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Hyperparameters

Within the Gaussian approximation potential (GAP) framework, the total energy (Etot) of an atomic configuration
with positions Xn is expressed in terms of local energy contributions fitted by a Gaussian Process. We use here
two-body (2b) and many-body (mb) contributions, which are defined as sums of kernel functions (k(i, j))

Etot(Xn) =
∑
i,j

δ22b

Nsparse,2b∑
n=1

c2b,nk2b(rij , rn) +
∑
i,j

δ2mb

Nsparse,mb∑
n=1

cmb,nkmb(pi,pj). (1)

In this context, i and j are atom indices, rij ≡ |ri−rj | represents an interatomic distance between atom i and j within
a cutoff radius (rcut,2b) and pi is the smooth overlap of atomic position (SOAP) vector of atom i, which describes
its atomic environment within the cutoff sphere rcut,SOAP. A cutoff transition width r∆ defines a region in which the
neighborhood density of the SOAP representation is smoothly damped to zero. δ2b and δmb define weighting factors
of the different contributions and represent the standard deviations of the respective Gaussian Processes. c2b,n and
cmb,n are the fitting coefficients obtained by minimizing the loss function

L =

M∑
m

(yl − ỹl)
2

σ2
m

+R (2)

in the training, where yl and ỹl are the DFT calculated and predicted quantities (here energies or forces). M is the
training set size and R a regularization term weighted by σ2. These σ2 values (σ2

E for energies and σ2
F for forces)

represent the assumed variance of the errors and can be set globally for the entire training set, per configuration or
in case of fitting forces per atom. To accelerate the training procedure, only a set of Nsparse representative training
points for the 2-body and many-body terms are used, respectively. These points are selected uniformly for the 2-body
and based on the CUR algorithm for the many-body contributions .

In our iterative training scheme (see Fig. S5), we heuristically adjust σE over the iterations so that the potential is
more stronglz regularized during earlier iterations where the training set is far from complete. To this end, we start
with a value of 0.01 eV and adjust σE to

√
RMSE (for the validation set) if that value is smaller than 0.01 eV (upper

threshold) or larger than 0.001 eV (lower threshold). To illustrate this approach, the different validation set
√
RMSE

of the energies and σE are both plotted as a function of iterations in Fig. S1.
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FIG. S1: Energy regularization parameter (σE) and the square root RMSE of atomization energies per atom of the
validation set as a function of iterations. Dotted lines represent the upper and lower threshold of σE.

We also use different σF for each atom in the training set. These regularization parameters are adjusted to the
DFT calculated forces according to the heuristic formula

σF,i = σmin +
C

A
log(A× FDFT

norm +A× F
DFT

norm). (3)

Here, the idea is to incorporate both the DFT force norm of each atom (FDFT
norm) and the average force norm in each

configuration (F
DFT

norm) into the regularization parameter. The parameters σmin, C and A are additional hyperpa-
rameters, which are set to σmin = C =

√
σE and A = 0.01, while different values are used for dimer configurations

(σmin = C = 0.1). The force regularization parameters are plotted as a function of the force norms in Fig. S2. Note
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that the force MAE stated in the main text represent MAEs weighted by the individual σF:

ForceMAE ≡
∑

i wi|FDFT
i − FGAP

i |∑
i wi

, (4)

with wi =
1

σF,i
. In addition, we only incorporate forces of the surface atoms into the training evaluation (the CHO
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FIG. S2: Force regularization parameter (σF) as a function of the force norm on an atom (FDFT
norm ) and the average

force norm on a configuration (F
DFT

norm) .

molecule plus the upper layer of Rh) and mask the remaining Rh-atoms (three bottom layers). This helps to decrease
the force MAEs of carbon, oxygen and hydrogen as the surface slab is dominated by Rh-atoms (Rh : C + H+O =
36 : 1 + 1 + 1). Figure S3 indicates the surface and masked atoms.

Surface atoms

Masked atoms

FIG. S3: Illustration of surface and masked atoms during training.

To describe the short and medium range contributions in an atomic environment differently, we use a multi-SOAP
approach for the light species (C, H, O). This means that two SOAP representations with different length scale
parameters are applied to obtain a comprehensive description of the atoms that are directly involved in the reaction.
In contrast, the Rh-atoms are described by a single SOAP lengthscale. In the following, we will distinguish the
representations for the light elements by using the notation SOAP1 as well as SOAP2 and SOAPRh for the Rh-atoms.
We use a Gaussian kernel function to express the similarity between the 2-body contributions

k2b(rij , rn) = exp

(
−1

2

|rij − rn|2

θ2

)
(5)
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and a polynomial kernel

kmb(pi,pj) = (pi · pj)
ζ (6)

for the many-body contributions. Table S1 lists all relevant hyperparameters herein.

Hyperparameter 2-body SOAP1 SOAP2 SOAPRh

rcut [Å] 3.5 3 5 6
r∆ [Å] 0.5 0.5 0.8 1.0
δ [eV] 2 0.3 0.3 0.3
Nsparse 50 2000 2000 1000

θ [Å] 1.0 — — —

σat [Å] — 0.3 0.5 0.6
ζ — 4 4 4
b [eV] — 0 0 0
nmax — 9 9 9
lmax — 3 3 3

TABLE S1: Used hyperparameters.

To avoid unphysical atomic clashes in early training iterations (where the potential is not necessarily fully robust),
we add simple diatomic baseline potentials for all element combinations, as reported in [1]. The corresponding O−O
potential is plotted in Fig. S4 as an example. These baseline potentials account for the repulsive nature at small
interatomic distances and keep structures away from nonphysical configurations in dynamical simulations. If no
baseline potential is used, configurations with small distances have to be provided in the training set.
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FIG. S4: Example O−O baseline potential as a function of the interatomic distance from [1].

Iterative Training

We start with an initial training set of 50 configurations including 10 structures of the stoichiometry Rh36CHO
(namely the NEB trajectory in Fig. 2 main text) and 12 structures of stoichiometry Rh36 with an optimized lattice
constant of 3.85 Å. In addition, we add some configurations which are computational efficient to evaluate, namely
the four isolated atoms (Rh, C, O, H) and 24 dimer combinations of the three light species in gas-phase. With
this initial training set, we train a first GAP model (iteration 0). At this stage, geometry optimizations on biased
potential energy surfaces in ten randomly selected umbrellas were performed. The energies and forces of these 10
generated structures were recalculated with DFT and the corresponding configurations added to the training set. In
subsequent iterations, 2.5 ps of biased dynamics at 573K (umbrella sampling with k = 15) were carried out, again
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FIG. S5: Iterative training workflow for fitting GAP models. Our approach is explained in the main text of the SI.

in 10 randomly selected windows. From each of these trajectories, one configuration was selected by farthest point
sampling (FPS)[2] and added to the training set. After 12 iterations, we additionally perform NEB calculations and
further add these images (8 configurations between initial and final state) to the training set. Note, that we rejected
structures with force components higher than 15 eV/Å . The workflow is illustrated in Fig. S5. We stop our iterations
after 17 iterations and validate the GAP model by monitoring the energy and force errors over the different iterations
(see Fig. 3 main text) as well as by comparing NEB trajectories produced by the GAP model and DFT (see Fig. S6).
The final training set contains 292 configurations and the potentials were trained on DFT forces as well as atomization
energies (AE)

AE = Eslab −
Natoms∑

s

Eatom,s, (7)

where Eslab represents the potential energy of the surface slab and Eatom the energy of the isolated atom s.

gap fit command

gap_fit default_sigma={0.001222685832523628 0 0 0} energy_parameter_name=dft_energy

force_parameter_name=dft_forces force_mask_parameter_name=force_mask

do_copy_at_file=F sparse_separate_file=F gp_file=GAP.xml at_file=train_revPBE-TSsurf.xyz

core_param_file=glue_revPBE-TSsurf.xml core_ip_args={IP Glue}

gap={distance_Nb order=2 cutoff=3.5 delta=2.0 covariance_type=ard_se n_sparse=50

theta_uniform=1.0 sparse_method=uniform add_species=T :soap cutoff=3 atom_sigma=0.3

l_max=3 n_max=9 covariance_type=dot_product zeta=4 add_species=F n_sparse=2000

sparse_method=CUR_POINTS delta=0.3 n_species=4 Z=1 species_Z={{6 8 45 1}} :

soap cutoff=5 atom_sigma=0.5 l_max=3 n_max=9 covariance_type=dot_product zeta=4

add_species=F n_sparse=2000 sparse_method=CUR_POINTS cutoff_transition_width=0.8

delta=0.3 n_species=4 Z=1 species_Z={{6 8 45 1}} :soap cutoff=3 atom_sigma=0.3
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FIG. S6: Model validation by comparing NEB trajectories produced with the GAP model (GAP@GAP) and DFT
(DFT@DFT). In addition, the energies of the NEB images generated with the GAP model have been recalculated

with DFT (DFT@GAP) and vice versa (GAP@DFT).

l_max=3 n_max=9 covariance_type=dot_product zeta=4 add_species=F n_sparse=2000

sparse_method=CUR_POINTS delta=0.3 n_species=4 Z=6 species_Z={{6 8 45 1}} :

soap cutoff=5 atom_sigma=0.5 l_max=3 n_max=9 covariance_type=dot_product zeta=4

add_species=F n_sparse=2000 sparse_method=CUR_POINTS cutoff_transition_width=0.8

delta=0.3 n_species=4 Z=6 species_Z={{6 8 45 1}} :soap cutoff=3 atom_sigma=0.3

l_max=3 n_max=9 covariance_type=dot_product zeta=4 add_species=F n_sparse=2000

sparse_method=CUR_POINTS delta=0.3 n_species=4 Z=8 species_Z={{6 8 45 1}} :

soap cutoff=5 atom_sigma=0.5 l_max=3 n_max=9 covariance_type=dot_product zeta=4

add_species=F n_sparse=2000 sparse_method=CUR_POINTS cutoff_transition_width=0.8

delta=0.3 n_species=4 Z=8 species_Z={{6 8 45 1}} :soap cutoff=6 atom_sigma=0.6

l_max=3 n_max=9 covariance_type=dot_product zeta=4 add_species=F n_sparse=1000

sparse_method=CUR_POINTS cutoff_transition_width=1 delta=0.3 n_species=4 Z=45

species_Z={{6 8 45 1}}}

BEEF-vdW Model

The BEEF-vdW model was trained on a subset of the configurations used for the revPBE models, where energies
and forces where recomputed with the BEEF-vdW functional. Here, for technical reasons only the configurations
inculding the full surface adsorbate system (with composition Rh36CHO) where used. This is because isolated atoms
and dimer configurations are more challenging to converge with the plane-wave QE code. Since these configurations
are mainly included to provide robust prior information about interatomic interactions in early iterations, they can
be neglected when retraining on the full revPBE training set. For similar reasons, formation energies were used as
the fitting target, defined as:

Eform = Eslab −
Natoms∑

s

µs, (8)

with µH = 1
2EH2 , µO = EH2O − 2µH, µC = ECO − µO and µRh = 1

36ERh36 .

Identical hyperparameters as in the last iteration of the revPBE potential are used, merely adjusting σF according
to the BEEF-vdW forces.
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gap fit command

gap_fit default_sigma={0.001222685832523628 0 0 0} energy_parameter_name=E_form

force_parameter_name=dft_forces force_mask_parameter_name=force_mask

do_copy_at_file=F sparse_separate_file=F gp_file=GAP.xml

at_file=train_BEEF-vdW.xyz core_param_file=glue_BEEF-vdW.xml core_ip_args={IP Glue}

e0={H:0.0:C:0.0:O:0.0:Rh:0.0} gap={distance_Nb order=2 cutoff=3.5 delta=2.0

covariance_type=ard_se n_sparse=50 theta_uniform=1.0 sparse_method=uniform Z={{45 45 }}:

distance_Nb order=2 cutoff=3.5 delta=2.0 covariance_type=ard_se n_sparse=50

theta_uniform=1.0 sparse_method=uniform Z={{45 1 }} :distance_Nb order=2 cutoff=3.5

delta=2.0 covariance_type=ard_se n_sparse=50 theta_uniform=1.0 sparse_method=uniform

Z={{45 6 }} :distance_Nb order=2 cutoff=3.5 delta=2.0 covariance_type=ard_se

n_sparse=50 theta_uniform=1.0 sparse_method=uniform Z={{45 8 }} :distance_Nb order=2

cutoff=3.5 delta=2.0 covariance_type=ard_se n_sparse=50 theta_uniform=1.0

sparse_method=uniform Z={{1 6 }} :distance_Nb order=2 cutoff=3.5 delta=2.0

covariance_type=ard_se n_sparse=50 theta_uniform=1.0 sparse_method=uniform Z={{1 8 }}

:distance_Nb order=2 cutoff=3.5 delta=2.0 covariance_type=ard_se n_sparse=50

theta_uniform=1.0 sparse_method=uniform Z={{6 8 }} :soap cutoff=3 atom_sigma=0.3

l_max=3 n_max=9 covariance_type=dot_product zeta=4 add_species=F n_sparse=2000

sparse_method=CUR_POINTS delta=0.3 n_species=4 Z=1 species_Z={{6 8 45 1}} :soap

cutoff=5 atom_sigma=0.5 l_max=3 n_max=9 covariance_type=dot_product zeta=4

add_species=F n_sparse=2000 sparse_method=CUR_POINTS cutoff_transition_width=0.8

delta=0.3 n_species=4 Z=1 species_Z={{6 8 45 1}} :soap cutoff=3 atom_sigma=0.3

l_max=3 n_max=9 covariance_type=dot_product zeta=4 add_species=F n_sparse=2000

sparse_method=CUR_POINTS delta=0.3 n_species=4 Z=6 species_Z={{6 8 45 1}} :soap

cutoff=5 atom_sigma=0.5 l_max=3 n_max=9 covariance_type=dot_product zeta=4

add_species=F n_sparse=2000 sparse_method=CUR_POINTS

cutoff_transition_width=0.8 delta=0.3 n_species=4 Z=6 species_Z={{6 8 45 1}} :soap

cutoff=3 atom_sigma=0.3 l_max=3 n_max=9 covariance_type=dot_product zeta=4

add_species=F n_sparse=2000 sparse_method=CUR_POINTS delta=0.3 n_species=4 Z=8

species_Z={{6 8 45 1}} :soap cutoff=5 atom_sigma=0.5 l_max=3 n_max=9

covariance_type=dot_product zeta=4 add_species=F n_sparse=2000

sparse_method=CUR_POINTS cutoff_transition_width=0.8 delta=0.3 n_species=4 Z=8

species_Z={{6 8 45 1}} :soap cutoff=6 atom_sigma=0.6 l_max=3 n_max=9

covariance_type=dot_product zeta=4 add_species=F n_sparse=1000

sparse_method=CUR_POINTS cutoff_transition_width=1 delta=0.3 n_species=4 Z=45

species_Z={{6 8 45 1}}}

Initial State Transition State

175.5 170.9
210.8 232.5
451.8 420.9
453.4 500.7
596.6 553.6
647.6 1050.4
1187.0 1295.5
1200.5 2645.9
2937.3

TABLE S2: Vibrational frequencies of initial and transition states at the revPBE+vdWsurf level in cm−1.
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Initial State Transition State

151.4 94.30
201.5 220.0
255.4 264.8
349.1 389.7
496.3 550.2
662.1 1098.4
1180.5 1494.0
1276.0 2188.7
2927.5

TABLE S3: Vibrational frequencies of initial and transition states at the BEEF-vdW level in cm−1.

Code Functional ∆E@BEEF-vdW ∆E@revPBE+vdWsurf

FHI-aims revPBE+vdWsurf 0.24 0.14
FHI-aims revPBE 0.31 0.32
FHI-aims PBE 0.31 0.31
FHI-aims PBE+vdWsurf 0.31 0.31
FHI-aims PBE+TS 0.29 0.29
Quantum Espresso BEEF-vdW 0.33 0.34
Quantum Espresso PBE 0.29 0.30
Quantum Espresso revPBE 0.30 0.32

TABLE S4: Energy barriers (in eV) computed with different codes and functionals using the BEEF-vdW and
revPBE+vdWsurf initial and transition state geometries.
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FIG. S7: Estimation of CHO half-lives from unbiased MD simulations. Statistical errors are estimated via
bootstrapping.
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