressure of 1 atm at 300K for 50 ps with a
timestep 1 fs.

• NPT simulation with an external pressure of 1 atm at 300K for 200 ps with a
timestep of 2 fs.

• NPT simulation with an external pressure of 100 atm at 300K for 10 ns with a
timestep 2 fs.

• NPT simulation with an external pressure of 1 atm at 300K for 10 ns with a
timestep of 2 fs.
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• The cell size is averaged over the last 2 ns of the previous stage for the volume of
the NVT simulation in the next stage.

• NVT simulation at 300 K for 5 ns with a timestep of 2 fs.

The relaxed configuration at the end of this is used as the starting configuration for
QRNN MD.

S1.2. Dataset preparation for QRNN training
The sampled conformational clusters also include density variations in addition to

the bond, angle, and dihedral deformations. On the other hand, decomposed samples
only include bond breakage (i.e. extreme bond sampling). The breakdown of the regu-
larly identified clusters and the subsequent number of conformational and decomposed
clusters for the different N-molecule clusters for the monomer, dimer, and trimer of
ethylene glycol are given in Table S1.

Ethylene Glycol Clusters
N-molecule Natoms Clusters Sampled Clusters Decomposed Clusters

1 10 793 5000 20000
2 20 2931 20000 10000
3 30 868 20000 5000
4 40 366 25000 4000
5 50 187 15000 2000
6 60 108 10000 -
7 70 68 6000 -
8 80 45 2000 -

Diethylene Glycol Clusters
N-molecule Natoms Clusters Sampled Clusters Decomposed Clusters

1 17 480 20000 20000
2 34 2157 20000 10000
3 51 639 15000 5000
4 68 269 7500 -
5 85 138 2000 -
6 102 79 1000 -

Triethylene Glycol Clusters
N-molecule Natoms Clusters Sampled Clusters Decomposed Clusters

1 24 333 20000 20000
2 48 1607 15000 10000
3 72 476 6000 -
4 96 200 1000 -

Table S1: Number of original clusters extracted from OPLS4 MD, conformational sampled clusters,
and decomposed sampled clusters for ethylene glycol, diethylene glycol, and triethylene glycol.
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S1.3. Active learning
We generated additional 800,000 clusters using the split between the different N-

molecule clusters of the monomer, dimer, and trimer of ethylene glycol, as shown in
Table S2.

Ethylene Glycol Clusters
N-molecule Natoms Clusters Sampled Clusters

1 10 300 80000
2 20 4266 160000
3 30 1283 140000
4 40 533 30000
5 50 272 15000
6 60 157 5000
7 70 98 2000

Diethylene Glycol Clusters
N-molecule Natoms Clusters Sampled Clusters

1 17 178 150000
2 34 2468 80000
3 51 730 15000
4 68 308 5000
5 85 156 2000

Triethylene Glycol Clusters
N-molecule Natoms Clusters Sampled Clusters

1 24 126 120000
2 48 1680 15000
3 72 493 2000

Table S2: Number of clusters extracted from QRNN MD and corresponding conformational sampled
clusters for ethylene glycol, diethylene glycol, and triethylene glycol that are used for filtering for the
first round of active learning.

For the second round of active learning, we carry out the same analysis only from
the extracted molecular clusters from our QRNN simulations, as shown in Table S3.
We do not carry out any conformational sampling at this stage.
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Ethylene Glycol Clusters
N-molecule Natoms Extracted Clusters

1 10 7500
2 20 37180
3 30 10991
4 40 4625
5 50 2356
Diethylene Glycol Clusters

N-molecule Natoms Extracted Clusters
1 17 22250
2 34 116548
3 51 34405
Triethylene Glycol Clusters

N-molecule Natoms Extracted Clusters
1 24 15750
2 48 61566

Table S3: Number of extracted clusters for ethylene glycol, diethylene glycol, and triethylene glycol
that are used for filtering for the second round of active learning.

S2. Results

The model performance is in good agreement with the reference results with R2 ∼ 1,
as shown in Fig. S1, with an RMSE of 1.84 × 10−3 eV/atom for energy, RMSE of
7.80× 10−3 for charges, and RMSE of 3.08× 10−1 eV/Å for forces .

Figure S1: Parity plot showing the model prediction of energies, charges, and forces against the
reference values for 1486 72-atom configurations.
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Figure S2: Calculated force to separate a pair of tetramer molecules from a given separation distance.
The force is calculated by taking the gradient of the energy curves shown in Fig. 1 of the main text.

The tabulated results from the density, specific heat capacity and self-diffusivity
obtained from the QRNN - M, QRNN - M,D, and QRNN - M,D,T are given in this section.

N-mer Density (g/cm3)
Experimental OPLS4 MD QRNN - M QRNN - M,D QRNN - M,D,T

1-mer 1.1108 [1] 1.082± 0.002 1.036± 0.001 1.015± 0.001 1.058± 0.001
2-mer 1.1124 [2] 1.095± 0.003 1.045± 0.002 1.039± 0.002 1.068± 0.002
3-mer 1.1192 [2] 1.105± 0.006 1.074± 0.001 1.053± 0.003 1.074± 0.004
4-mer 1.1185 [2] 1.113± 0.009 1.073± 0.002 1.059± 0.002 1.073± 0.001
5-mer 1.1201 [2] 1.115± 0.005 1.073± 0.002 1.063± 0.003 1.073± 0.002
6-mer 1.1227 [2] 1.117± 0.009 1.071± 0.002 1.065± 0.003 1.061± 0.002
7-mer 1.122 [2] 1.121± 0.007 1.069± 0.002 1.065± 0.004 1.069± 0.002
8-mer 1.12 [2] 1.121± 0.005 1.069± 0.002 1.063± 0.003 1.069± 0.002
9-mer 1.1221 [2] 1.124± 0.006 1.070± 0.002 1.067± 0.005 1.070± 0.002
10-mer - 1.121± 0.004 1.067± 0.002 1.067± 0.003 1.069± 0.002

Table S4: Comparison of the experimental density of ethylene glycol oligomers with the classically
obtained density from MD simulations using an OPLS4 force field and with the machine-learned force
field simulations.
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N-mer D (µm2/s)
Experimental OPLS4 MD QRNN - M QRNN - M,D QRNN - M,D,T

1-mer 88.2 [3] 125.91± 5.80 199.34± 21.03 422.57± 67.07 135.28± 16.24
2-mer 61.7 [2] 18.67± 1.86 71.08± 11.88 142.23± 15.62 34.87± 8.36
3-mer 40.57 [2] 4.93± 0.58 66.61± 20.39 90.97± 15.64 41.84± 20.39
4-mer 33.59 [2] 2.18± 0.31 51.86± 18.38 56.69± 12.68 46.74± 18.38
5-mer 25.83 [2] 1.57± 0.58 46.59± 11.16 45.19± 6.16 33.06± 11.16
6-mer 21.22 [2] 0.92± 0.25 45.14± 10.65 34.35± 14.35 29.38± 10.65
7-mer 17.48 [2] 0.73± 0.23 37.39± 9.74 28.02± 9.31 31.13± 9.74
8-mer 14.68 [2] 0.58± 0.13 37.94± 12.70 24.07± 4.43 29.53± 12.71
9-mer 12.11 [2] 0.53± 0.11 29.79± 11.67 18.94± 4.62 20.91± 11.68
10-mer - 0.54± 0.13 . 32.40± 18.39 18.16± 7.12 21.19± 6.52

Table S5: Comparison of the experimental self-diffusivity of ethylene glycol oligomers with the classi-
cally obtained density from MD simulations using an OPLS4 force field and with the machine-learned
force field simulations.

N-mer cp (J/g-K)
Experimental OPLS4 MD QRNN - M QRNN - M,D QRNN - M,D,T

1-mer 2.422 [4] 4.54± 0.23 3.25± 0.07 3.11± 0.10 3.36± 0.12
2-mer 2.298 [5] 4.41± 0.29 3.15± 0.21 3.08± 0.16 3.54± 0.53
3-mer 2.22 [5] 4.04± 0.23 2.87± 0.12 2.93± 0.14 3.08± 0.24
4-mer 2.20 [5] 4.16± 0.45 2.85± 0.20 2.97± 0.14 3.03± 0.16
5-mer 2.172 [6] 4.27± 0.56 2.82± 0.13 2.93± 0.22 2.89± 0.11
6-mer 2.196 [5] 4.05± 0.29 2.85± 0.16 2.87± 0.12 3.08± 0.18
7-mer - 3.61± 0.24 2.89± 0.13 2.92± 0.30 2.79± 0.11
8-mer - 3.83± 0.19 2.80± 0.12 2.99± 0.29 2.92± 0.19
9-mer - 3.89± 0.36 2.80± 0.14 3.02± 0.33 2.88± 0.12
10-mer - 3.86± 0.28 2.78± 0.12 2.95± 0.16 2.82± 0.17

Table S6: Comparison of the experimental specific heat capacity of ethylene glycol oligomers with the
classically obtained density from MD simulations using an OPLS4 force field and with the machine-
learned force field simulations.

The collated experimental values of the properties we are interested in can be found
in Table S7.
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Molecule ρ (g/cm3) cp (J/g-K) D (µm2/s)
1-mer 1.1108 [1] 2.422 [4] 88.2 [3]
2-mer 1.1124 [2] 2.298 [5] 61.7 [2]
3-mer 1.1192 [2] 2.22 [5] 40.57 [2]
4-mer 1.1185 [2] 2.20 [5] 33.59 [2]
5-mer 1.1201 [2] 2.172 [6] 25.83 [2]
6-mer 1.1227 [2] 2.196 [5] 21.22 [2]
7-mer 1.122 [2] - 17.48 [2]
8-mer 1.12 [2] - 14.68 [2]
9-mer 1.1221 [2] - 12.11 [2]
10-mer 1.1 - -

Table S7: Ethylene glycol oligomer properties: density (ρ), viscosity (η), specific heat (cp) and self-
diffusivity (D) at 300K (NIST WEbBook)

In addition, we also look at the figures of predicted density, specific heat capacity,
and self-diffusivity along with how well they correlate with the experimentally obtained
values. A high correlation even with an inaccurate prediction can prove fruitful since
the experimental values can be obtained by applying a linear correction factor to the
MD-predicted properties.

Figure S3: (a) Predicted density against the experimental density and the (b) correlation between
them.
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Figure S4: (a) Predicted diffusivity against the experimental diffusivity and the (b) correlation between
them.

Figure S5: (a) Predicted specific heat capacity against the experimental specific heat capacity and the
(b) correlation between them.

We see that the first three models of QRNN - M, QRNN - M,D, and QRNN - M,D,T
do have their benefits in the prediction of self-diffusivity, however, they are not well
correlated with the experimental values of the properties that we are exploring. How-
ever, the models generated after the first round of active learning, show not just more
accurate predictions in the experimental properties but they also show a better correla-
tion with the experimental values. In total, we carry out two rounds of active learning
with combinations of either training a whole new model or transfer learning from the
previously learned model. Here we present the results from the most promising set of
models trained from the two rounds of active learning.
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S2.1. First round of active learning
In this section, we look at the performance of two models trained after adding the

new samples from the active learning analysis. We compare both these models against
QRNN - M,D,T which is one of the initially trained models. The two models we compare
are: (i) QRNN - AL-TL which is transfer learns on QRNN - M,D,T and uses the composite
dataset of the old samples and the new active learning ones; (ii) QRNN - AL-TL-xTB
which uses transfer learns in a similar way as QRNN - AL-TL but instead of using the
dipole moments as a feature for learning, we use the extended tight binding (xTB)
charges.

Figure S6: (a) Predicted density against the experimental density and the (b) correlation between
them.

Figure S7: (a) Predicted diffusivity against the experimental diffusivity and the (b) correlation between
them.
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Figure S8: (a) Predicted specific heat capacity against the experimental specific heat capacity and the
(b) correlation between them.

These newer models are not just qualitatively closer to predicting the experimental
values but they also allow us to come up with a linear correction relation to be able
to estimate the experimental density, diffusivity or specific heat capacity directly from
the QRNN MD predictions.

The dimer scanning results from the first round of active learning which are not
shown in the manuscript are given below.
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(a) (b)

(c) (d)

Figure S9: Separation energy between two molecules as a function of separation distance compared be-
tween the DFT calculation, OPLS4 force field, and the machine-learned force field for the (a) monomers,
(b) dimers, (c) trimers and (d) tetramers of ethylene glycol.

S2.2. Second round of active learning
As established from the first round of learning, training on xTB charges can turn

out to be beneficial. As a result, we carry out a second round active-learning and add
these new samples to our training dataset. We then train a number of models that
either use the dipole moments or xTB charges along with the forces and energy as the
learning features. The best model QRNN - AL2.0-TL-xTB is compared against QRNN -
M,D,T and QRNN - AL-TL from the previous rounds to show the superior performance.
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Figure S10: (a) Predicted density against the experimental density and the (b) correlation between
them.

Figure S11: (a) Predicted diffusivity against the experimental diffusivity and the (b) correlation be-
tween them.
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Figure S12: (a) Predicted specific heat capacity against the experimental specific heat capacity and
the (b) correlation between them.

A change from training on xTB atomic partial charge labels instead of DFT dipole
moments and an incremental change in the model performance with each cycle of active
learning can be seen in Fig. S13. Our findings indicate that the xTB charge model does
better than the DFT dipole moment model. Additionally, we have observed gradual
enhancements in the results through consecutive active learning cycles within the xTB
charge model. Therefore, it is the combined utilization of xTB charges and active
learning that leads to the most favorable outcomes.

Figure S13: Comparison of the xTB charge model (QRNN - xTB) with DFT dipole moment model
(QRNN - M,D,T)) and incremental improvements to the xTB charge model with active learning
(QRNN - AL-TL-xTB, QRNN - AL2.0-TL-xTB).
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Figure S14: Equilibrated simulation cell containing (a) 25-mer, (b) 50-mer and (c) 100-mer chains of
PEG.
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