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Abstract

RNA abundance is tightly regulated in eukaryotic cells by modulat-
ing the kinetic rates of RNA production, processing, and degrada-
tion. To date, little is known about time-dependent kinetic rates
during dynamic processes. Here, we present SLAM-Drop-seq, a
method that combines RNA metabolic labeling and alkylation of
modified nucleotides in methanol-fixed cells with droplet-based
sequencing to detect newly synthesized and preexisting mRNAs in
single cells. As a first application, we sequenced 7280 HEK293 cells
and calculated gene-specific kinetic rates during the cell cycle
using the novel package Eskrate. Of the 377 robust-cycling genes
that we identified, only a minor fraction is regulated solely by
either dynamic transcription or degradation (6 and 4%, respec-
tively). By contrast, the vast majority (89%) exhibit dynamically
regulated transcription and degradation rates during the cell cycle.
Our study thus shows that temporally regulated mRNA degradation
is fundamental for the correct expression of a majority of cycling
genes. SLAM-Drop-seq, combined with Eskrate, is a powerful
approach to understanding the underlying mRNA kinetics of single-
cell gene expression dynamics in continuous biological processes.
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Introduction

Progression through the cell cycle requires tight control of tran-

scriptional (Dynlacht, 1997) and posttranscriptional (Blackinton

& Keene, 2014) regulation to prevent deregulation that trigger

cell death or lead to abnormal growth (Schafer, 1998). Many of

the genes involved in coordinating this complex process are

fine-tuned at specific stages during the cell cycle, and their

dysregulation can lead to various diseases, most notably cancer

(Hanahan & Weinberg, 2011; Rubin et al, 2020; Matthews

et al, 2022). While the dynamics of gene expression have been

extensively characterized in the cell cycle (Iyer et al, 1999; Cho

et al, 2001; Whitfield et al, 2002; Liu et al, 2017), little is

known how the underlying processes of mRNA transcription,

splicing, and degradation influence gene expression and how

their associated kinetic rates change depending on the cell

cycle time.

Common approaches to studying RNA kinetic rates rely on 4-

thiouridine (4sU) incorporation into nascent transcripts, followed by

biochemical enrichment of labeled RNAs (Dölken et al, 2008; Miller

et al, 2011; Rabani et al, 2011). To circumvent the main disadvan-

tages associated with these approaches (e.g., high amount of

starting material required, unspecific enrichment), SLAM-seq was

developed (Herzog et al, 2017): instead of depending on enrichment

steps, iodoacetamide (IAA) is used to alkylate the 4sU base in

labeled RNAs. This alkylation results in diagnostic thymine-to-

cytosine (T->C) transitions in a reverse-transcription dependent

manner, which are detected and quantified with computational
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analysis after RNA sequencing. Although instructive, this and simi-

lar (Riml et al, 2017; Schofield et al, 2018) protocols assume RNA

kinetic rates to be constant and average gene expressions for mil-

lions of cells, flattening the heterogeneity of single cells. In recent

years, scRNA-seq has become the method of choice to analyze the

complexity and heterogeneity of cell populations (Hashimshony

et al, 2012; Macosko et al, 2015; Alles et al, 2017; Pepe-Mooney

et al, 2019). Based on scRNA-data, gene-specific RNA synthesis and

degradation rates in single cells have been calculated using precur-

sor and mature mRNA counts (Manno et al, 2018), but the mRNA

decay rate was assumed constant across the cell population. More

recently, experimentally more complex single-cell methods have

been established to investigate gene-specific mRNA kinetic rates

based on SLAM-seq (scSLAM-seq (Erhard et al, 2019), NASC-seq

(Hendriks et al, 2019), sci-fate (Cao et al, 2020), scNT-seq (Qiu

et al, 2020)). These approaches were described in more detail in a

recent review by Erhard et al (2022). While these methods all profile

whole and newly synthesized transcriptomes, there are important

differences: SMART-seq-based methods (i.e., scSLAM-seq, NASC-

seq) normally capture deep coverage of transcripts in each cell, but

assay only hundreds of cells due to labor and cost. Sci-fate relies on

single-cell combinatorial indexing to obtain a high number of single

cells. When many cells in heterogeneous populations need to be

analyzed, droplet-based approaches such as scNT-seq are more

advantageous, recovering thousands of cells per experiment with

low cost and easy setup. Although all these approaches have been

applied to investigate gene-specific mRNA kinetic rates in different

systems, they only address discrete states of cell activation, differen-

tiation, or infection. For biological processes that are continuous

and dynamic, it is necessary to investigate the kinetic rates in a con-

tinuous time-resolved manner. For example, in the case of the cell

cycle progression, it would be desirable to measure the RNA kinetic

rates throughout the cell cycle as a function of time.

To overcome the limitations of current methods for analyzing

time-dependent RNA kinetic rates, we developed SLAM-Drop-seq,

an approach that employs 4sU metabolic RNA labeling, chemical

conversion of labeled transcripts with IAA in situ inside fixed cells,

followed by droplet-based scRNA-seq. The fixation step permeabi-

lizes cell membranes and therefore allows the IAA-induced alkyl-

ation of 4sU residues to take place within intact cells. Compared to

scNT-seq, which also applies droplet-based sequencing (Qiu

et al, 2020), this is a novel step that reduces the hands-on time and

complexity of the experiment. Using SLAM-Drop-seq, we quantified

newly synthesized and preexisting mRNA transcripts in individual

cells. Based on a time-dependent mRNA kinetic rate model, we

developed the R package Eskrate to estimate the time-resolved

mRNA kinetic rates. As a first application, we explored the dynam-

ics of RNA kinetic rates along the cell cycle from a population of

unsynchronized HEK293 cells. We assigned each cell to a specific

time point of the cell cycle using Revelio (Schwabe et al, 2020), a

recently developed approach to reconstructing the temporal continu-

ity of the cell cycle from single-cell transcriptomic data of unper-

turbed cells. We profiled the time-dependent gene expression

transcriptome-wide and identified 377 robustly cycling genes. The

underlying rates of mRNA synthesis and degradation along the cell

cycle were then calculated using Eskrate. We found that temporally

regulated RNA degradation is considerably involved in cycling gene

expression regulation in the cell cycle, and the gene expression of

the majority of the analyzed cycling genes is the result of a close

interplay between RNA production and decay.

Results

Experimental procedure and data

SLAM-Drop-seq combines 4-thiouridine (4sU) metabolic labeling

and iodoacetamide (IAA) alkylation inside fixed cells with droplet-

based scRNA-seq. We optimized the conditions to alkylate 4sU-

labeled RNAs in methanol-fixed cell suspensions to preserve high-

integrity RNAs (Appendix Figs S1A and B). For our SLAM-Drop-seq

experiment, we incubated HEK293 cells with 4sU for different dura-

tions (0, 15, 30, 60 min of incubation, two biological replicates

each). We alkylated fixed cells and sequenced their mRNA tran-

scriptomes via a Drop-seq protocol. The accumulation of T->C tran-

sitions was detected in sequence reads marked with cellular and

molecular barcodes by computational analysis to quantify newly

transcribed and preexisting transcripts of each gene in each single

cell (Fig 1A).

We obtained a total of 7,280 single cells that expressed at least

200 genes (Appendix Fig S2A). Although the sequencing depths

were different between sequencing batches (batch 1 contained all of

the 0, 30 and 60 min 4sU samples, while batch 2 contained the

15 min 4sU samples only; Appendix Fig S2B), we detected a median

of more than 6,400 transcripts (UMIs) and 2,800 genes per cell for

all labeling conditions (Appendix Fig S2C and D). Pseudo-bulk level

gene expression (i.e., gene expression summed up across all single

cells in each sample) correlation analysis showed high correlation

coefficients among all SLAM-Drop-seq samples (Pearson r > 0.99;

Fig 1B), indicating highly reproducible sequencing results and no

apparent changes in gene expression in response to short 4sU

incubations.

Newly synthesized and preexisting RNA molecules are quantified
for both precursor and mature mRNAs in single cells

To distinguish newly synthesized transcripts from preexisting ones,

the 4sU labeling status for each transcript had to be determined.

The identification of 4sU labeled RNA molecules relies on the identi-

fication of T->C transitions. However, single-nucleotide polymor-

phisms (SNPs) and sequencing errors can confound the

quantification of labeled RNAs. To remove SNPs, we mapped the

sequenced reads to a HEK293 cell line-specific reference genome,

which we created based on public HEK293 genomic sequencing data

(see Materials and Methods). After this, we still observed 3.1% tran-

scripts containing T->C transitions in the no-4sU labeled control

(i.e., 0 min 4sU) samples (Appendix Fig S3A). We hypothesized that

these transitions were mainly due to the unfiltered SNPs and

sequencing errors. We further filtered SNP positions identified from

the no-4sU control samples (see Materials and Methods). Then the

true T->C transitions were distinguished from sequencing errors

using a Bayesian model (see Materials and Methods). The resulting

T->C conversions detected in the no-4sU labeled control samples

dropped to 0.3% (Appendix Fig S3A).

The labeling status (labeled or unlabeled) of a read enabled us to

distinguish between newly synthesized and preexisting transcripts.
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This classification is central to our analysis, but it is highly depen-

dent on the number of 4sU nucleotides incorporated per molecule.

In our experiments, the median number of thymines (Ts) per read

(median length: 138 nucleotides) is around 32 (Appendix Fig S3B).

Thus, it is possible that reads originated from newly synthesized

transcripts are devoid of T->C conversions because it is known that

even with long labeling times, at most one in 40 uridines is expected

to be substituted by 4sU (Herzog et al, 2017; Jürges et al, 2018). To

minimize the chance of such false negatives, we took advantage of

unique molecular identifiers (UMIs) introduced by the SLAM-Drop-

seq protocol to computationally merge the reads that mapped to the

same transcript. Since reads associated with the same UMI can

Figure 1. Newly synthesized and preexisting mRNAs in single cells are accurately detected with SLAM-Drop-seq by merging reads from the same UMI.

A Schematic illustration of SLAM-Drop-seq experimental workflow. Briefly, cells were incubated with 4-thiouridine (4sU) and fixed. 4sU residues in newly synthesized
RNAs were alkylated by iodoacetamide (IAA) in situ in fixed cells. This resulted in T->C transitions during the reverse transcription step, after encapsulation of single
cells in oil droplets. scRNA-seq libraries were prepared after droplet lysis and the T->C conversions in barcoded reads were detected by computational analysis.
CB = Cell barcode, UMI = Unique Molecular Identifier.

B Pseudo-bulk gene expression levels are highly correlated between samples. Gene expression counts were summed across single cells in each sample and converted to
counts per million (CPM). The log2(CPM + 1) values were used for the correlation analysis.

C Different parts of the same transcript are captured and sequenced in SLAM-Drop-seq data. Example Genome browser track shows reads from one single UMI in one
cell are mapped to both intronic and exonic regions of the SLC25A37 gene.

D The accuracy of identification of labeled transcripts increases after merging reads originated from the same transcript (UMI) as the observed number of thymidines
(Ts) in each molecule increases. Data shown are from the 15 min 4sU labeled samples.

E The molecules detected as newly synthesized increase proportionally to the 4sU labeling time. The regression was performed with the cross-replicate means per
labeling time. The gray bands around the regression line display the 95% confidence intervals. The central band indicates the median value, while the lower and
upper hinges of the boxes correspond to the 25th and 75th quantiles. The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the
hinge (where IQR is the inter-quartile range). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. There are two biological
replicates for each 4sU incubation time, which are denoted by the side-by-side box plots. The number of cells in each boxplot is shown in Appendix Fig S2A.
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cover different parts of the same transcript due to random fragmen-

tation and PCR amplification, merging reads from the same UMI

recovers the full coverage of the sequencing data (Fig 1C). The in

silico merged “molecules,” as we refer to them, generally contained

sequence information for longer parts of the fragments (median

length: 190 nucleotides; Appendix Fig S3B) and higher number of

Ts (median: 49; Fig 1D), which increased the expected number of

T->C transitions in the newly synthesized RNA molecules. To iden-

tify the newly synthesized transcripts lacking detectable T->C con-

versions by chance (increased likelihood with a lower number of

Ts), we calculated the posterior probability of a molecule to be

newly synthesized based on its T->C conversions and the number

of Ts observed using a Bayesian model. To obtain the prior parame-

ter to the model, we performed an extra experiment in which

HEK293 cells were incubated with 4sU for 24 h to label all newly

synthesized transcripts. With the assumption of a constant 4sU

incorporation rate, we observed the number of T->C conversions in

molecules with a given number of Ts following the expected Poisson

distribution (Appendix Fig S3C). We applied the Bayesian model to

calculate the probability for a given molecule to be newly synthe-

sized based on its number of observed Ts and T->C conversions

(Appendix Fig S3D, also see Materials and Methods). After these

quantifications, we observed a linear increase of the newly synthe-

sized RNA fractions with increasing time of 4sU incubation (Fig 1E),

further arguing for the reliability of SLAM-Drop-seq, regarding the

accurate quantification of newly synthesized and preexisting RNAs.

To be able to infer gene-specific RNA kinetic rates of transcrip-

tion, processing, and degradation, we not only distinguished

between newly synthesized (i.e., labeled) and preexisting (i.e., unla-

beled) transcripts but also classified each molecule as a precursor

(i.e., unspliced) or mature (i.e., spliced) RNA. The transcripts were

identified as unspliced or spliced based on the presence or absence

of intron coverage (Appendix Fig S4A, see Materials and Methods).

The fractions of unspliced molecules are independent of 4sU incuba-

tion times (Appendix Fig S4B), meaning that metabolic labeling

does not perturb mRNA processing. Thus, SLAM-Drop-seq can dis-

tinguish and measure the products of mRNA synthesis and proces-

sing in parallel and in a reliable manner.

Reconstruction of the cell cycle and modeling of cell cycle
time-dependent RNA kinetic rates

From SLAM-Drop-seq data, we obtained gene expression count

matrices for four types of mRNAs (i.e., “labeled precursor,” “labeled

mature,” “unlabeled precursor,” and “unlabeled mature”). For the

calculation of RNA kinetic rates in single cells, we developed

Eskrate, an R package, integrating the single-cell-level measure-

ments of newly synthesized and preexisting precursor RNAs as well

as newly synthesized and preexisting mature RNAs to infer gene-

specific transcription, processing, and degradation rates as a func-

tion of time. The inputs to Eskrate are gene expression profiles of

single cells of the aforementioned four types of RNA molecules mea-

sured by SLAM-Drop-seq and the biological times (e.g., cell cycle

time) for every single cell (Fig 2A). We focus on the cell cycle as the

first biological process to study the temporal dynamics of RNA

kinetic rates, since gene expression is highly variable during the cell

cycle and the underlying kinetic rates defining the expression of

cycling genes are still not fully studied in unperturbed cells.

To analyze kinetic rates along the cell cycle, the individual cells

first have to be classified according to cell cycle stages. To this end,

we used Revelio, a principal component analysis (PCA)-based method

(Schwabe et al, 2020), to reconstruct the cell cycle in silico from gene

expression data of unsynchronized single cells. After filtering cells that

showed more than 5% mitochondrial content, low expression of

cycling genes, high expression of stress-related genes, or high contents

of ribosomal protein-coding genes (see Materials and Methods), we

analyzed the remaining cells using Revelio and obtained a two-

dimensional representation placing each cell along a circular trajec-

tory corresponding to their progression through the cell cycle (Figs 2B

and EV1A and B). Analogously to Schwabe et al (2020) we utilized

known cell cycle phase durations (Cheng & Solomon, 2008) to assign

cell cycle phase boundaries and ordered the cells along the cell cycle

process based on their angle in the two-dimensional space (Fig 2B).

As expected, the mean captured RNA molecules per cell increased

along the cell cycle progression (Fig EV1C). As an additional control,

we compared the cell cycle time-dependent expression profiles recov-

ered by Revelio between well-known cell cycle markers and house-

keeping genes. While housekeeping genes such as HPRT1 show a

constant expression profile along the cell cycle, the expression of well-

known cell cycle marker genes is upregulated at specific cell cycle

phases that recapitulate their known expression patterns (Whitfield

et al, 2002; Fig EV1D).

Based on the obtained cell cycle time-resolved expression profiles

of all four mRNA types, we implemented Eskrate by extending an

RNA kinetic rate model commonly used for steady-state analyses

(Zeisel et al, 2011; Manno et al, 2018) to a system of four ordinary

differential equations (ODEs) describing RNA abundance changes

over the cell cycle time for the described four types of RNAs

▸Figure 2. SLAM-Drop-seq of unsynchronized HEK293 cells reveals temporally regulated RNA kinetic rates throughout the cell cycle.

A The main steps of the data processing pipeline and new algorithm Eskrate (Estimate time-dependent RNA kinetic rates) for estimating time-dependent RNA kinetic
rates from SLAM-Drop-seq data. Step 1. Raw sequencing data is processed and reads from the same UMI (transcript) are merged. Different RNA types are classified
(i.e., labeled precursor pl; labeled mature ml , unlabeled precursors :25empu and unlabeled mature mu) and gene expression counts are obtained for each RNA type.
Step 2. After low quality cells are filtered, we use Revelio (Schwabe et al, 2020) to sort cells in cell cycle times. Single cell gene expression is transformed to gene
expression over cell cycle time. Step 3. Time-dependent RNA kinetic rates are calculated using Eskrate via the simplified analytical solutions of the kinetic rate model
(see Materials and Methods).

B Based on gene expression, individual HEK293 cells were positioned along a circular trajectory representing the cell cycle using Revelio (Schwabe et al, 2020).
DC = dynamic component. Shown are cells from the batch 1 experiments (0, 30 and 60 min 4sU samples).

C The mathematical model of RNA kinetic rates. The model consists of two mRNA maturation states (precursor and mature) and includes three kinetic rates:
transcription α, processing β and degradation γ. Since maturation status and labeling status are independent events, we obtain four RNA types from the SLAM-Drop-
seq experiment: pl; :5emml; pu; and mu . We model the dynamics of RNA abundances for each RNA type over the cell cycle time by ODEs involving the kinetic rates.
RNA abundances are measured at given cell cycle time Φand 4sU labeling time t.
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(Fig 2C). Importantly, we solved the time-dependent versions of

these equations such that all kinetic rates are (continuous) functions

of the cell cycle time. In this way, we obtained equations directly:

linking the time-dependent abundances of the four RNA types to the

time-dependent rates of transcription, splicing, and degradation (see

Materials and Methods). Due to the fact that we captured a low

amount of precursor mRNAs (Appendix Fig S4B), we simplified the

analytical solutions using approximations assuming that RNA

processing (within minutes; Alpert et al, 2017) is much faster than

RNA degradation (within hours; Murakawa et al, 2015; Schofield

et al, 2018). We implemented Eskrate with simplified analytical

solutions in which the time-dependent transcription and degrada-

tion rates were driven by time courses of labeled and unlabeled

mature RNAs (see Materials and Methods).

Figure 2.
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While the derived analytic solutions enable us to calculate kinetic

rates from the experimental data, one drawback is that the ground

truth is unknown. Therefore, as a proof-of-concept, we generated

synthetic data assuming that both transcription and degradation

rates are cell cycle time-dependent (Appendix Fig S5A–C, also see

Materials and Methods). We show that given a ground truth for

kinetic rates, which generate certain expression profiles, the calcu-

lated kinetic rates accurately recapitulate the ground truths in all

labeling cases using the full model (Appendix Fig S5D, see Materials

and Methods). Using the simplified model, the kinetic rates are gen-

erally close to the ground truths as well. However, the rates calcu-

lated from longer 4sU labeling times are more precise (Appendix

Fig S5D). Since we can only approximate the kinetic rates from the

experimental data using the simplified model, in the following ana-

lyses, we show the results of kinetic rates in the cell cycle calculated

from the 60 min 4sU labeled samples. Since it is theoretically possi-

ble that the same RNA levels result from different kinetic rate com-

binations, we additionally generated the same gene expression

profile of mature RNA considering all possible kinetic regulation

modes (i.e., constant transcription rate; constant degradation rate;

and dynamic transcription and degradation rates). The calculated

RNA kinetic rates recapitulate the simulated input transcription and

degradation rates in all cases (Appendix Fig S6A). Therefore, both

the full model and the simplified model are capable of distinguishing

between gene expression patterns driven by changes in transcription

compared to those driven by changes in degradation, even if both

modes of regulation ultimately lead to the exact same time course of

mature mRNA expression.

We calculate the transcription and degradation rates from the

observed gene expression data (i.e., observation). Reversely, we can

calculate the predicted gene expression (i.e., prediction) from the cal-

culated kinetic rates (see Materials and Methods). The difference

between the observation and the prediction can therefore be used as a

measurement of the accuracy of the calculated rates. Using synthetic

data, we show when the changes are small in transcription and degra-

dation rates, the prediction changes linearly (or near linearly; Appen-

dix Fig S6B and C). This analysis suggests that when errors are small

in the calculated kinetic rates, the prediction should also contain small

errors. In other words, the prediction should be close to the observa-

tion, if the calculated rates are close to the truth. Thus, we define

genes as “well-predicted” for which an estimation of transcription and

degradation rates is meaningful if the difference between prediction

and observation is small (see Materials and Methods).

RNA transcription and degradation rates are dynamically
regulated in the cell cycle

As explained above, we analyzed the kinetic rates in the cell cycle

using the simplified model from the 60 min 4sU samples. Since

single-cell transcriptomic data are noisy, smoothed expression pro-

files along the cell cycle are used for the estimations (see Materials

and Methods). To investigate the regulation of temporal RNA kinetic

rates during the cell cycle, we only focused on genes whose expres-

sion oscillates along the cell cycle (i.e., cycling genes). The reliabil-

ity of the smoothed profile for each gene is largely dependent on its

dropout rate (Qiu, 2020). To avoid unreliable estimates from shal-

low gene expression data (Appendix Fig S7A), we down-sampled

the gene expression matrix and defined thresholds of dropout rates

for cycling genes to consider the smoothed profiles reliable (Appen-

dix Fig S7B–D, also see Materials and Methods). Applying these

thresholds, we defined a core set of 399 cycling genes with confi-

dence in their smoothed profiles.

The expression profiles of these 399 cycling genes peak at spe-

cific stages of the cell cycle (Fig 3A). We identified 97% of them to

be well-predicted by comparing gene-wise the predictions to the

observations (Fig 3A). The corresponding calculated transcription

and degradation rates for cycling genes presented dynamic patterns

as well along the cell cycle (Fig 3B), indicating temporal regulation

of both processes during cell cycle progression. Noticeably, the peak

times of transcription and degradation are less ordered with respect

to the peak times in gene expression (Fig 3A and B), indicating that

distinct regulation patterns for transcription and degradation can

yield similar mRNA expression profiles.

As an example, of a dynamically regulated gene, we show the

detailed profiles for the observed gene expression and the calculated

kinetic rates along the cell cycle for the HIST1H4C gene (Fig 3C). It

is a well-known S-phase enriched gene and its observed gene

expression peaked exactly during the S phase in our data. Its tran-

scription rate peaked in the S phase, while its degradation rate

showed a sharp increase preceding the M phase. These results are

highly consistent with the known kinetic regulation of replication-

dependent histone genes: in fact, it was previously reported that the

upregulation of gene expression is mainly dependent on increased

transcription, whereas the G2 phase associated decrease in detection

is caused by decreased RNA stability (Harris et al, 1991).

To evaluate the robustness of our method and estimations, we

compared the cell cycle time-dependent profiles of RNA expression,

synthesis, and degradation rates from our data with those of another

cell line (RPE1-FUCCI), obtained by using a different approach

(scEU-seq, Battich et al, 2020). The comparison of shared genes

between the two datasets revealed a similar overall pattern of

peaking times along the cell cycle, but with a relatively consistent

time delay (Fig EV2A–C). HEK293 kinetics profiles peaked at an ear-

lier cell cycle time with respect to the one calculated in the scEU-seq

paper. Interestingly, RPE1-FUCCI cells seem to lack any transcrip-

tional activity at the beginning of the cell cycle. While various rea-

sons could account for these discrepancies, the genetic background,

cell of origin, cell source, and ways of cell cycle sorting are likely

contributors.

We also tested the reproducibility of our data and the reliability of

the developed algorithm Eskrate by calculating the synthesis and deg-

radation rates using the raw sequencing data from the published sci-

fate dataset (Cao et al, 2020). Specifically, we used the 4sU-labeled

and unstimulated A549 cell line sample to estimate the RNA kinetic

rates. When compared to the 140 shared genes with HEK293 results,

the two datasets exhibited a high degree of similarity (Fig EV2D–F).
This finding not only confirms the reliability of the Eskrate algorithm

by demonstrating its potential to analyze other datasets but also high-

lights the dynamic regulation of RNA kinetic rates in cell cycle vari-

able genes across different human cell lines.

Furthermore, we averaged the calculated degradation rates and

compared them to independent studies on RNA half-lives in HEK293

and K562 cells calculated from constant degradation estimates (Mura-

kawa et al, 2015; Schofield et al, 2018). We found that our estimates

correlated with published data (Spearman correlation coefficients

were 0.60 and 0.46, respectively; Appendix Fig S8A and B).
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Cycling genes exhibit different modes of kinetic regulation

We wondered how frequent different modes of kinetic regulation

are in human cycling genes and which kinetic parameters

(transcription and/or degradation rate) drive the dynamic changes

of gene expression. To this end, we filtered the well-predicted

cycling genes to exclude those that exhibit overly “wiggly” tran-

scription or degradation profiles and obtained a set of 377 genes,
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Figure 3. Gene expression and kinetic rates for cycling genes are highly dynamic along the cell cycle.

A Gene expression of mature mRNAs for 399 cycling genes as quantified from sequencing data (i.e., observation) and as predicted (i.e., prediction) from calculated
transcription and degradation rates along the cell cycle. The gray vertical bars on the right show the mean relative deviations between observation and prediction
(see Materials and Methods). 389 out of those genes were identified as well-predicted (deviation ≤ 0.2). Genes on rows were ordered by the peak time of the
observation. Expression values were centered and scaled across cells for each gene.

B The calculated transcription and degradation rates for the genes shown in (A) along the cell cycle. The rates were normalized to their mean per gene and log2
transformed (transcription rates [molecules/min], degradation rates [1/min]).

C Profiles of the observed gene expression, the calculated kinetic rates and the corresponding predicted expression of HIST1H4C gene. Left panel: Observed gene
expression levels (i.e., points) and their smoothed profiles (i.e., lines). CPM, counts per million. Total mature RNA is the sum of labeled and unlabeled mature RNAs.
Middle panel: Kinetic rates calculated from the smoothed gene expression profiles are shown by the solid lines. The gray bands show the 90% confidence intervals
(i.e., the 5–95% quantiles) of the rates calculated from bootstrapping (resampling of cells 100 times with replacement). Right panel: The predicted expression profiles
of labeled and total mature RNAs that derived from the calculated rates.

� 2023 The Authors Molecular Systems Biology 19: e11427 | 2023 7 of 23

Haiyue Liu et al Molecular Systems Biology



which we called “robust-cycling genes” (Fig 4A). We classified these

genes according to their dependency on transcription and degrada-

tion dynamics by determining the predicted gene expression

changes when kinetic rates are set constant. We hypothesized that

forcing a constant transcription rate should lead to large deviations

of the resulting expression profile from the observed one for genes

temporally regulated by dynamic transcription. Analogously, for

genes with their temporal expression patterns dominantly regulated

by dynamic turnover, a constant degradation rate should cause large

deviation in its predicted expression. Using this approach, we

assigned the robust-cycling genes to the following three major regu-

latory classes: (i) dynamic transcription, (ii) dynamic degradation;

(iii) dynamic transcription and degradation (Fig 4B; Dataset EV1).

We found that the majority of the robust-cycling genes (337 out

of 377) depend on dynamic changes in both rates, implicating

posttranscriptional regulation as an important regulatory mecha-

nism for mRNA expression and oscillating gene expression during

the cell cycle in HEK293 cells. Surprisingly, we only found 21 genes

that achieve their cycling mRNA levels by dynamic transcription

alone and 16 by dynamic changes in degradation rates (Fig 4B). As

expected, when looking at the kinetic profiles without fixed parame-

ter, genes classified as “dynamic transcription regulated” showed

relatively constant degradation rate profiles throughout the cell

cycle (e.g., TYMS in Fig 4C), while genes classified as “dynamic

degradation regulated” exhibited roughly constant transcription rate

profiles (e.g., TUBA1C in Fig 4C).

Our results show that expression of the majority of the cycling

mRNAs is regulated at the level of transcription as well as degra-

dation (Fig 4B). Examples for this mode of regulation are

HIST1H4C (Fig 3C) and KIF14 mRNAs. KIF14 encodes a member
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Figure 4. Cycling gene expression can result from various kinetic modes that often involve dynamically regulated RNA decay.

A Identification of the robust-cycling genes for kinetic rate regulation investigation. 377 out of the 389 well-predicted cycling genes were defined as robust-cycling
genes by excluding those showing multiple transcription or degradation peaks.

B Cycling genes exhibit diverse kinetic modes. The kinetic modes were defined based on the dependency of dynamic transcription and dynamic degradation. The
dependency on transcription (or degradation) is represented by the mean relative deviation between prediction from constant transcription (or degradation) and
prediction from dynamic model (see Materials and Methods). ‘Both’ means genes are regulated by both dynamic transcription and dynamic degradation. Genes that
were not identified into dynamic transcription, dynamic degradation or both were assigned into the “other” group. The labeled genes represent example cases in each
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C Profiles of the predicted expression, transcription and degradation rates along the cell cycle for example genes, which are labeled in (B) (dynamic transcription: TYMS;
dynamic degradation: TUBA1C; dynamic transcription and dynamic degradation: KIF14). Gray areas around rates’ profiles indicate the 90% confidence intervals
calculated from bootstrapping (resampling of cells 100 times with replacement).
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of the kinesin-3 superfamily of microtubule motor proteins, which

is involved in chromosome segregation, mitotic spindle formation,

and cytokinesis during the cell cycle (Carleton et al, 2006). KIF14

mRNA levels went up before G2 (Fig 4C), mostly due to increased

transcription (Fig 4C). Toward the end of mitosis, the KIF14 tran-

script numbers quickly diminished due to a concomitant decrease

in transcription and increase in degradation (Fig 4C).

To investigate how gene expression changes are defined by

changes of transcription and degradation rates, we compared the

peak times of both parameters for the 337 robust-cycling genes. The

lag times between the two rates come from a broad distribution

(Appendix Fig S9A), indicating highly variable and gene-specific

coordination of mRNA kinetic rates. For example, mRNA expression

profiles of SYNE2 and CLSPN genes peak during the G1 phase

(Appendix Fig S9B). While their transcription rates are similar, their

degradation rates have very different peak patterns. Overall, our

findings demonstrate that our approach enables a description of

transcription and degradation rates during the cell cycle with high

temporal resolution.

Discussion

In this study, we introduced SLAM-Drop-seq to distinguish newly

synthesized and preexisting polyadenylated RNAs in single cells.

We developed the R package Eskrate that enabled us to study tem-

poral changes of RNA kinetic rates during the cell cycle based on

SLAM-Drop-seq data. We inferred RNA kinetic rates in terms of cell

cycle time from unsynchronized HEK293 cells and identified 377

robust-cycling genes with confident rate estimates. We found the

majority of cycling genes to be temporally regulated by changes in

not only synthesis but also degradation rates. The temporal inter-

play between transcription and decay to achieve dynamic gene

expression along the cell cycle revealed different modes of mRNA

kinetic rates.

Previous studies on mRNA expression regulation throughout the

cell cycle largely focused on transcriptional regulation (Cho

et al, 2001; Liu et al, 2017). The underlying assumption of transcrip-

tional control as a main regulatory mechanism is the basis of many

methods to estimate RNA kinetic rates (Skinner et al, 2016). Here, we

show that only a small fraction of cycling genes seems to be tempo-

rally regulated by transcription alone. Therefore, at least for cell cycle

regulation in HEK293 cells, our data suggest that the generalization

provided by our approach (time-dependent rates with biophysical

units) is not only of theoretical interest but also key in revealing the

underlying biological processes: we found the majority of cycling

genes to rely on some level of time-dependent degradation in addition

to their transcriptional regulation to achieve final expression patterns.

In addition, we also identified 16 robust-cycling genes with near-

constant transcription over the entire cell cycle that solely relied on

dynamic degradation rates to modulate their expression (Fig 4B). A

recent study showed that alternative polyadenylation site usage is

highly regulated in cell-cycle-related genes at the single cell level,

suggesting that posttranscriptional regulation is important for the

regulation of gene expression during cell cycle progression

(Wang et al, 2022). The switch of polyA sites of several cell cycle

genes could potentially influence their turnover rate. Our study thus

underscores the diverse temporal regulation types of transcription and

degradation for defining gene expression in cell cycle progression.

While the temporal changes of transcription and degradation rates

have been previously revealed during the cell cycle (Eser et al, 2014;

Battich et al, 2020), we infer these rates with a greater time

resolution.

While this study was conducted, several approaches to measur-

ing RNA half lives in single cells were published (Erhard

et al, 2019; Hendriks et al, 2019; Battich et al, 2020; Cao

et al, 2020; Qiu et al, 2020, 2022). NASC-seq and scSLAM-seq

combined metabolic RNA labeling with the Smart-seq2 approach

(Picelli et al, 2013). While these methods have the advantage of

full-length coverage of RNA transcripts compared to Drop-Seq (30

end sequencing), the cell throughput is an order of magnitude

smaller, capturing only a few hundred single cells (Erhard

et al, 2019; Hendriks et al, 2019). scEU-seq performed pull-down

to enrich for metabolically labeled RNAs, which is laborious, low-

throughput, and prone to introduce biases. Sci-fate gained high

sequencing throughput by using combinatorial indexing strategies

(Cao et al, 2020). scNT-seq adapted RNA metabolic labeling to

droplet-based sequencing approach, which effectively increases

the throughput at a low cost (Qiu et al, 2020). Regarding the esti-

mation of RNA kinetic rates, most of these studies (Erhard

et al, 2019; Hendriks et al, 2019; Cao et al, 2020; Qiu et al, 2020)

fit the degradation rates under a steady-state assumption. Battich

et al (2020) estimated the synthesis and degradation rates in the

cell cycle with lower pseudotime resolution by pooling cells at

close cell cycle times (Battich et al, 2020). One advanced compu-

tation tool was proposed by Qiu et al (2022), by which dynamical

models and machine learning were used to predict dynamic cell

transitions (Qiu et al, 2022). Compared to these studies, SLAM-

Drop-seq obtains a high number of single cells with less labor at

a lower cost. The 4sU labeled nucleotides are chemically

converted in situ in fixed cells, which makes the method applica-

ble for primary cells and complex tissues. Moreover, the kinetic

model and algorithm we implemented take all kinetic rates as a

function of time, meaning we are able to predict the absolute

number of transcripts that are produced during a certain (cell

cycle) time.

We are aware that the Drop-seq-based sequencing method has a

30 bias, and this can lead to potential underestimation of unspliced

RNA molecules (i.e., precursors). Nonetheless, due to the simplifica-

tion of the mRNA kinetic model, the precursor mRNAs were not

used for the kinetic rates calculation. Thus the 30 bias of the

sequencing should not influence the kinetic rates shown in this

manuscript. However, full-length scRNA-seq methods might be bet-

ter options to apply the full kinetic rate model if the number of sin-

gle cells could scale to similar levels to Drop-seq. Alternatively,

when the accuracy of base calling for long-read sequencing will

match that of short read sequencing, their incorporation into the

workflow will be a more reliable alternative.

Due to the low number of precursor RNA captured in our dataset

(Appendix Fig S4B), we decided to adjust our model to increase the

robustness of the transcription and degradation rates at the cost of

not being able to investigate mRNA processing (i.e., splicing) rates

for our application of SLAM-Drop-seq to cycling HEK293 cells. How-

ever, with deeper sequencing data, our mathematical framework

should be capable of correctly estimating time-dependent splicing

rates as well.
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Materials and Methods

Reagents and Tools table

Reagent/Resource Reference/ Source Identifier/Catalog number

Experimental models

HEK293 Flp-In T-Rex cells Thermo Fisher Scientific Cat # R78007

Oligonucleotides

Read1CustSeqB Macosko et al (2015) GCCTGTCCGCGGAAGCAGTGGTATCA
ACGCAGAGTAC

TSO Macosko et al (2015) AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG

SMART PCR oligo Picelli et al (2014) AAGCAGTGGTATCAACGCAGAGT

New-P5-SMART PCR hybrid oligo Macosko et al (2015) AATGATACGGCGACCACCGAGATCTAC
ACGCCTGTCCGCGGAAGCAGTGGTATC
AACGCAGAGT*A*C

Chemicals, enzymes and other reagents

Dulbecco’s modified Eagle medium Gibco Cat # 41965039

AMPure XP beads Beckman Coulter Cat # A63881

Bovine serum albumin (BSA) Sigma-Aldrich Cat # A8806

Dithiothreitol (DTT) Sigma-Aldrich Cat # D9779

DPBS Gibco Cat # 14190250

ECL detection reagent GE Healthcare Cat # RPN2209

Exonuclease I New England Biolabs Cat # M0293

Fetal bovine serum Gibco Cat # 10270106

Ficoll PM 400 Sigma-Aldrich Cat # F4375

L-Glutamine Gibco Cat # 25030081

Iodoacetamide Sigma-Aldrich Cat # I6125-5G

Maxima H- RT enzyme Thermo Fisher Cat # EP0753

Methanol z. A. (min. 99.8%) Th. Geyer Cat # 11646935

MTSEA-XX-biotin Biotium Cat # 90066

Nylon membrane Amersham Hybond-N+ Cat # RPN203B

N-Lauroylsarcosine (Sarkosyl) Sigma-Aldrich Cat # L7414

Phase Lock Gel Heavy tubes QuantaBio Cat # 2302830

Phenol/Chloroform/Isoamylalkohol Carl Roth Cat # A156.1

QX200 Droplet Generation Oil Bio-Rad Cat #1864006

SDS 20% Carl Roth Cat # 1057.1

Streptavidin-HRP Pierce Cat # 21130

Superase•In RNAse Inhibitor Thermo Fisher Cat # AM2694

4-Thio uridine ChemGem Cat # RP-2304

Trizol Thermo Fisher Cat # 15-596-018

TrypLE express enzyme Gibco Cat # 12605036

Software

bcl2fastq v2.20.0

STAR v2.6.0a Dobin et al (2013)

bcftools v1.9 Li (2011)

Drop-seq tools v2.2.0 Macosko et al (2015)

Revelio Schwabe et al (2020)

GATK toolkit McKenna et al (2010)

Seurat Macosko et al (2015)

10 of 23 Molecular Systems Biology 19: e11427 | 2023 � 2023 The Authors

Molecular Systems Biology Haiyue Liu et al



Reagents and Tools table (continued)

Reagent/Resource Reference/ Source Identifier/Catalog number

DropletUtils Griffiths et al (2018) and
Lun et al (2019)

FastQC v0.11.5

Samtools v1.6

Bedtools v2.30.0

Pysam v 0.15.4

VarScan v2.3.9

sam2tsv.jar

Python 2.7.18 & python 3.9.0

R ‘mgcv’ packages Wood (2017)

R 3.6.0

Other

Nadia instrument Dolomite Bio

TC20 cell counter Bio-Rad

Bio-Dot apparatus Bio-Rad

Direct-zol RNA Miniprep Zymo Research

QuBit 2.0 Fluorometer Thermo Fisher

UV Stratalinker Ultraviolet Crosslinker Stratagene

Imager AI680 GE Amersham

2100 Bioanalyzer Instrument Agilent

Nextera XT DNA Library Preparation Kit Illumina

Nextseq 500/550 HO v2 kit Illumina

Illumina Nextseq 500 Illumina

Illumina NovaSeq 6000 Illumina

Methods and Protocols

Cell culture
Human HEK293 Flp-In T-Rex cells were cultured at 37°C with 5%

CO2 and were grown in Dulbecco’s Modified Eagle Medium supple-

mented with 10% fetal bovine serum and 2 mM L-Glutamine.

TrypLE Express Enzyme was used to detach cells and split them 2–3
times per week. The cell line was tested for mycoplasma contamina-

tion before experiments.

SLAM-Drop-seq protocol

• Split cells the day before the experiment in order to reach ∼ 60/

70% confluence the day after (exponential growth phase).

• Incubate cells with 300 μM 4sU for the desired amount of time.

• Wash cells without detaching from the plate with warm DPBS

and dissociate them with TrypLE Express Enzyme for 1–
2 min.

• Using cold DPBS, first wash cells in cold DPBS and then

resuspend them at a final concentration of 1–2 million cells/

ml (or lower).

CRITICAL STEPS: be as quick as possible in this and

previous steps, since transcription happening during this time

will introduce unwanted signal to the results.

• Fix cells by gently adding drop by drop four volumes of cold

methanol, with mild shaking of the dissociated single cells.

• Leave samples in fixation buffer (80% methanol, 20% DPBS) for

at least 20 min at �20°C.
• Add IAA to final concentration of 10 mM to alkylate 4sU residues

in cell suspensions. Same volume of fixation buffer was added to

control samples.

• Alkylation reaction is performed overnight (16–18 h) in the dark

with mild rotation at room temperature.

• Using the fixation buffer, wash cell samples once (300 g, 20, 4°C)
and resuspend them. Storage at �80°C is possible.

SUGGESTED STEP: split the samples to control if the alkylation

was efficient. Refer to the next section “Biotinylation blocking

assay” to perform it.

• Rehydrate samples in rehydration buffer (DPBS, 0.01% BSA, 1:100

Superase � In RNAse Inhibitor).

• Quench the remaining IAA by adding 100 mM DTT (from freshly

prepared 1 M DTT, dissolved in rehydration buffer) for 5 min at

room temperature.

• Wash samples once in rehydration buffer and resuspend them in

400 μl DPBS - BSA 0.01% + 1 U/μl Superase � In RNAse Inhibitor.

• Pass cell suspensions through a 40 μm cell strainer and count

single cells (we used a TC20 automated cell counter).

• Proceed immediately to the chosen approach for single-cell RNA

library preparation.
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N.B.: when working with 4sU and IAA reduce to the minimum

light exposure, because both molecules are unstable and light-

sensitive.

Biotinylation blocking assay protocol

• After the overnight alkylation step, spin down a fraction of the

samples (at least 50,000 cells) and dissolve it in TRIzol to check

for alkylation efficiency.

• Extract the RNA following the TRIzol Reagent manual or using

Direct-zol purification columns.

• Biotinylate the purified RNA (same amount between samples)

with MTSEA-XX-Biotin in biotinylation buffer (20 mM Tris–HCl

pH 7.5, 1 mM EDTA, in ddH2O, 100 μl final volume) for more

than 1 h in the dark at room temperature.

• Remove excess of MTSEA-XX-Biotin with Phenol/Chloroform (for

RNA extraction) by using Phase Lock Gel Heavy tubes.

• Blot the samples to a nylon membrane (∼ 100 μl) using a dot-blot

apparatus.

• Cross-link the RNA to the membrane with 2,400 μJ UV254nm.

• Block the membrane in blocking solution (DPBS, 10% SDS, 1 mM

EDTA) for 20 min at room temperature.

• Incubate the membrane with 1:10,000 dilution of 1 mg/ml

streptavidin-HRP in blocking solution for 10 min at room tempera-

ture.

• Wash the membrane six times with a blocking solution containing

decreasing concentration of SDS (10, 1, 0.1%, applied twice each)

for 10 min.

• Develop the biotin signal with ECL detection reagent and detect

the chemiluminescence with an appropriate imager system.

Single-cell library preparation and sequencing
Single cells were encapsulated using a Nadia Instrument and fol-

lowing the protocol from the manufacturer (version 1.8). 75,000

single cells in 250 μl rehydration buffer were encapsulated using

250 μl lysis buffer (6% Ficoll PM-400, 0.2% Sarkosyl, 20 mM

EDTA, 50 mM DTT, 200 mM Tris pH 7.5) and 3 ml QX200 Droplet

Generation Oil. After encapsulation, the transcripts captured by

barcoded beads were reverse transcribed (Maxima H- RT enzyme)

and treated with exonuclease I following the instruction manual.

The beads were than counted, and PCR amplification was run with

SMART PCR primers (4,000 beads/sample, 6 reactions, 14 cycles).

The PCR reactions were purified two times with 0.6 volumes of

AMPure XP beads, quantified with QuBit, and analyzed on a Bioa-

nalyzer DNA HS chip. 1,000 pg DNA libraries were used for the

fragmentation and amplification steps (11 cycles) using the

Nextera XT v2 DNA sample preparation kit. The libraries were

double-purified with 0.6 volumes of AMPure XP Beads, quantified,

and pooled. The 15 min 4sU-labeled samples were sequenced on a

Illumina Nextseq500 sequencer (library concentration 1.8 pM;

Nextseq 500/550 High Output v2 kit (150 cycles) in paired-end

mode; read 1 = 20/21 nt using the custom primer Read1CustSeqB

(Macosko et al, 2015), read 2 = 133/132 nt). The 0, 30 and

60 min 4sU-labeled samples were sequenced on a Illumina

NovaSeq 6000 device (SP configuration, pair-end; read 1 = 20 nt

using the custom primer Read1CustSeqB (Macosko et al, 2015),

index 1 (i7) = 8 nt, read 2 = 150 nt).

HEK293 cell line–specific reference genome creation
To increase mapping sensitivity and most importantly avoid mistaking

single-nucleotide polymorphisms (SNPs) from the minor allele in

HEK293 cells as T->C conversions, a cell type-–specific reference

genome was created by amending the hg38 reference genome using

SNPs detected from public bulk genome DNA (gDNA) sequencing data

(SRA accession number: SRR2123657). To identify the SNPs in the

HEK293 gDNA data, we mapped raw reads to the hg38 reference

genome using STAR v2.6.0a (Dobin et al, 2013). SNPs were called

using bcftools v1.9 (Li, 2011) “mpileup” and “call” functions. Then we

filtered SNPs by the quality score using bcftools “view” function with

parameter “%QUAL>20.” The generated SNP vcf file was then sorted

to list chromosomes in lexicographic order. Very importantly, indels

were filtered out to avoid changes in the length of the reference.

Finally, the hg38 reference genome was corrected from the identified

SNPs in HEK293 gDNA data using the “FastaAlternateReference-

Maker” function from the GATK toolkit (McKenna et al, 2010).

Data processing, mapping, splice status tagging, and
mismatches tagging
Raw sequencing data were demultiplexed using bcl2fastq v2.20.0.

The sequencing quality was checked using FastQC v0.11.5. Since

we applied Drop-seq for single-cell RNA sequencing, we followed

the Drop-seq Core Computational Protocol (https://github.com/

broadinstitute/Drop-seq) to process the data. Drop-seq tool v2.2.0

(Macosko et al, 2015) was used to tag cell barcodes and molecular

barcodes, to trim the 30 poly(A) tail and potential 5’ SMART adapter

sequences, and to filter out barcodes with low quality bases. The

reads were then aligned to the HEK293 reference genome that we

described above using STAR v2.6.0a (Dobin et al, 2013) with

optional parameters “-outFilterMismatchNmax 10 and –outSAMat-

tributes AS NH nM NM MD” in order to write the MD tag, which

carried the encoding mismatched and deleted reference bases into

the aligned output files. Typically, around 80% of the reads mapped

uniquely. Non-uniquely mapped reads were not used for down-

stream analysis.

Gene annotation tags were added to the aligned reads by using

the Drop-seq tools v2.2.0 with filtered genome annotation file

(GENCODE annotation release 29), which is described below. As we

wanted to estimate kinetic rates for well-annotated genes, we fil-

tered the genome annotation file to keep well-supported transcripts

(transcript support level: 1, 2 and NA) for protein coding genes. For

our interest of exploring other gene types, we also added “lincRNA”

and “miRNA” from the genome annotation to our filtered gtf file.

The Drop-seq tools was further exploited to identify and correct

potential barcode errors. The number of cells (cell barcodes associ-

ated with single-cell transcriptomes) was determined by extracting

the number of reads per cell, then plotting the cumulative distribu-

tion of reads against the cell barcodes ordered by descending num-

ber of reads and selecting the inflection point (‘knee’) of the

distribution.

The gene annotation tags that were added by Drop-seq Tools

contained genes on both forward and reverse stands within the

genomic location that the read mapped to. To annotate the specific

gene name that the read mapped to, we further tagged the aligned

reads with gene names stating the unique gene the read mapped to

by considering the strands information and the genes that located at

the same strand that the read mapped to.
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In order to quantify mature and precursor RNAs for the kinetic

rates modeling, we annotated the splice status for each uniquely

aligned read with a tag stating the specific genomic location that the

read mapped to (i.e., intron-only, intron-exon, exon-only, exon-

exon, etc.) by intersecting the aligned read with gene annotation

bed files containing intron and exon coordination information using

bedtools “intersect” function. The bed files were generated from the

gene annotation gtf file and split into intron, exon, and ambiguous

bed files. To avoid ambiguous tagging where both intron and exon

present at the read mapped locus, we annotated the ambiguous loci

from the bed files and filtered them from the intron and exon bed

files. The quantification of spliced and unspliced transcripts was

described in later sections.

To count the T->C conversions, we need to find out T->C mis-

matches between the sequenced reads and the reference genome.

We tagged each aligned read with a specific mismatch tag indicating

the number of mismatches for all mismatch types using a python

script that was adapted from “conversiontag” function in NASC-seq

analysis pipeline (Hendriks et al, 2019). This script utilized pysam

(https://github.com/pysam-developers/pysam) to call single base

mismatches by using the MD tags in conjunction with the CIGAR

tags, which carried the mismatches, insertions, and deletions in the

reads in the aligned files without requiring access to the entire origi-

nal reference. Since the reads in SLAM-Drop-seq were not-stranded,

both sense and antisense transcripts were sequenced. As the

reads were from the first strand of cDNA, T->C mismatches seen in

reads mapped to the sense strand and A->G mismatches seen

in reads mapped to the antisense strand were counted as T->C con-

versions. T->C conversions for each gene in each cell were counted

by summing up the unique T->C positions in all reads that uniquely

mapped to the gene in each single cell, which was described in the

later section.

SNPs filtering
To reduce mistakes in T->C conversion quantification caused by

SNPs, we mapped sequencing reads to the HEK293 specific refer-

ence genome as described in the mapping step above. To further get

rid of SNPs that possibly presented in different cell passages, we

checked the observed mismatches in no-4sU labeled samples and

identified mismatches in positions with high frequency (mismatch

rate > 0.5 in position with reads depth ≥ 2) across all cells as SNPs.

We then ignored these defined SNP positions when we count T->C

conversions in all SLAM-Drop-seq samples.

Reads merging and transcript splice status identification
In SLAM-Drop-seq, unique molecular identifiers (UMIs) were used

to identify different transcripts. The UMI tag was added to the first

stand cDNA, which was PCR amplified and fragmented during

library preparation. Since the fragmentation was random, different

parts of each transcript with the same UMI were sequenced. To

check the T->C conversion in each transcript (UMI), we merged all

reads with the same UMI in each cell by collapsing the overlapping

positions. Meanwhile, we checked each position in the merged

sequence where at least one mismatch was observed and marked

the read coverage and mismatch number at that position.

To identify the splice status of the sequenced transcript at the

time that the 4sU labeling experiments ended, we checked the splice

status tags of all reads that with the same UMI and identified the

splice status for each transcript with the following logics: (i) If all

reads from the transcript were mapped to exonic regions, the tran-

script was identified as “spliced”; (ii) If there was at least one read

from the transcript were mapped to intronic regions, the transcript

was identified as “unspliced”; (iii) Transcripts were defined as

“ambiguous” if they fit neither of the above criteria, and they were

not used for the kinetic estimation.

Newly synthesized and preexisting transcript quantification
To quantify the newly synthesized and preexisting transcripts, we

need to identify labeling status from the T->C conversions observed

in each transcript. As described above, reads that mapped to differ-

ent genomic locations from the same transcript were merged. Thus,

the number of T->C conversions for each transcript could be

counted by summing up all the unique positions with a seen T->C

conversion over reads that have the same UMI. This required the

correct identification of T->C conversions in each position. How-

ever, the sequencing errors in high-throughput sequencing could be

confounded as T->C conversions. To distinguish the real T->C con-

versions from sequencing errors, we applied a Bayesian statistics

method modeled as the mixture of two binomial distributions as

described in the following formula:

pc kl;nl; εs; ρð Þ ¼ ρ � Binom kl;nl; 1�εsð Þ þ 1�ρð Þ
� Binom nl�kl;nl; εsð Þ (1)

where pc was the posterior probability of T->C conversion at locus

l; kl was the number of reads supporting T->C conversions at

locus l; nl was the total read coverage at locus l; εs was the

sequencing error rate in high-throughput sequencing, which was

approximated as 0.1% (Pfeiffer et al, 2018); ρ was the T->C con-

version rate in all reads (prior probability), which was approxi-

mated by the ratio of observed number of confident T->C

conversions (> 50% Ts were converted to Cs at each locus) to the

observed number of Ts over all sequenced molecules for each sam-

ple. For each sequenced molecule (UMI), the total number of T->C

conversion was calculated by summing up the posterior probabili-

ties of T->C conversions over all positions within the molecule.

Due to inefficient 4sU incorporation, not all newly synthesized

RNAs can be labeled with 4sU (Herzog et al, 2017). To recover the

newly synthesized RNAs, which were not labeled, we applied a

Bayesian statistics method with a mixture of Poisson and Binomial

distributions. The method was described by the following function

and terms:

pnew km;nm; ρl; εc; θð Þ ¼ θ � Poisson km;nm � ρlð Þ þ 1�θð Þ
� Binom km;nm; εcð Þ (2)

where pnew was the posterior probability of molecule to be newly

synthesized given the T->C conversions we observed in molecule

m; km was the number of T->C conversions in molecule m; nm

was the total number of Ts in molecule m; εc was the conversion

error rate (false-positive rate of T->C conversions), which was cal-

culated from the no 4sU labeled cells (εc = 0.00018); θ was the

newly synthesized molecule fraction (prior probability), which was

calculated for each gene in each sample by dividing the number of

molecules with T->C conversions by the total number molecules

observed; ρl was the T->C incorporation rate constant in newly
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synthesized molecules, which was approximated by the mean

T->C conversion rate (# of T->C divided by the # of Ts) over all

precursor molecules in cells that were labeled with 4sU for 24 h.

Under constant 4sU incorporation rate assumption, the number of

T->C conversions in a newly synthesized molecule with a certain

number of Ts should be a Poisson event. We did observe that the

distribution of the fraction of T->C conversions recapitulated the

density of Poisson distribution with the parameter ρl � #Ts (Appen-

dix Fig S3C). In the above equation, the Poisson distribution

modeled the T->C conversion observed in the newly synthesized

RNA molecules and the Binomial distribution modeled the T->C

conversion in the preexisting RNA molecules. For each gene, the

number of newly synthesized molecules was calculated by sum-

ming up the posterior probabilities pnewð Þ over all molecules.

Gene expression normalization, smoothing, and
correlation analysis
Gene expression was normalized by dividing the raw counts to the

total molecules captured in each cell and then multiplied with the

scaling factor 106 transforming the unit of our reads from absolute

counts to counts per million (CPM). To get rid of the unwanted vari-

abilities in single cells for kinetic rates estimation, we smoothed the

gene expression profile for each gene along the cell cycle using

penalized spline from the Generalized Additive Models (GAM;

Wood, 2017) using R ‘mgcv’ packages (parameters used in the

model were: bc=‘cc’, k = 20, gamma = 1.4).

To check the gene expression correlation between samples, the

normalized gene expression (CPM) was averaged over all cells for

each gene and log2 transformed with pseudocount 1. Pair-wise gene

expression correlations between different samples were calculated

using the common set of genes across samples.

Cell filtering
We discarded cells that contained more than 5% mitochondrial

RNA contents and clustered cells using Seurat UMAP algorithm

(Macosko et al, 2015). Cells from batch 1 (0, 30, and 60 min 4sU

samples) and batch 2 samples (15 min 4sU samples) were pooled

and clustered separately. To focus the analysis on cells that were

cycling, we measured the averaged expression of well-known cell

cycle marker genes and stress-related genes for each cell cluster.

The clusters that showed relatively low expression of cycling genes

or relatively high expression of stress-related genes were filtered

out. We also removed cell clusters that showed relatively higher

contents of ribosomal protein coding genes.

In silico cell cycle sorting
The sequenced HEK293 cells were unsynchronized. Thus, it is rea-

sonable to assume that the single cells occupy one cell cycle uni-

formly. We sorted the filtered cells to a continuous cell cycle

progression using the Revelio algorithm (Schwabe et al, 2020). It

first identified the highly variable genes using similar method that

defined in Seurat package (Macosko et al, 2015). By default, the var-

iable genes are used for PCA. Here, we used the intersection of vari-

able genes and the default variable genes that provided by Revelio

package instead since we found it improved the cell cycle sorting.

This algorithm then transformed high-dimensional scRNA-seq data

of immortalized cell lines into a two-dimensional circular trajectory

with approximately uniform cell density in phase space. Due to the

simplicity of the cell cycle signal, we approximated the cell cycle

progression by the angular component from this two-dimensional

trajectory. This provided us with an ordering of the cells that fol-

lows the cell cycle progression. We then based our analysis on the

time courses of individual genes that stemmed from this order of

cells. With the help of estimated HEK293 cell cycle phase durations

(Cheng & Solomon, 2008), we also estimated rough cell cycle phase

boundaries and durations.

Time-dependent RNA kinetic rate model
We develop a theoretical framework for estimating RNA kinetic rate

based on a typical experimental setup for metabolic labeling. We

first introduce a general model and its solutions for the dynamics of

different mRNA types that includes the three rate parameters: tran-

scription rate α Φð Þ in molecules
h , splicing rate β Φð Þ in 1

h and degradation

rate γ Φð Þ in 1
h, all depending on the cell cycle phase Φ. In contrast to

RNA velocity (Manno et al, 2018), all three rates have units associ-

ated to them enabling absolute quantification rather than relative

quantification. We also allow all three parameters to vary in time,

enabling us to model the cell cycle as an example for a biological

process.

We have previously introduced the distinction between precursor

mRNA p and mature mRNA m and the fact that they can both be

quantified by scRNA-seq. The additional classification into labeled

and unlabeled mRNA results in a total of four different types of

mRNA (since both classifications are independent): unlabeled pre-

cursors pu, unlabeled matures mu, labeled precursors pl, and labeled

matures ml. We note that the amounts of unlabeled precursors pu
and labeled precursors pl sum up to yield the total amount of pre-

cursors p. The same is true for the mature mRNAs m. Therefore, the

quantities pu and pl (as well as mu and ml) signify a splitting up of

the quantity p (and m) into two summands. This yields four linearly

independent observables to infer three kinetic rates such that the

problem is no longer under-determined. We now proceed by model-

ing the concentration levels of the four different mRNA types in a

gene-specific manner across the cell population.

In Schwabe et al, 2020, it was observed that the cell cycle of

immortalized cell lines is embedded as an approximately circular

shape in two dimensions within the normalized gene expression

space. For the modeling task at hand, we therefore simplify the

cell cycle to a motion on a simple cycle in phase space. All

cycles that are topologically equivalent to a circle allow for the

definition of a phase variable to uniquely parametrize a position

on the cycle. The position of a cell along the cell cycle is then

uniquely defined by its cell cycle phase Φ and attains values

between 0 and 2π.

The concentration levels of the four mRNA types pu, mu, pl, ml

depend on the position the cell attains within the cell cycle and the

duration for which 4sU has been incorporated into the system. We

hence choose to model these as functions of two variables: the cell

cycle phase Φ with Φ∈ 0; 2π½ � and the labeling time t with t∈Rþ
0

and such that t ¼ 0 denotes the initiation of labeling. This yields the

functions

pu�unlabeled precursors preexisting precursorsð Þ
mu�unlabeled matures preexisting maturesð Þ
pl�labeled precursors newly synthesized precursorsð Þ
ml�labeled matures newly synthesized maturesð Þ
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These four variables are density fields on the phase range 0; 2π½ �
changing in time and the two parameters Φ and t are independent.

The densities given for t ¼ 0 can be considered the initial densities.

We obtain the trajectory of an individual cell in phase space if we

incorporate the time dependence of its position like

~Φ tð Þ ¼ ~Φ0 þ ω � t (3)

Here, ~Φ0 is the cell cycle phase the cell was in when labeling was

initiated at t ¼ 0, and ω is the average velocity with which the cells

move along the cell cycle. This is due to the fact that labeling time

and cell cycle phase increase simultaneously in a linear way once

a particular cell is chosen. For reasons of simplicity, we assume a

typical cell cycle to take T ¼ 19:33 h (Cheng & Solomon, 2008)

and set ω constant by defining ω ¼ 2π
T . Taking the example of unla-

beled precursors pu, we can then describe the amount of unlabeled

precursor mRNA molecules contained within an individual cell

throughout the labeling experiment by moving along a curve cpu tð Þ
such that cpu tð Þ≔pu ~Φ tð Þ; t� � ¼ pu ~Φ0 þ ω � t; t� �

for t> 0.

The parametrization ~Φ tð Þ; t� �
turns out to correspond to the char-

acteristics of the partial differential equations (PDEs) of interest.

This enables us to translate a system of PDEs to a system of ordi-

nary differential equations (ODEs) in the process of finding

solutions.

The total amounts of precursor RNA p Φð Þ and the total amounts

of mature RNA m Φð Þ are defined by

p Φð Þ≔pu Φ; tð Þ þ pl Φ; tð Þ; (4)

m Φð Þ≔mu Φ; tð Þ þml Φ; tð Þ: (5)

Furthermore, at the initiation of labeling (t ¼ 0Þ, there is no

newly synthesized RNA yet, thus pl Φ; 0ð Þ ¼ ml Φ; 0ð Þ ¼ 0 for all Φ.

We conclude p Φð Þ ¼ pu Φ; 0ð Þ and m Φð Þ ¼ mu Φ; 0ð Þ for all Φ.

The functions pu, mu, pl, ml describe distributions of mole-

cules over the entire cell cycle. Without loss of generality and to

simplify explanations, we concentrate our description on the unla-

beled precursors pu. Its distribution of molecules over the cell

cycle is variable with respect to time t. Let t1 and t2 be two dis-

tinct time points with 0 ≤ t1 < t2. Two aspects govern the changes

of the distribution from time t1 to time t2. On the one hand, all

cells progress through the cycle. This would mean that the distri-

bution of pu gets rotated along the cycle since the cells transport

the density of pu with them. This part of the dynamics is termed

advection and is given by �ω ∂pu Φ; tð Þ
∂Φ , which stems from the basic

transport equation.

On the other hand, during the time Δt≔t2�t1; transcriptional

changes occur and act on the distribution of pu. In the case of unla-

beled precursors, there is only splicing of already existing pu mole-

cules occurring since no new unlabeled precursors are created for

t ≥ 0. The transcriptional changes during Δt are hence given

by �β Φð Þ � pu Φ; tð Þ. This allows us to write down a PDE for the

dynamics of pu. It has the structure of a general balance equation

for concentration changes, which is

local concentration changesð Þ ¼ change due to flux gradientsð Þ
þ change due to local processesð Þ:

(6)

We obtain

∂pu Φ; tð Þ
∂t

¼ �ω
∂pu Φ; tð Þ

∂Φ
þ �β Φð Þpu Φ; tð Þð Þ (7)

The initial condition (initial distribution) at time t ¼ 0 is given by

p Φð Þ, since pu Φ; 0ð Þ ¼ p Φð Þ.
For the other mRNA types, we can argue very similarly and have

to only adjust the transcriptional changes. The unlabeled matures

mu gain the number of unlabeled precursors that is spliced during

Δt but lose what is degraded of mu. The labeled precursors pl are

similar to the unlabeled precursors pu apart from the fact that tran-

scription is a source for newly produced pl. The dynamics for the

labeled matures ml is analog to the dynamics of mu.

We can derive a solution for the PDEs with their initial condi-

tions with the help of the method of characteristics (Evans, 2010).

We again demonstrate this only for pu. We parametrize the vari-

ables Φ and t with a new variable τ and get

dpu ~Φ τð Þ; ~t τð Þ� �
dτ

¼ ∂pu ~Φ τð Þ;~t τð Þ� �
∂Φ

� d
~Φ τð Þ
dτ

þ ∂pu ~Φ τð Þ; ~t τð Þ� �
∂t

� d~t τð Þ
dτ
(8)

via the chain rule. We now choose ~t τð Þ such that

d~t τð Þ
dτ

¼ 1 ) ~t ¼ τþ c~t ) choose c~t ¼ 0 ) ~t τð Þ ¼ τ and rewrite t

¼ τ:

We conclude that

dpu ~Φ tð Þ; t� �
dt

¼ ∂pu ~Φ tð Þ; t� �
∂Φ

� d
~Φ tð Þ
dt

þ ∂pu ~Φ tð Þ; t� �
∂t

: (9)

Now, we choose ~Φ tð Þ such that

d~Φ tð Þ
dt

¼ ω ) ~Φ tð Þ ¼ ωt þ c ~Φ ) choose c ~Φ ¼ ~Φ0 ) ~Φ tð Þ
¼ ωt þ ~Φ0:

This implies

dpu ~Φ tð Þ; t� �
dt

¼ ω � ∂pu
~Φ tð Þ; t� �
∂Φ

þ ∂pu ~Φ tð Þ; t� �
∂t

: (10)

If we compare Equation (10) to the initial PDE (7), we can con-

clude:

dpu ~Φ tð Þ; t� �
dt

¼ �β ~Φ tð Þ� �
pu ~Φ tð Þ; t� �

: (11)

which is an ODE for pu along a parametrization ~Φ tð Þ; t� �
, the solu-

tion of which describes the trajectory of a cell in phase space. The

initial condition becomes

pu ~Φ 0ð Þ; 0� � ¼ p ~Φ0

� �
: (12)

We note that the parametrization for which the ODE in Equa-

tion (11) is satisfied coincides with the parametrization required for
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the trajectory of an individual cell (see Equation (3)). That means

that the characteristics of the PDE are precisely the individual trajec-

tories of cells.

We also observe that the time derivative along this characteristic

is equal to the transcriptional changes from PDE in Equation (7).

This enables us without further derivations to write down the ODEs

for all other mRNA types along their characteristic curves. The

corresponding ODEs yield

dpu ~Φ tð Þ; t� �
dt

¼ � β ~Φ tð Þ� �
pu ~Φ tð Þ; t� �

;

dmu
~Φ tð Þ; t� �
dt

¼ β ~Φ tð Þ� �
pu ~Φ tð Þ; t� ��γ ~Φ tð Þ� �

mu
~Φ tð Þ; t� �

;

dpl ~Φ tð Þ; t� �
dt

¼ α ~Φ tð Þ� � �β ~Φ tð Þ� �
pl ~Φ tð Þ; t� �

;

dml
~Φ tð Þ; t� �
dt

¼ β ~Φ tð Þ� �
pl ~Φ tð Þ; t� � �γ ~Φ tð Þ� �

ml
~Φ tð Þ; t� �

:

8>>>>>>>>>>>><>>>>>>>>>>>>:
(13)

with initial conditions

pu ~Φ 0ð Þ; 0� � ¼ p ~Φ0

� �
;

mu
~Φ 0ð Þ; 0� � ¼ m ~Φ0

� �
;

pl ~Φ 0ð Þ; 0� � ¼ 0;

ml
~Φ 0ð Þ; 0� � ¼ 0:

8>>>><>>>>: (14)

It can be shown that the following solutions indeed solve the sys-

tem (13) as well as their corresponding PDE counterparts:

pu Φ; tð Þ ¼ p Φ�ωtð Þ � e�1
ω

R Φ

Φ�ωt
β φð Þdφ

;

mu Φ; tð Þ ¼ p Φ�ωtð Þ � 1
ω

Z Φ

Φ�ωt
β φð Þ � e�1

ω

R Φ

φ
γ φð Þdφ�1

ω

R φ

Φ�ωt
β φð Þdφ

� �
dφ

þm Φ�ωtð Þ � e�1
ω

R Φ

Φ�ωt
γ φð Þdφ

;

pl Φ; tð Þ ¼ 1

ω

Z Φ

Φ�ωt
α φð Þ � e�1

ω

R Φ

φ
β φð Þdφ

� �
dφ;

ml Φ; tð Þ ¼ 1

ω2

Z Φ

Φ�ωt
β φð Þ � e�

1
ω

R Φ

φ
γ φð Þdφ �

Z φ

Φ�ωt
α φð Þ � e�

1
ω

R φ

φ
β φð Þdφ

� �
dφ

� �
dφ:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
(15)

With respect to the total precursor RNA p Φð Þ and the total

mature RNA m Φð Þ, we obtain the system

dp Φð Þ
dΦ

¼ 1

ω
α Φð Þ � 1

ω
β Φð Þp Φð Þ;

dm Φð Þ
dΦ

¼ 1

ω
β Φð Þp Φð Þ� 1

ω
γ Φð Þm Φð Þ;

8>><>>: (16)

with initial conditions p Φ0ð Þ ¼: pΦ0
and m Φ0ð Þ ¼: mΦ0

. It can be

shown that a solution for system (16) is given by

p Φð Þ ¼ pΦ0
� e�

1
ω

R Φ

Φ0
β φð Þdφ

þ 1

ω

Z Φ

Φ0

α φð Þ � e�1
ω

R Φ

φ
β φð Þdφ

� �
dφ;

m Φð Þ ¼ mΦ0
� e�

1
ω

R Φ

Φ0
γ φð Þdφ

þ 1

ω

Z Φ

Φ0

β φð Þ � p φð Þ � e�1
ω

R Φ

φ
γ φð Þdφ

� �
dφ:

8>>>>>>>>>>><>>>>>>>>>>>:
(17)

Solving the inverse problem
The solution formulas from the previous section state how the con-

centrations of the four mRNA types pu, mu, pl, and ml can be calcu-

lated given dynamic rate parameters α Φð Þ, β Φð Þ, and γ Φð Þ.
However, in reality it is rather of interest to estimate the mRNA

kinetic rates that caused the observable profiles for the different

mRNA types. This is called an inverse problem.

Typical solutions to inverse problems concerning our model and

structure of the previous solutions in system (15) would entail dou-

ble integrals, which we cannot hope to solve analytically and which

would be extremely unstable numerically.

We notice that the system of ODEs (13) contains the rate parame-

ters α Φð Þ, β Φð Þ, and γ Φð Þ directly without involving integrals. This

suggests a potential strategy for obtaining the rates directly from the

dynamics. However, the ODEs describe the trajectory of a single cell

throughout the labeling experiment. That means the observable data

would have to consist of multiple measurements of the same cell at

different labeling times. However, scRNA-seq is not capable of

such data.

Rather, we obtain measurements of multiple cells, which roughly

cover the range of the cell cycle phase 0; 2π½ � but only for one single

labeling time t�. Hence, the observable data pu, mu, pl, and ml are

functions of the cell cycle phase Φ for fixed labeling times t�. The
numerical derivatives one can calculate from such observations

coincide with the partial derivatives of pu, mu, pl, and ml with

respect to cell cycle phase Φ. What remains to be done is to investi-

gate these partial derivatives to find out if they can be utilized to

infer rate parameters.

We have calculated these partial derivatives. They are given by

∂pu Φ; tð Þ
∂Φ

¼ 1

ω
α Φ�ωtð Þ pu Φ; tð Þ

p Φ�ωtð Þ�
1

ω
β Φð Þpu Φ; tð Þ;

∂mu Φ; tð Þ
∂Φ

¼ 1

ω2
α Φ�ωtð Þ �

Z Φ

Φ�ωt
β φð Þe�1

ω

R Φ

φ
γ φð Þdφ�1

ω

R φ

Φ�ωt
β φð Þdφ

� �
dφ

þ 1

ω
β Φð Þpu Φ; tð Þ� 1

ω
γ Φð Þmu Φ; tð Þ;

∂pl Φ; tð Þ
∂Φ

¼ 1

ω
α Φð Þ� 1

ω
α Φ�ωtð Þ p Φð Þ

p Φ�ωtð Þ þ
1

ω
α Φ�ωtð Þ pl Φ; tð Þ

p Φ�ωtð Þ
� 1

ω
β Φð Þpl Φ; tð Þ;

∂ml Φ; tð Þ
∂Φ

¼ � 1

ω2
α Φ�ωtð Þ �

Z Φ

Φ�ωt
β φð Þe�

1
ω

R Φ

φ
γ φð Þdφ�1

ω

R φ

Φ�ωt
β φð Þdφ

� �
dφ

þ 1

ω
β Φð Þpl Φ; tð Þ� 1

ω
γ Φð Þml Φ; tð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
(18)

Additionally, the concentrations of the total precursor mRNAs p

and mature mRNAs m are given by the sum of unlabeled and

labeled amounts. The ODEs they obey are:

dp Φð Þ
dΦ

¼ 1

ω
α Φð Þ � 1

ω
β Φð Þp Φð Þ;

dm Φð Þ
dΦ

¼ 1

ω
β Φð Þp Φð Þ� 1

ω
γ Φð Þm Φð Þ:

8>><>>: (19)

Due to the fact that pu þ pl ¼ p and mu þml ¼ m, we still only

obtain four linearly independent equations.

Nevertheless, the six equations in (18) and (19) serve as a

basis for inferring the rate parameters. The presence of an

16 of 23 Molecular Systems Biology 19: e11427 | 2023 � 2023 The Authors

Molecular Systems Biology Haiyue Liu et al



integral in the dynamics for mu and ml makes these equations

unsuitable for obtaining unique solutions of α Φð Þ, β Φð Þ, and

γ Φð Þ. This leaves dynamics of m as the only one involving the

dynamics of mature mRNA molecules. Out of the remaining three

equations involving precursors, we choose two to form the fol-

lowing system from which we intend to obtain the dynamic rates

α Φð Þ, β Φð Þ and γ Φð Þ:

∂pu Φ; tð Þ
∂Φ

¼ 1

ω
α Φ�ωtð Þ pu Φ; tð Þ

p Φ�ωtð Þ�
1

ω
β Φð Þpu Φ; tð Þ;

dp Φð Þ
dΦ

¼ 1

ω
α Φð Þ� 1

ω
β Φð Þp Φð Þ;

dm Φð Þ
dΦ

¼ 1

ω
β Φð Þp Φð Þ� 1

ω
γ Φð Þm Φð Þ:

8>>>>>><>>>>>>:
(20)

The quantities p Φð Þ, m Φð Þ, and pu Φ; t�ð Þ for fixed labeling time

t� are all measured within the labeling experiment. Since they cover

the entire range of Φ∈ 0; 2π½ �, we also know p Φ�ωt�ð Þ. The deriva-

tives with respect to cell cycle phase can be numerically inferred in

theory. Hence, we obtain a linear system (20) consisting of three

equations with the three unknowns α Φð Þ, β Φð Þ; and γ Φð Þ. This sys-
tem has a unique solution, which is the analytical solution to the

inverse problem.

In practice, current noise levels in scRNA-seq experiments can-

not be neglected. Our solution to the inverse problem can for now

only be seen as a theoretical solution since noise levels in fact would

have a huge impact on numerical derivation, making this approach

currently infeasible. Due to the presence of the term α Φ�ωtð Þ, the
above system should be solved by discretization. We would discre-

tize over the entire interval 0; 2π½ � in order to solve the coupled sys-

tem for all discretized time points at once. However, the equations

in system (20) suggest a very weak coupling between the discretized

variables, resulting in a very sparse parameter matrix. Such weak

coupling of the parameter matrix is not capable of solving the issue

of high noise terms in numerical derivation. Therefore, we suggest

to reconsider this direct approach again once noise levels in scRNA-

seq have been substantially reduced making numerical derivation

viable. For now, we choose a different approach for estimating the

parameters of the mRNA kinetic rates.

General rate estimation for the full model
Instead of solving the inverse problem directly, we now consider

the solutions from system (15) in order to infer the rate parameters

α Φð Þ, β Φð Þ; and γ Φð Þ. These analytic solutions involve integrals

over the rate parameters, which we want to now remove from the

equations. We consider that in case we have access to data with rel-

atively short labeling times 0< t≪T ¼ 2π
ω (much shorter than the

duration of the entire cell cycle), the cell cycle phase-dependent

changes of α Φð Þ, β Φð Þ, and γ Φð Þ in the interval Φ�ωt;Φ½ � can be

neglected. Then with the help of the mean value theorem, we con-

clude that approximations of the form

Z Φ

Φ�ωt
f yð Þdy ≈ ωt � f Φð Þ (21)

hold true for α Φð Þ, β Φð Þ, γ Φð Þ. The solutions for pu, mu, pl, and ml

from equations (15) can then be approximated and written without

integrals:

~pu Φ; tð Þ ¼ p Φ�ωtð Þ � e�tβ Φð Þ;

~mu Φ; tð Þ ¼ β Φð Þp Φ�ωtð Þ
γ Φð Þ�β Φð Þ � e�tβ Φð Þ þ m Φ�ωtð Þ� β Φð Þp Φ�ωtð Þ

γ Φð Þ�β Φð Þ
� �

� e�tγ Φð Þ;

~pl Φ; tð Þ ¼ α Φð Þ
β Φð Þ � 1�e�tβ Φð Þ

� 	
;

~ml Φ; tð Þ ¼ α Φð Þ
γ Φð Þ �

α Φð Þ
γ Φð Þ�β Φð Þ � e

�tβ Φð Þ þ α Φð Þβ Φð Þ
γ Φð Þ γ Φð Þ�β Φð Þð Þ � e

�tγ Φð Þ:

8>>>>>>>>>><>>>>>>>>>>:
(22)

During the experiment, we consider the short-fixed labeling time

t� ¼ 0:25h≪ 19:33h. We measure pu Φ; t�ð Þ, mu Φ; t�ð Þ, pl Φ; t�ð Þ, and
ml Φ; t�ð Þ for all Φ∈ 0; 2π½ �, and thus implicitly p Φ�ωt�ð Þ and

m Φ�ωt�ð Þ. Hence, we can solve the approximated solutions for

α Φð Þ and β Φð Þ directly:

β Φð Þ ¼ � 1

t
log

~pu Φ; t�ð Þ
p Φ�ωt�ð Þ

� �
;

α Φð Þ ¼ p Φ�ωt�ð Þ � β Φð Þ � ~pl Φ; t�ð Þ
p Φ�ωt�ð Þ�~pu Φ; t�ð Þ :

8>><>>: (23)

A general solution for γ Φð Þ involves solving the quadratic

equation

0 ¼ γ2 Φð Þ
�β ϕð Þ � ~pl Φ; t�ð Þ

~ml Φ; t�ð Þ þ
p Φ�ωt�ð Þ
m Φ�ωt�ð Þ þ 1

� �
� γ Φð Þ

þβ2 Φð Þ � ~pl Φ; t�ð Þ
~ml Φ; t�ð Þ �

p Φ�ωt�ð Þ
m Φ�ωt�ð Þ �

m Φ�ωt�ð Þ� ~mu Φ; t�ð Þ
p Φ�ωt�ð Þ�~pu Φ; t�ð Þ

� �
:

(24)

Its solution is a basic application of the quadratic solution

formula:

We have to again consider the issue of noise in scRNA-seq data

when applying these analytic solutions to currently available experi-

mental data. We observe that the solutions for α Φð Þ and γ Φð Þ in

Equations (23), (25) depend on the splicing rate β Φð Þ. The solution

for β Φð Þ itself consists of the logarithm of the fraction between unla-

beled precursors pu at the time of measurement Φ and the total pre-

cursors p at the time of labeling initiation Φ�ωtð Þ. While the mature

gene counts in RNA-seq data are known to be subjected to large

amounts of both technical and biological noise, the detection rate

for precursors is even an order of magnitude lower. We therefore

expect β Φð Þ to be extremely sensitive given the formula in

γ1;2 Φð Þ ¼ β Φð Þ
2

� ~pl Φ; t�ð Þ
~ml Φ; t�ð Þ þ

p Φ�ωt�ð Þ
m Φ�ωt�ð Þ þ 1

� �

� β Φð Þ
2


~pl Φ; t�ð Þ
~ml Φ; t�ð Þ þ

p Φ�ωt�ð Þ
m Φ�ωt�ð Þ þ 1

� �2

�4
~pl Φ; t�ð Þ
~ml Φ; t�ð Þ

p Φ�ωt�ð Þ
m Φ�ωt�ð Þ

m Φ�ωt�ð Þ� ~mu Φ; t�ð Þ
p Φ�ωt�ð Þ�~pu Φ; t�ð Þ þ 1

� �s (25)
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Equation (23). Due to the dependencies, any noise will be propa-

gated to α Φð Þ and γ Φð Þ.
Steady-state estimations of the splicing rate β also do not yield

reliable results. In preliminary data from bulk RNA-seq involving

metabolic labeling, we found a huge dynamic range for the β-

estimates, spanning many orders of magnitude. Since there is no

ground truth data, it is difficult to estimate the reliability of such

data but due to the low data coverage, we are careful to trust such

estimates. While our model might be useful for future experimental

data with reduced noise levels, we now incorporate additional sim-

plifications into the model in order to actually estimate a transcrip-

tion rate α Φð Þ and a degradation rate γ Φð Þ from currently available

experimental data.

Since we introduce simplifications to our model in the next sec-

tion, we from now on refer to the approximated rate parameters in

Equations (23), (25) presented in this section as the estimates of the

full model. The approximated rate parameters from the next section

are then be referred to as the estimates of the simplified model.

Rate estimation for a simplified model
The splicing of transcripts (typically minutes) acts on a different

time scale than the degradation (typically hours; Alpert et al, 2017).

We therefore assume that γ Φð Þ≪ β Φð Þ and can also conclude
e�tβ Φð Þ
β Φð Þ ≪ e�tγ Φð Þ

γ Φð Þ . The approximation e�tβ Φð Þ ≪ e�tγ Φð Þ introduces a larger

error than the previous two simplifications but we find it reasonable

in our setting as it severely simplifies the solution for ~mu Φ; tð Þ.
Incorporating these simplifications, we obtain:

p̌u Φ; tð Þ ¼ p Φ�ωtð Þ � e�tβ Φð Þ;
m̌u Φ; tð Þ ¼ m Φ�ωtð Þ þ p Φ�ωtð Þð Þ � e�tγ Φð Þ;

p̌l Φ; tð Þ ¼ α Φð Þ
β Φð Þ � 1�e�tβ Φð Þ

� 	
;

m̌l Φ; tð Þ ¼ α Φð Þ
γ Φð Þ � 1�e�tγ Φð Þ

� 	
:

8>>>>>>>><>>>>>>>>:
(26)

We note that the solutions concerning the mature RNAs are very

similar to the solutions of the precursors, with the splicing rate β Φð Þ
and the degradation rate γ Φð Þ interchanged. This is due to the fact

that with our basic simplification that splicing is much faster than

degradation, we are close to removing precursors from our system

of equations and considering the system

dmu
~Φ tð Þ; t� �
dt

¼ �γ ~Φ tð Þ� �
mu

~Φ tð Þ; t� �
;

dml
~Φ tð Þ; t� �
dt

¼ α ~Φ tð Þ� ��γ ~Φ tð Þ� �
ml

~Φ tð Þ; t� �
:

8>><>>: (27)

Since we find in our experimental data that the fraction of reads

associated with precursors is on average less than 2% (Appendix

Fig S4B), we do drop the precursors from the calculation of ~mu Φ; tð Þ
and obtain the final approximations

mu Φ; tð Þ ¼ m Φ�ωtð Þ � e�tγ Φð Þ;

ml Φ; tð Þ ¼ α Φð Þ
γ Φð Þ � 1�e�tγ Φð Þ

� 	
:

8<: (28)

We remark that starting from the simplified model (27) without

precursors altogether leads to the exact same approximated

solutions now mentioned and is a convenient verification for the

validity of our complex solution (15) and the subsequent simplifica-

tion steps. The approximations (28) can be solved for α Φð Þ and

γ Φð Þ:

γ Φð Þ ¼ � 1

t
log

mu Φ; tð Þ
m Φ�ωtð Þ

� �
;

α Φð Þ ¼ � 1

t
� m Φ�ωtð Þ �ml Φ; tð Þ
m Φ�ωtð Þ�mu Φ; tð Þ � log

mu Φ; tð Þ
m Φ�ωtð Þ

� �
:

8>>><>>>: (29)

We have so far always done approximations on the side of the

RNA concentration levels and utilized the true parameters α Φð Þ and
γ Φð Þ. However, we do not know mu or ml but we have observations

for mu and ml and want to take advantage of these values. Hence,

we utilize the structure of (29) and define approximations bα Φð Þ,bγ Φð Þ:

bγ Φð Þ ¼ � 1

t
log

mu Φ; tð Þ
m Φ�ωtð Þ

� �
;

bα Φð Þ ¼ � 1

t
� m Φ�ωtð Þ �ml Φ; tð Þ
m Φ�ωtð Þ�mu Φ; tð Þ � log

mu Φ; tð Þ
m Φ�ωtð Þ

� �
:

8>>><>>>: (30)

The approximations in (30) are the formulas implemented to

obtain the results from the main text.

In order to get predictions from the calculated parameters, we

utilize the exact solution formula to the simplified model (27) where

precursors are removed. This leads us to the following prediction

formulas:

bmu Φ; tð Þ ¼ m Φ�ωtð Þ � e�1
ω

R Φ

Φ�ωt
γ̂ φð Þdφ

;

bml Φ; tð Þ ¼ 1

ω

Z Φ

Φ�ωt
bα φð Þ � e�1

ω

R Φ

φ
γ̂ φð Þdφ

� �
dφ:

8><>: (31)

We will later compare the differences between the observation

mu and the prediction bmu, as well as between ml and bml and

between their sums m ¼ mu þml and bm≔ bmu þ bml.

Simulating synthetic data
In experimental data the task is typically to calculate rate parame-

ters from observed gene expression time courses. While the previ-

ously derived formulas enable us to calculate estimates for these

rates, one drawback is that the ground truth is unknown. We there-

fore, as a proof-of-concept, show that given a ground truth for α Φð Þ,
β Φð Þ, and γ Φð Þ, which generate certain pu, mu, pl, ml, p, and m with

the help of the formulas (15), we get reasonable rate parameters

with our formulas for the full model from Equations (23), (25) and

for the simplified model from Equation (30).

One issue in the formulas (17) is that we still need to choose ini-

tial values p Φ0ð Þ and m Φ0ð Þ. This could for example be done via the

steady-state solutions p 0ð Þ ¼ α 0ð Þ
β 0ð Þ and m 0ð Þ ¼ α 0ð Þ

γ 0ð Þ. However, after

generating a time course over one cell cycle, we often observe that

p 0ð Þ≠p 2πð Þ and m 0ð Þ≠m 2πð Þ. Therefore, we continuously generate

time courses for p Φð Þ and m Φð Þ over multiple periods (multiple cell

cycles). We notice that the simulation converges after very few

(fewer than 10) cycles such that p Φð Þ�p Φþ Tð Þj j< εp and

m Φð Þ�m Φþ Tð Þj j< εm. Hence, after our convergence criteria are

met, we obtain the corresponding time courses p Φð Þ and m Φð Þ to a

given input α Φð Þ, β Φð Þ, γ Φð Þ. During the simulation of pu, mu, we
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then choose initial values p Φ�ωtð Þ and m Φ�ωtð Þ (see system (15))

from these converged time courses making them close to the true

initial values and non-arbitrary.

As a proof-of-concept for our model, we choose arbitrary time

courses for α Φð Þ, β Φð Þ, γ Φð Þ. With the help of the solution formulas

from system (15), we then generate time courses for the different

mRNA types given the dynamic parameters. Afterward, we plug

these time courses into the formulas (23), (25) and then compare

the resulting estimate for the full model to the ground truth. One

example resulting from this strategy is depicted in Appendix Fig S5.

We observe that the estimates for the rate parameters from our

approximations (23), (25) of the full model recapitulate the ground

truth very well.

We now choose a specific shape (such as a simple sine curve)

that the time course m Φð Þ should attain. We can then get different

sets of parameters α Φð Þ and γ Φð Þ that generate this time course.

First, we set β Φð Þ ¼ β constant for the remainder of this section and

assume that the parameter is known. Then, we consider the follow-

ing three cases:

• Case I where γ is a constant and known parameter,

• Case II where α is a constant and known parameter,

• Case III where γ is a non-constant but known parameter.

Case I: We know from (16)

m0 Φð Þ ¼ 1

ω
βp Φð Þ� 1

ω
γm Φð Þ , p Φð Þ ¼ γ

β
m Φð Þ þ ω

1

β
m0 Φð Þ:

(32)

We also have in (16)

p0 Φð Þ ¼ 1

ω
α Φð Þ� 1

ω
βp Φð Þ

, α Φð Þ ¼ ωp0 Φð Þ þ βp Φð Þ
) α Φð Þ ¼ γm Φð Þ þ ω 1þ γ

β

� �
m0 Φð Þ þ ω2 1

β
m00 Φð Þ:

(33)

Hence, choosing this alpha will generate the desired time course

m Φð Þ.
Case II: When α and β are constant, we can find a simple solution

for p Φð Þ from (16):

p0 Φð Þ ¼ 1

ω
α� 1

ω
γp Φð Þ ) p Φð Þ ¼ α

β
þ p0�

α

β

� �
e�

1
ωβΦ: (34)

Coupled with the ODE for the total mature counts in (16), we

obtain:

m0 Φð Þ ¼ 1

ω
βp Φð Þ� 1

ω
γ Φð Þm Φð Þ

, γ Φð Þ ¼ β
p Φð Þ
m Φð Þ�ω

m0 Φð Þ
m Φð Þ

) γ Φð Þ ¼ α

m
þ β

p0
m

� α

m

� 	
e�

1
ωβΦ�ω

m0 Φð Þ
m Φð Þ :

(35)

For an appropriately chosen p0, the calculated γ Φð Þ will then

generate the desired m Φð Þ.
Case III: We can extend case I and instead of choosing constant γ,

we can choose any differentiable γ Φð Þ. Then from (16)

m0 Φð Þ ¼ 1

ω
βp Φð Þ� 1

ω
γ Φð Þm Φð Þ , p Φð Þ

¼ 1

β
γ Φð Þm Φð Þ þ ω

1

β
m0 Φð Þ: (36)

Analogously to previous considerations, we obtain

α Φð Þ ¼ γ Φð Þ þ ω
1

β
γ0 Φð Þ

� �
m Φð Þ þ ω 1þ 1

β
γ Φð Þ

� �
m0 Φð Þ

þ ω2 1

β
m00 Φð Þ: (37)

We now conclude that if we utilize the same m Φð Þ in all three of

these cases, we will have produced the same expression profile

m Φð Þ; which is generated by three different types of regulation. We

can show that our calculated parameter solutions from the previous

sections can recapitulate these differences when we only provide

the input pu, mu, pl, ml, p; and m (Appendix Fig S6A).

SLAM-Drop-seq data: Peak identification for gene expression and
kinetic rates
To investigate the variability of gene expression and kinetic rates

over the cell cycle, we implemented the peaking calling method to

identify peak patterns of the profiles over cell cycle time. Since we

smoothed the profiles by penalized splines, we can investigate their

derivative in order to calculate the locations of local extrema. We

defined the global fold change (fc) and the global difference (diff) of

a profile as:

fc globalð Þ ¼ max globalð Þ
min globalð Þ (38)

diff globalð Þ ¼ max globalð Þ�min globalð Þ (39)

If fc (global) of the profile was larger or equal to 1.5, it was con-

sidered as a peaking gene or peaking rate. For these peaking genes

and peaking rates, we then checked all the remaining local maxi-

mums except the global maximum. If the difference between the

local maximum and the larger value of the nearby local minimum

was at least 1/4 of the diff (global), the local maximum was identi-

fied as a peak. The total number of peaks was counted by summing

up all identified peaks in each profile. Genes with a single expres-

sion peak were identified as cycling genes.

Deviation calculation
To check how close the prediction (pred; gene expression that was

calculated from calculated transcription and degradation rates) to

the observation (obs; gene expression that was quantified from the

sequencing data) is. We defined the mean absolute deviation (dev)

from prediction to observation over all cells for each gene using the

following equation where m is the cell number:

dev ¼ 1

m
� ∑

m

i¼1

predi�obsvij j
obsvi

(40)

To identify well-predicted genes that showed close prediction to

observation, we checked the deviation values for all mature RNA

types (labeled, unlabeled, and the total) and took the maximum

value as the deviation for each gene.
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To check how much prediction changed when transcription or

degradation rate was set to a constant value, we calculated the devi-

ation (devc) from predictions that were calculated from a constant

transcription or a constant degradation rate (pred (constant rate)) to

the original predictions that were calculated from the dynamic

model (pred) using the following equation where m is the number

of cells across the cell cycle:

devc ¼ 1

m
� ∑

m

i¼1

pred constant rateð Þi�predi
�� ��

predi
(41)

The maximum of devc for all mature RNA types (labeled, unla-

beled and the total) was taken as the deviation for each gene.

Comparison of scEU-seq cell cycle–related data to
SLAM-Drop-seq data
The gene expression and kinetic rates of RPE1-FUCCI cells

obtained using the scEU-seq method are taken from the Supple-

mentary Table S1 (Dataset from: Battich et al, 2020). The cell cycle

procession time sorted gene expression (z-score normalized), tran-

scription rate and degradation rates (normalized to mean rate and

log transformed) data are directly taken from the Supplementary

Table S1 (Battich et al, 2020). To compare the kinetic rates and

gene expression profiles between SLAM-Drop-seq and scEU-seq,

we took the intersection of cell cycle variable genes between the

two datasets. The cell cycle time adjacent HEK293 cells from

SLAM-Drop-seq were grouped into 301 bins to match the number

of bins in the scEU-seq data. Gene expression values and the

kinetic rates were averaged in each bin for SLAM-Drop-seq data

and normalized using the same normalization methods used in

scEU-seq data. The 98 common cell cycle variable genes between

scEU-seq and SLAM-Drop-seq data were compared using heatmaps

(Fig EV2A–C).

Comparison of mRNA kinetic rates calculated from sci-fate data to
SLAM-Drop-seq data
The 4sU labeled dexamethasone (DEX) treated control (DEX 0 h)

A549 samples from sci-fate method (Cao et al, 2020) were used in

this study. The A549 cells were labeled with 4sU for 2 h followed by

IAA alkylation, which led to T->C transitions in the sequencing

reads. Similar to SLAM-Drop-seq, both new and old RNAs can be

identified in single cells simultaneously by identifying labeled RNAs

based on T->C transitions in the reads.

The demultiplexed sci-fate raw sequencing data of A549 cells

were obtained directly from the authors (Cao et al, 2020). To obtain

gene expression count matrices from the sequencing reads, the

open-source sci-fate computational pipeline (https://github.com/

JunyueC/sci-fate_analysis) for generating full expression and new

expression gene counts were used. Same as the sci-fate methods,

the public ENCODE (ENCODE Project Consortium, 2004) A549 bulk

RNA-seq datasets (sample name: ENCFF542FVG, ENCFF538ZTA,

ENCFF214JEZ, ENCFF629LOL, ENCFF149CJD, ENCFF006WNO,

ENCFF828WTU, ENCFF380VGD) were used for SNP calling in gen-

erating gene expression matrix for new RNAs. In the end, gene

counts for every gene in every cell were obtained for both total and

new RNAs. We then grouped intronic and exonic reads and gener-

ated four RNA count matrices (i.e., labeled_mature, unlabeled_ma-

ture, labeled_precursor and unlbaled_precusor).

To sort the cells along the cell cycle, Reveilo was applied to the

total (i.e., the sum of new and old) RNA count data of A549 cells.

Prior to the cell cycle sorting, Seurat (Macosko et al, 2015) was used

to cluster the cells and a sub cluster of cells that were not repre-

sented by any cell cycle marker genes were removed from the cell

population. The remaining cells were ordered and assigned with cell

cycle pseudo times using Revelio.

The classified gene expression count matrices (i.e., labeled_ma-

ture, unlabeled_mature, labeled_precursor and unlbaled_precusor)

and the obtained cell cycle pseudo times were used to calculate tran-

scription rates and degradation rates using Eskrate. Due to the

sparseness of precursor counts in single cells, we also applied the

simplified kinetic model to calculate the transcription and degrada-

tion rates. The calculated kinetic rates and the observed mRNA

expression levels in A549 cells were then compared to the SLAM-

Drop-seq data for the 140 shared cell cycle variable genes. To com-

pare them gene-by-gene using heatmaps, the adjacent HEK293 cells

were grouped to have equal number of cells as the sci-fate data

along the cell cycle (Fig EV2D–F). RNA expression levels and kinetic

rates were normalized as data shown in Fig EV2A–D.

Mean RNA half-lives calculation
RNA half-lives were determined by RNA decay rates. To calculate

the mean RNA half-lives, we averaged the calculated time-

dependent RNA degradation rates over cells for each gene and then

calculated the mean RNA half-lives t1=2 from the mean degradation

rates (γ) with the following equation:

t1=2 ¼ ln 2ð Þ
γ

(42)

Downsampling analysis to identify valid genes for rate estimation
Dropout event is one of the biggest challenges in scRNA-seq data

analysis as it leads to a large proportion of zeros in the gene expres-

sion matrix. The cell cycle time-dependent transcription and degra-

dation rates are dependent on the temporal profiles of labeled,

unlabeled, and total mature RNAs (Equation (25) in Section 2.7.10).

Thus, we need to consider the dropout rates of all three types of

RNAs along the cell cycle progression time. Since scRNA-seq data

are noisy, the normalized gene expression data were smoothed

before plugging them into the simplified analytical solutions to cal-

culate the kinetic rates. To know which genes are valid for the rate

estimation given the dropout rates, we need to check if the

smoothed profiles are valid given the dropout rates. Since the drop-

out rate of the labeled mature RNAs are the highest, we down-

sampled the total mature RNA gene expression matrix of a list of

selected genes to higher dropout rates that can represent the drop-

out rates of labeled mature RNAs. The selected genes composed

both positive controls genes (i.e., known cell cycle marker genes,

Whitfield et al, 2002) and negative control genes (i.e., known house-

keeping genes for HEK293 cells, Hounkpe et al, 2021). They were

down sampled to a series of fractions (i.e., 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1) using ‘DropletUtils’ (Griffiths et al, 2018; Lun

et al, 2019). The downsampling was iterated 100 times for every

gene at each downsampling fraction. Afterward, downsampled gene

expression data was normalized and smoothed. Based on the fold

changes in the smoothed profiles along the cell cycle, these genes

were classified as marker genes if at least 95% of the iterative
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profiles showed a minimum fold change of 1.5. Otherwise, they

were classified as housekeeping genes.

We binned genes to different groups based on their original fold

changes (i.e., 0.5, 0.6, 0.7, 0.8, 0.9 and 1) in gene expression of the

total mature RNAs. We counted the number of true positives, true

negatives, false positives, and false negatives following the rules

that shown in the following table:

Original gene expression
profiles

Marker Housekeeping

Downsampled gene
expression profiles

Marker True
Positive
(TP)

False Positive
(FP)

Housekeeping False
Negative
(FN)

True Negative
(TN)

True Positive Rate TPRð Þ ¼ TP

TP þ FNð Þ (43)

The confusion matrices were generated for marker genes in dif-

ferent groups based on their minimal fold changes. The true-positive

rates (Equation 43) were calculated and plotted against the dropout

rate cutoffs (Appendix Fig S7D). Genes were expected to be valid for

rate estimation if it had at least 95% true positives given its dropout

rates.

Data availability

Single cell RNA sequencing: Gene Expression Omnibus GSE197667

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197667).

Visualization of cycling gene expression and kinetic rates: MDC

(https://shiny.mdc-berlin.de/slam_drop_seq/). Data processing

code: GitHub (https://github.com/rajewsky-lab/SLAM-Drop-seq).

Eskrate R package: GitHub (https://github.com/rajewsky-lab/

Eskrate).

Expanded View for this article is available online.
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Figure EV1. Asynchronous cells are sorted to a continuous cell cycle time using gene expression of single cells.

A The two-dimensional representation of the cells after dimensional reduction using Revelio (also see Fig 2A). Cells are pooled from batch 1 (i.e., 0, 30 and 60 min 4sU
samples). Colors correspond to the cell cycle phase identities assigned using known cell cycle marker genes.

B Cells from different 4sU labeling times are randomly distributed within the cell clouds on the DC plot.
C The number of mean molecules per bin gradually increases along the cell cycle progression. Neighboring cells were grouped into 30 bins and the mean number of

UMIs was used for the bar plots. The cells are the same ones as shown in (A) and (B).
D Representative gene expression profiles along the cell cycle (G1/S markers: UNG, PCNA; G2/M markers: CDK1, TOP2A, PKL1; House-keeping gene: HPRT1). The cells are

the same ones as shown in (D). Gene expression levels were normalized by dividing the raw counts by the total RNA contents per cell and then scaled with 2 × 104.

▸Figure EV2. Time-dependent RNA expression, synthesis and degradation rates comparison between SLAM-Drop-seq and scEU-seq or sci-fate.

A Heatmaps of normalized z-score for observed total mature RNA expression (obs. exp.) for 98 cell cycle variable genes shared in both scEU-seq and SLAM-Drop-seq
datasets. The scEU-seq gene expression values of RPE1-FUCCI cells are taken from sci-fate paper Supplementary Table S1 (Battich et al, 2020). Adjacent SLAM-Drop-
seq cells were grouped to match the 301 bins of the scEU-seq data. Genes on the rows are ordered based on the positions of the maximum values of mean
expression levels of the two datasets along the cell cycle. Binned cells (301) on the columns are ordered based on the assigned cell cycle pseudotimes.

B Heatmap representations of the transcription rates of genes shown in (A). scEU-seq transcription rates are taken from Supplementary Table 1 (Battich et al, 2020).
The SLAM-Drop-seq transcription rates were normalized to the mean and log transformed as the scEU-seq data. Genes and cells are ordered in the same way as in
(A).

C The normalized degradation rates are shown for the same genes and cells as shown in (A) and (B). scEU-seq degradation rates are taken from Supplementary Table
S1 (Battich et al, 2020). The SLAM-Drop-seq degradation rates were normalized to the mean and log transformed.

D Heatmaps of normalized z-score for observed total mature RNA expression profiles for 140 overlapping cell cycle variable genes shared in both sci-fate and SLAM-
Drop-seq datasets. Raw sci-fate sequencing data of A549 cells (Cao et al, 2020) were processed by following the sci-fate method (see details in Materials and
Methods). Genes on the rows are ordered based on the maximum values of the mean across both data sets. Expression values for adjacent cells along the cell cycle
are averaged to have the same number of columns between the two datasets.

E Heatmap representations of normalized transcription rates (normalized to the mean and then log transformed) of genes shown in (D). Genes and cells are in the
same orders as in D.

F Heatmap representations of normalized degradation rates (normalized to the mean and then log transformed) of genes shown in (D). Genes and cells are in the same
orders as in (D).
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Appendix Figure S1. Fixation and IAA-alkylation of 4sU-labeled cells lead to a specific and time-

dependent accumulation of T->C conversions. 

(A) RNA blot showing efficiencies of 4sU-labeled RNA alkylation by IAA in different buffers. Upper 

panel: scheme of ‘biotinylation blocking assay’, which detects the efficiency of 4sU incorporation and 

IAA-alkylation. Briefly, the alkylation reagent MTS-biotin-XX is incubated with 4sU containing RNA 

which was or wasn’t previously exposed to IAA. If IAA alkylation occurred efficiently, MTS-biotin-

XX cannot form covalent bonds with free thiol groups on the RNA. Lower panel: after 4sU incubation 

and fixation, cells were resuspended in the indicated solution (methanol, DMSO, PBS and with/without 

IAA), RNA was extracted and a biotinylation blocking assay performed (see upper scheme). Ethidium 

bromide staining for loading control and RNA gel for RNA quality checking. Note how in methanol 

the alkylation is efficient and the RNA is not degraded (low molecular weight RNAs still visible) (B) 

4sU-labeled RNAs are efficiently alkylated by IAA following the SLAM-Drop-seq protocol. Dot blot 

representation of biotinylation blocking assay of HEK293 following the SLAM-Drop-seq protocol with 

different times of 4sU incubation. The decrease of biotin signal intensity for IAA incubated samples 

represents an efficient alkylation of IAA of 4sU labeled RNA. Staining of total RNA blotted with 

methylene blue as a loading control.  



3 

 

Appendix Figure S2. The sequencing statistics of SLAM-Drop-seq data. 

(A) Number of cells detected in each sequencing library. Cells expressing less than 200 genes were 

excluded from the data. (B) The distribution of the sequencing depths in each sample is shown by the 

number of sequenced reads per cell. (C) The distribution of the number of UMIs (transcripts) detected 

per cell in each sample. (D) The distribution of the number of genes detected per cell in each sample. 
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 Appendix Figure S3. Identify newly synthesized molecules by merging reads from the same UMI 

and applying a Bayesian model. 

(A) Filtering for SNPs and sequencing errors lower experimental background noise. (B) Length 

distributions of the sequenced molecules after merging reads. Data are from the 15 minutes 4sU labeled 

samples. Mean lengths are indicated by dashed lines. (C) Distributions of the number of T->C 

conversions per molecule of all unspliced molecules in 24 hours 4sU labeled samples resemble the 

Poisson distribution. Bar plots show the number of T->C conversions per molecule in molecules with a 

certain number of Ts. The red lines indicate the density plot of Poisson distribution with parameter λ (λ 

= 4sU incorporation rate multiplying the number of Ts). The mean T->C conversion rate calculated 

from 24 hours 4sU labeled samples was taken as the proxy of the 4sU incorporation rate (see Methods). 

(D) The distribution of posterior probability for merged molecules to be newly synthesized in no-4sU 

samples and 15 minutes 4sU labeled samples. 
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Appendix Figure S4. Splice status for each transcript is reliably identified by merging reads from 

the same UMI. 

(A) A schematic illustration of the logic to assign splice status to the sequenced reads considering the 

UMI information. The drawing on top illustrates the gene annotation, with grey bars representing exons, 

linked by introns. The sketches under it show the reads identified by sequencing, assigned to different 

UMIs. The molecule is defined as unspliced if there is at least one read from it aligned to the intronic 

region. The molecule is defined as spliced if all reads from it map to the exonic regions. (B) The 

fractions of precursor (i.e., unspliced) molecules of all SLAM-Drop-seq samples are constantly low (< 

2%). The fraction of precursors per cell was calculated by dividing the number of precursor molecules 

(labeled) to the total number of molecules observed in each cell. 
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Appendix Figure S5. The calculated kinetic rates recapitulate the ground truths in synthetic data 

(A) Schematic representation of the expression changes of unlabeled precursor molecules over the 

experimental time. (B) Illustration of the simulated gene expression profiles of one cycling gene over 



7 

the time duration of multiple cycles (cell cycle time: [0, 2pi]). The expression levels of the simulated 

cycling gene converge at the beginning and the end of the cell cycle. (C) Expression profiles of four 

different RNA types of synthetic data with given kinetic rates and total amount of RNAs (see Methods). 

Colors correspond to 4sU labeling times. Data for different 4sU labeling times were simulated for the 

same kinetic rates and total RNAs. (D) The calculated transcription and degradation rates for the 

simulated genes shown in (C) recapitulate the ground truths for both the full model and the simplified 

model. 
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Appendix Figure S6. The analytical solutions to the kinetic model are capable of identifying 

different modes of kinetic rates. 

(A) The calculated kinetic rates recapitulate the ground truths in simulated data when the simulated 

genes are synthesized under different kinetic regulation modes (i.e., dynamic model, constant 

transcription and constant degradation). Leftmost and middle panels: gene expression profiles of 

representative simulated genes along the cell cycle. The ground truths of total mature RNA levels in the 

simulated genes are the same which are resulted from different kinetic rates. Rightmost panel: The 

calculated transcription and degradation rates recapitulate the ground truths in both full and the 

simplified models. (B) Prediction changes linearly upon transcription change in simulation data. The 
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plot shows the changes of the predicted gene expression (i.e., prediction) upon transcription change in 

simulated data. Prediction changes linearly upon transcription change in simulation data. (C) The 

distribution of prediction changes against degradation rate changes in simulation data. Prediction 

change is almost linearly correlated to degradation change when the fold change of degradation is small 

(e.g., 0.8-1.2). 
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Appendix Figure S7. Downsampling analysis for identification of thresholds for dropout rates. 

(A) Distribution of dropout rates of labeled and unlabeled RNAs. Data are from the 60 minutes 4sU 

labeled cells. Number of genes: 20,981. (B) Distributions of fold changes of gene expression (i.e., ratio 

between maximum and minimum values of gene expression profile along the cell cycle) against dropout 

rates of the total mature RNAs (15 minutes 4sU labeled samples). Colors indicate the selected well-

known cell cycle marker genes and housekeeping genes. (C) Higher dropout rates are obtained by 

downsampling for genes shown in (B). (D) Distributions of true positive rates against dropout rates. 

Genes were defined as true positives if the well-known cycling genes (i.e., cell cycle marker genes) 

kept the classification as cycling genes after down-sampling. False negatives were defined for cases 

when house-keeping genes were identified as house-keeping genes after downsampling (see Methods). 

Genes were binned into different groups based on the minimal fold changes in expression as shown in 

the legend. True positive rate is the ratio of true positives to the sum of true positives and false negatives.  
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Appendix Figure S8. RNA half-life estimates correlate positively with published data.  

(A-B) Mean half-lives calculated in our study are positively correlated to half-lives reported in 

published data (Murakawa et al., 2015; Schofield et al., 2018). Only the common genes between the 

well-predicted genes in our data and the published data are shown (n = 230). The mean half-life in our 

data was calculated from mean degradation rates over all cells for each gene (see Methods). 
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Appendix Figure S9. Kinetic rates of cycling genes are gene specific. 

(A) Distributions of the time durations (lags) between the peaks (i.e., the maximums) of transcription 

and degradation rates. Shown are the 337 cycling genes that are identified as regulated by both dynamic 

transcription and dynamic degradation rates. (B) Example profiles of genes that show similar expression 

but different kinetic rates. Fold change (FC) is calculated by dividing the maximum value to the 

minimum value of the profile along the cell cycle. 
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