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Estimation of ΔΔG of binding 

The	 antibody	 binding	 data	 (AB-Bind)	 dataset	 (Sirin et al., 2016)	 contains	 1101	

mutants	with	experimentally	determined	changes	in	binding	free	energies	(ΔΔG)	across	32 

antibody-antigen	 complexes	and	 includes	wild-type	structures	 for	each	complex.	Using the 

AB-Bind dataset, the authors compared the performance of protein scoring potentials in predicting 

changes in binding free energies differences as a result of mutagenesis. They evaluated the 

methods bASA (Sirin et al., 2016; Hubbard and Thornton, 1993) dDFIRE (Yang and Zhou, 2008), 

DFIRE (Zhou and Zhou, 2002), FoldX (Buß et al., 2018), Rosetta (Kortemme et al., 2003), 

Discovery Studio (Spassov and Yan, 2013) and STATIUM (DeBartolo et al., 2012, 2014). Their 

detailed data allows us to compare the performance of Surfaces against experimental results of 

these 32 complexes and 1101 mutations relative to the above methods.  

We performed all the calculations on mutants modeled on the same crystal structures 

following the same methodology as Sirin et al. employing as marked either FoldX or Rosetta for 

the most direct comparison with the results presented (Sirin et al., 2016). Surface’s CF scoring for 

the full binding interface was calculated by summing all individual interaction contributions from 

the per-residue outputs. 

The CF values generated by Surfaces are based on a pseudo-physical model and need to be 

rescaled to be compared to the experimental results in kcal/mol. In order to classify the results into 



the three tiers of mutations used for the ROC curve evaluations we performed a to a linear 

regression to the experimental values Surfaces results without any loss of generalization, as a linear 

transformation does not affect the relative ranking of results. 

The statistical metrics originally employed to compare results across methods were the 

Pearson’s correlation coefficient (Pearson’s R) and the area under the ROC curve (AUC). We 

applied these same metrics to evaluate Surfaces’ results, presented in Figure S1. In Figure S1A, 

we depict the outcomes obtained by the various protein scoring potential methods aforementioned, 

based on Sarin et al. In Figure S1B we plot Surfaces results for the same dataset. These predictions 

produced different results for mutant structures generated via FoldX and Rosetta. For Pearson’s R 

and AUC for different confidence levels ([ΔΔG] > 0, [ΔΔG] > 0.5, and [ΔΔG] > 1), Surfaces 

(scoring FoldX-generated mutants) outperforms bASA, dDFIRE, and DFIRE. Moreover, Surfaces' 

results exhibit a modestly comparable accuracy to the top-performing method for this specific set 

of mutant structures, FoldX. In comparison to Rosetta, Surfaces (scoring Rosetta-generated 

mutants) achieves slightly lower Pearson’s R but superior AUC across all scenarios. Among all 

the methods, only STATIUM doesn't require input structures of the mutated complexes, and 

demonstrates nearly equivalent performance to Surfaces (scoring FoldX-generated mutants), with 

matching Pearson’s R and subtle variations in AUC. Due to the proprietary nature of Discovery 

Studio, a comprehensive comparison between Discovery Studio and Surfaces, both scoring 

Discovery Studio-generated mutants, isn't feasible, hindering the generation of mutants for 

assessment. 

 



 
Fig S1. Comparative evaluation of different binding affinity prediction methods applied to the AB-
Bind dataset. (A) From Sarin et al. (Sirin et al., 2016) we have the quantitative correlations (Pearson’s 
correlation coefficient, Pearson’s R) and the area under the ROC curve (AUC) presented for the entire 
dataset in blue, medium confidence subset (|ΔΔG| > 0.5 kcal/mol) in gray, and high confidence subset 
(|ΔΔG| > 1 kcal/mol) in red. Results are from predictions performed using the scoring functions bASA, 
dDFIRE, DFIRE and FoldX (using mutants generated by FoldX), Rosetta (with mutants generated by 
Rosetta), Discovery Studio (using mutants generated by Discovery Studio) and STATIUM; (B) Surfaces 
results for the same dataset with quantitative correlations (Pearson’s correlation coefficient, Pearson’s R) 



and the area under the ROC curve (AUC), with binding predictions performed to mutant structures 
generated using FoldX and Rosetta. 

 

The second method validation was based on the work by Sergeeva et al. (Sergeeva et al., 

2023), that compares binding prediction results using free-energy pertubations (FEP) against a 

broad range of different methods, specifically methods based on machine-learning: Mutabind2 

(Zhang et al., 2020), mCSM-PPI (Rodrigues et al., 2019), SAAMBE-3D (Pahari et al., 2020); 

based on statistical potentials: BeAtMusic (Dehouck et al., 2013); and force field related scoring 

functions: FoldX (Schymkowitz et al., 2005), Rosetta flex ddG (Barlow et al., 2018)Click or tap 

here to enter text.; and molecular mechanics: MM/PBSA and MM/GBSA (Singh and Warshel, 

2010; Genheden and Ryde, 2015). The authors compare the performance of these methods on a 

set of SARS-CoV-2 Spike mutations for which they have experimentally determined binding 

affinity to the receptor ACE2 using surface plasmon resonance (Pattnaik, 2005). Their data allows 

us to compare the performance of Surfaces to that of the various methods against experimental 

results for the evaluation of this particular interaction. 

To do so, we performed all the calculations on mutants modeled to the same crystal 

structure of ACE2/RBD (PDB 6M0J) (Lan et al., 2020), following the same methodology used by 

Sergeeva et al. (Sergeeva et al., 2023). In order to do the RMSE calculation, as well as to follow 

particular numerical thresholds used for the analysis of the data, we also produced Surfaces results 

subjected to a linear regression to the experimental values. 

The statistical metrics originally used to compare the results using the different methods 

were the Pearson’s correlation coefficient (Pearson’s R), root mean square error (RMSE) and 

Pearson’s phi for stabilizing mutations, performing a binary classification of the data, considering 

as stabilizing the mutations with ΔΔG ≤ -0.4 (Pearson’s Φ (stabilizing ≤ -0.4)), a threshold defined 

by Sergeeva et al. based on the experimental accuracy (Sergeeva et al., 2023). We utilized the 

same statistical metrics to Surface results. The results are shown in Table S1. In Figure S1A we 

plot the experimental vs. calculated ΔΔG values for all the methods presented by Sergeeva et al. 

and in Figure S1B for Surfaces. According to all metrics, Surfaces’ performance is equivalent to 

that of FEP, with a superior Pearson’s R to all other methods at a fraction of the computational 

cost. 

It is worth noting that Surfaces provides a simplified estimation of changes in enthalpy 

differences (DDH), not of the free energy. In the past we have utilized our ENCoM normal mode 



analysis method to estimate DDG of mutations based solely on vibrational entropy differences 

(Frappier and R. J. Najmanovich, 2014; Frappier and R. Najmanovich, 2014). Such vibrational 

entropy differences, as calculated for a large number of Spike mutants (Teruel et al., 2021), can 

be performed in a straightforward manner with NRGTEN package (Mailhot and Najmanovich, 

2021) and combined with Surfaces DDH predictions.  

According to the different metrics used to compare predictive performance, FEP 

calculations based on a 100ns Molecular Dynamics (MD) trajectories are shown to represent a 

good alternative (Table S1). As noted by the authors  (Sergeeva et al., 2023), being MD-based, 

FEP calculations require a complex computational infrastructure and are time consuming. 

Surfaces, presenting a close Pearson’s correlation, similar error compared to the experimental 

values, as well as a comparable classification performance, measured by the Pearson’s phi for the 

threshold value used for classifying a mutation as “stabilizing” (Table S1, Fig S1), required a very 

small fraction of the computational power to evaluate all mutants (185 CPU-seconds). The results 

from Table S1 and Fig S2 were generated with the goal to understand binding affinities of 

mutations and variants already selected during viral evolution. However, some of these same 

methods, with significant computational cost, would not be suitable for exploratory objectives 

while Surfaces can be used in high-throughput computational mutational scans. 

 
Table S1. Comparative measures of binding affinity of mutants of the SARS-CoV-2 RBD and the 
receptor ACE2. From (Sergeeva et al., 2023) we have the experimental values (ΔΔG experiment SPR), as 
well as the predictions using different binding affinity calculation methods (left table) and the analysis of 
Pearson’s correlation coefficient (Pearson’s R), root mean square error (RMSE) and Pearson’s phi for 
stabilizing mutations (Pearson’s Φ (stabilizing ≤ -0.4)) (lines in gray). Added to this table, ΔCF Surface 
results calculated for the same mutants, the linear regression of these values to the experimental reference 
(right table) and the statistical analysis for Surfaces results (light blue lines). Blue values correspond to 
stabilizing mutations with ΔΔG ≤ -0.4. Red values correspond to destabilizing mutations with ΔΔG ³ 0.4. 
This table is also available in word format for easy of reuse as a supplementary Table S1 file. 

 



 

 
Fig S2. Graphic representation of the calculated binding affinities for each of the mutants against the 
experimental values, as well as their tendency lines. Values of ΔΔG predictions using different binding 
affinity calculation methods compared to experimental data (Sergeeva et al., 2023). Linear regression of 
Surfaces’ ΔCF prediction values for binding affinity compared to experimental data. 
 

While the measure of full binding of mutants is often used to evaluate the impact of 

mutations on protein interactions, it does not always reflect the changes in interactions of the 

mutated residue alone, and may be associated with a disruption of adjacent regions in the interface. 

This point is also discussed when observing the non-cumulative effects seen for single mutants on 

full interfaces - the sum of the effects of individual mutations may not equal the effect of multiple 

mutations combined - as pointed out in the first evaluations of the Omicron Spike (Cameroni et 

al., 2022; Dejnirattisai et al., 2022). 

Due to these limitations, for exploratory objectives and rational design, per-residue 

energetic decomposition methods offer very important information for purposes of protein 

engineering. 

All data presented above, including individual predictions for each mutant are available in 

the Github repository for Surfaces: https://github.com/NRGlab/Surfaces. 

 



 

Per-residue decomposition 

The most common methods for analyzing protein-protein interactions and per-residue 

energetic decomposition are based on molecular dynamics (MD) simulations (Homeyer and 

Gohlke, 2012; Kollman et al., 2000; Serçinoglu and Ozbek, 2018). MD simulations can provide 

detailed information on the structural changes and energetics associated with protein-protein 

interactions, including the binding free energy and per-residue energetic contributions. However, 

MD simulations are computationally intensive and therefore can take a long time to complete 

(Ciccotti et al., 2022; Bopp et al., 2008), making them less suitable for large-scale studies such as 

in computational protein design. 

A widely used method for residue-based energy decomposition is gRINN (Serçinoglu and 

Ozbek, 2018), which uses MD trajectories to calculate binding energy means and distributions. 

From trajectories of the SARS-CoV-2 Spike Delta variant in complex with the receptor ACE2 

(Cheng et al., 2022), available at the COVID-19 Molecular Structure and Therapeutics Hub 

(MolSSI), we calculated interface interactions using gRINN and compare with Surfaces. We 

generated the results for gRINN considering only residues that were at a maximum distance of 

6.8Å from the interface, a filtering distance of 20Å between residues and interactions present in 

100% of the trajectory frames – these parameters reduced gRINN analysis to interactions in closer 

proximity, inter-chain interacting residues within the interface and filtered off transient 

interactions, to more closely match the interaction that are analyzed with Surfaces. Considering 

the net value of interactions for each residue, the Pearson’s correlation coefficient between the 

results of the two methods is 0.634 (p= 6.07E-90) (Fig S2). 

Whereas Surfaces does not detect transient interactions, it is possible to generate protein 

ensembles with the NRGTEN package (Mailhot and Najmanovich, 2021). Such an approach 

would make possible to generate a distribution of energies for each interaction. Furthermore, the 

possibility of calculating transition probabilities and occupancies for different configurations 

opens the possibility to apply statistical mechanics techniques. 



 
Fig S3. Per-residue result comparison between gRINN and Surfaces calculations. (A) Graphic 
representation of the calculated binding affinities for each residue of the complex using gRINN and 
Surfaces, as well as the tendency line of the correlation between the values. (B) Visual representation of 
the per-residue interactions according to gRINN results in a scale of dark blue (favorable) to white (neutral) 
generated with Surfaces visual output scripts. (C) Visual representation of the per-residue interactions 
according to Surfaces results in a scale of dark blue (favorable) to white (neutral) generated with Surfaces 
visual output scripts. 
 

Ligand binding evaluation 

The same rationale and scoring function can also be used to evaluate binding between a 

protein and a ligand, as well as the binding energy decomposition per residue of the protein and 

per atom of the ligand. Surfaces employs a scoring function first introduced by FlexAID 

(Gaudreault and Najmanovich, 2015), offering as default a matrix of pairwise interactions based 

on 40 SYBYL atom types that was optimized from the evaluation of ligand interactions of the 

PDBbind dataset (Wang et al., 2005). 

The concept of "frustration" in statistical physics refers to a system where a global energy 

minima cannot be reached by minimizing the energy of each interaction present in the system, 

some interactions remain at a state with higher energy than the lowest possible and are said to be 

frustrated. Biomolecules have been shown to harbor frustrated interactions (Bryngelson and 

Wolynes, 1987; Ferreiro et al., 2011, 2013). In that context, Surfaces can be used to identify 

potential frustrated interactions not only between interacting amino acids as shown above, but also 

between ligands and proteins. The quantification and visualization of the energetic contribution of 

individual interactions within a specific ligand-protein or protein-protein complex with Surfaces 

helps to understand and exploit frustration in drug design and protein engineering.  

As an example, we utilize Surfaces to visualize the interactions between ligand protein 

complexes from the BioLiP dataset (Yang et al., 2013). First, two distinct proteins (DMSP lyase 

and Sigma-54 dependent transcriptional regulator) bound to the ATP (Fig S4 A,B and Table S2 



A,B), and second, two similar molecules (ATP and GTP) bound to the same binding site (Sigma-

54 dependent transcriptional regulator) (Fig S4 B,C and Table S2 B,C). Surfaces identifies 

frustrated interactions between ATP and DMSP lyase residues (residue ASP 721, figure S4A) as 

well as different frustrated interactions for Sigma-54 dependent transcriptional regulator (residue 

ASP 241, figure S4B), illustrating probable different convergent evolutionary paths. The 

comparison between interactions of ATP and GTP with the same Sigma-54 dependent 

transcriptional regulator binding site reveals visible changes in some interactions, namely in the 

strength of the favorable interaction with residue ARG 357 and the existence of interactions with 

ASP 241 and ILE 199, motivated by the small difference between the molecules and also by the 

different conformations of the ligands.  

 

 

 
 
Fig S4. Illustration of the use of Surfaces for the assessment and visualization of protein-ligand 
interactions with the same molecule in different binding sites (A, B), and slightly different molecules 
in the same site (B, C). (A) ATP bound to DMSP lyase (PDB 7CM9), with the interacting residue ASP 
721 highlighted for its unfavorable interaction; (B) ATP bound to Sigma-54 dependent transcriptional 
regulator (PDB 7V3W), with the interacting residue ASP 241 highlighted for its unfavorable interaction 
and residue ARG 357 highlighted for its particularly favorable interaction; and (C) GTP bound to Sigma-
54 dependent transcriptional regulator (PDB 7V2B), with the interacting residue ARG 357 highlighted for 
its less favorable interaction, and residue ILE 199, highlighted for its new favorable interaction, both 
compared to those seen for ATP. 
  



Table S2. Numeric results for ligand interactions. Results calculated for the interactions of ATP and 
DMSP lyase (PDB 7CM9), ATP and Sigma-54 dependent transcriptional regulator (PDB 7V3W), and GTP 
and Sigma-54 dependent transcriptional regulator (PDB 7V2B). 

ATP - DMSP lyase 
 A Adenine Ribose Phosphate Tail   Net value 
HIS292A 0 0 -3183.872   -3183.872 
PRO540A -11.10447 0 0   -11.10447 
VAL563A 38.9475 0 0   38.9475 
LYS565A 906.6816 0 -2940.21424   -2033.5326 
HIS571A 0 0 -1353.11244   -1353.1124 
LYS572A 0 0 -6447.99838   -6447.9984 
THR573A 0 -425.785 -2904.5722   -3330.3572 
ASP574A 0 0 129.6379   129.6379 
VAL578A -241.1939 -563.6139 -811.88086   -1616.6887 
LEU580A -1854.1257 -1140.4004 0   -2994.5261 
GLN606A -2153.420838 0 0   -2153.4208 
GLU607A -1178.1372 0 0   -1178.1372 
MET608A -3524.905124 0 0   -3524.9051 
VAL609A -3403.856398 0 0   -3403.8564 
THR610A -14.1846 0 0   -14.1846 
GLU614A -35.568 -2522.6801 0   -2558.2481 
GLY635A 0 -383.9729 233.63   -150.3429 
ILE636A 0 -1783.9936 -480.6071   -2264.6007 
THR638A 0 0 -16.6158   -16.6158 
GLU706A 0 0 39.7496   39.7496 
ASN708A 0 -22.3005 -2468.9372   -2491.2377 
PRO709A -151.3509 -1226.3133 -209.57164   -1587.2358 
LEU720A -3359.720676 -209.135 0   -3568.8557 
ASP721A -16.5864 0 1317.3463   1300.7599 
LEU723A 0 0 -31.6931   -31.6931 
            
Net value -14998.52511 -8278.1947 -19128.71116   -42405.431  
      

ATP - Sigma-54 dependent transcriptional regulator 
 B Adenine Ribose Phosphate Tail   Net value 
SER176A 0 0 -2284.54998   -2284.55 
GLY177A 0 0 -3266.348   -3266.348 
THR178A 0 0 -1094.181   -1094.181 
GLY179A 0 0 -1572.6553   -1572.6553 
LYS180A 0 0 -6123.3452   -6123.3452 



GLU181A -2210.2904 -1543.7587 -886.5917   -4640.6408 
THR182A 0 -252.1202 0   -252.1202 
LYS185A -134.7645 0 0   -134.7645 
PHE198A -1828.7108 0 0   -1828.7108 
SER200A -22.4961 0 0   -22.4961 
ASN202A -57.2135 188.569 -1258.4065   -1127.051 
ARG204A 0 0 -620.7089   -620.7089 
ASN240A 0 0 -3271.67759   -3271.6776 
ASP241A 0 0 1311.3744   1311.3744 
SER280A 0 0 -688.7639   -688.7639 
ARG357A 0 -111.1453 -6417.4291   -6528.5744 
MET360A 0 -216.196 0   -216.196 
            

Net value -4253.4753 -1934.6512 -26173.28277   
  

-32361.409 
      

GTP - Sigma-54 dependent transcriptional regulator 
 C Guanine Ribose Phosphate Tail   Net value 
ILE147D 0 0 -92.6177   -92.6177 
GLY177D 0 0 -1975.93371   -1975.9337 
THR178D 0 0 -2916.6786   -2916.6786 
GLY179D 0 0 -3507.65178   -3507.6518 
LYS180D 0 0 -5289.05766   -5289.0577 
GLU181D -891.1528 -385.7914 -2512.3375   -3789.2817 
THR182D 0 -175.5332 -2030.1703   -2205.7035 
LYS185D 164.72743 -960.2644 0   -795.53697 
PHE198D -400.14345 0 0   -400.14345 
ILE199D -28.1288 0 0   -28.1288 
SER200D -2729.45 0 0   -2729.45 
ASN202D -188.5354 0 0   -188.5354 
ASN240D 0 0 -1640.4008   -1640.4008 
VAL356D 0 0 -931.40861   -931.40861 
ARG357D 0 0 -1504.27755   -1504.2776 
MET360D 0 -88.6728 -315.8504   -404.5232 
            

Net value -4072.68302 -1610.2618 -22716.38461   
  

-28399.329 
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