1	Fluorine mass balance, including total fluorine, extractable organic
2	fluorine, oxidizable precursors and target PFAS, in pooled human
3	serum from the Tromsø population in 1986, 2007 and 2015

Lara Cioni^{1,2}, Merle Plassmann³, Jonathan P. Benskin³, Ana Carolina M. F. Coêlho², Therese
H. Nøst², Charlotta Rylander², Vladimir Nikiforov¹, Torkjel M. Sandanger^{1,2}, Dorte Herzke^{1,}
^{4*}

- 7 1. NILU, Fram Centre, Tromsø, Norway, NO-9296
- 8 2. UiT The Arctic University of Norway, Department of Community Medicine, Tromsø,
 9 Norway, NO-9037
- Stockholm University, Department of Environmental Science, Stockholm, Sweden, SE-106
 91
- 12 4. Norwegian Institute for public Health, Oslo, Norway, NO-0213
- 13 *Corresponding authors
- 14 Dorte Herzke NILU, Fram Centre, Tromsø, Norway, NO-9296
- 15 <u>*dhe@nilu.no</u>
- 16
- 17 Summary: 21 pages, 6 figures 10 tables
- 18
- 19

20 The following information is included:

Chemicals and consumables (Page S3); characteristics of Tromsø Study samples and pools 21 (Page S3-S4); quality control measures for TF, EOF, TOP assay and target PFAS (Page S4-22 S11); data evaluation equations (Page S11-S12); PFAS concentrations used for FMB 23 calculations (Page S13); TF and EOF concentrations in human blood from this study and from 24 the literature (Page S14); multiple linear regression coefficients estimates and 95% confidence 25 intervals for $\ln(TF)$, $\ln(EOF)$, $\ln(\sum 12 PFAS)$, % UEOF and TOP (Page S14); multiple linear 26 regression (including sex and sampling year interaction terms) coefficients estimates and 95% 27 28 confidence intervals for $\ln(\sum 12 \text{ PFAS})$ and % UEOF (Page S15); UEOF concentrations in human blood from this study and from the literature (Page S15); TF, EOF, TOP, $\sum 12$ PFAS and 29 UEOF concentrations in serum pools containing the same individuals in 1986, 2007 and 2015 30 (Page S16); UpSet plot showing the intersection of PFAA with increased concentrations after 31 32 oxidation (Page S17); individual target PFAS in pooled serum from 1986, 2007 and 2015 (Page S18); \sum_{12} PFAS concentrations in relationship with mean age of the individuals in the pools 33 (Page S19); individual target PFAS concentrations in men and women (Page S20). 34

35

36

- 37
- 38
- 39
- .
- 40
- 42

- 43
- 44

45 **1. Materials and methods**

46 **1.1.** Chemicals and consumables

Acetonitrile (ACN, LiChrosolv®), tert-butyl methyl ether (MTBE, Suprasolv®), fuming hydrochloric acid (HCl, p.a. 37%) and sodium hydroxide (NaOH, EMSURE®, \geq 99.0%) were obtained from Merck (Darmstadt, Germany). Sodium persulfate (Na₂S₂O₈, reagent grade, \geq 98%, lot #BCCC8760) and ammonium acetate (NH₄OAc, LiChropurTM) were obtained from Sigma-Aldrich (Steinheim, Germany). Ammonia (NH₃, solution 25%, AnalaR NORMAPUR) was purchased from VWR (Fontenay-sous-Bois, France). All native and isotopically labelled PFAS standards were obtained from Wellington Laboratories Inc. (Guelph, Ontario, Canada).

55 **1.2.** Serum samples and pooling strategy

1986 (n=167)					2007 (n=175)					2015 (n=130)				
Pool ID	n	Sex	Age mean (range)	Diabetes	Po ol ID	n	Sex	Age mean (range)	Diabetes	Pool ID	n	Sex	Age mean (range)	Diabetes
1	14	Women	36 (25-45)	Controls	1	14	Women	57 (46-66)	Controls	1	14	Women	65 (54-74)	Controls
2	12	Women	49 (46-57)	Controls	2	12	Women	70 (67-78)	Controls	2	12	Women	78 (75-86)	Controls
3	11	Women	41 (30-45)	Prospective cases	3	11	Women	62 (51-66)	Cases	3	11	Women	70 (59-74)	Cases
4	8	Women	49 (46-53)	Prospective cases	4	8	Women	70 (67-74)	Cases	4	8	Women	78 (75-82)	Cases
5	10	Men	34 (17-47)	Controls	5	10	Men	55 (38-68)	Controls	5	10	Men	63 (46-76)	Controls
6	10	Men	51 (48-55)	Controls	6	10	Men	72 (69-76)	Controls	6	10	Men	80 (77-84)	Controls
7	13	Men	44 (33-58)	Prospective cases	7	13	Men	65 (54-79)	Cases	7	13	Men	73 (62-87)	Cases
8	15	Women	31 (25-43)	Controls	8	15	Women	56 (46-64)	Controls	8	15	Women	63 (54-72)	Controls
9	15	Women	45 (43-47)	Controls	9	15	Women	67 (65-69)	Controls	9	15	Women	78 (74-82)	Controls
10	15	Women	52 (48-60)	Controls	10	15	Women	74 (70-81)	Controls	10	15	Women	70 (59-74)	Cases
11	15	Women	45 (43-48)	Prospective cases	11	15	Women	60 (51-64)	Cases	11	15	Women	78 (75-83)	Cases
12	15	Men	37 (17-49)	Controls	12	15	Women	67 (65-69)	Cases	12	15	Men	61 (46-73)	Controls
13	15	Men	55 (50-61)	Controls	13	15	Women	74 (70-81)	Cases	13	15	Men	79 (74-84)	Controls
14	15	Men	40 (25-48)	Prospective cases	14	15	Men	56 (38-66)	Controls	14	15	Men	81 (75-89)	Cases
15	15	Men	55 (49-60)	Prospective cases	15	15	Men	72 (68-76)	Controls				. /	
			. /		16	15	Men	62 (54-66)	Cases					
					17	15	Men	71 (67-76)	Cases					

64 **Table S1** – Characteristics of the Tromsø Study serum pools.

Pool ID: cells highlighted in green indicate pools with same individuals across 1986, 2007 and 2015 n = number of individuals

65

66 **1.3. TF quality control**

A 9-point calibration curve ranging from 2.5 to 2500 ng of NaF in water ($R^2>0.999$) was included at the beginning and end of each run. Quality control measures for each run included: (1) three sample boat blanks for limit of detection (LOD) calculation, (2) two sample boats spiked with 100 ng of PFOS standard, and (3) three measurements of a certified reference material (fluorine in clay, CRM 461). Blanks ranged between 18 and 21 ng F/mL (n=9) and LOD (average boat blanks + 3 times the standard deviation of the blanks) ranged between 23 and 25 ng F/mL. The recovery of the PFOS standard (120 ± 6 %, n=6) confirmed complete combustion and measurements of the certified reference material showed good accuracy and precision (recovery: 123 ± 9 %, n=9).

- 76
- 77

1.4. EOF quality control

For each extraction batch (14 serum samples), the quality control measures included: (1) three 78 extraction blanks, (2) three reference serum samples not spiked, (3) one reference serum sample 79 spiked with 239 ng of PFOS, (4) one reference serum sample spiked with 500 ng of NaF. The 80 reference serum was obtained from the Arctic Monitoring and Assessment Programme 81 82 (AMAP) Ring Test for Persistent Organic Pollutants [1]. Each extraction batch was run separately and included a calibration curve at the beginning and end of the run (2.5-1000 ng of 83 NaF in water, R²>0.999) and two sample boats spiked with 100 ng of PFOS standard. The 84 extraction blanks ranged from 5 to 7 ng F/mL (n=12) and the EOF LOD (average extraction 85 blanks + 3 times the standard deviation of the blanks) ranged from 6 to 9 ng F/mL. The analysis 86 of the reference serum samples spiked with PFOS confirmed good recovery and reproducibility 87 of the EOF analysis in human serum (recovery: 77 ± 14 %, n=8). The analysis of the controls 88 spiked with NaF confirmed the removal of fluoride upon extraction (NaF recoveries ranging 89 from 0 to 2 %, n=4). 90

- 91
- 92

1.5. TOP assay quality control

For each TOP assay batch (18 samples), a blank and an AMAP reference serum sample were included and processed as the samples. Blanks before and after oxidation showed low levels of PFAA (Table S2). LODs were calculated as the average concentration in the blanks plus 3 times the standard deviation of the blanks and in case of no detection in the blanks, LODs were calculated by multiplying the noise of the blanks by 3. LODs before and after oxidation were comparable for most compounds (Table S2). Measured PFAA concentrations before oxidation in the AMAP serum samples were within -/+ 20% of the reference values. Mean recoveries
before TOP assay ranged from 61 to 78 % and mean recoveries after TOP assay ranged from
55 to 65 %. Model precursors spiking oxidation experiments were performed as part of the
validation described in our method paper and showed complete conversion for all spiked
precursors and yields of PFAA ranging from 35-100% [2].

104

106	Table S2 - Average blank concentrations and LODs before and after TOP assay in ng/mL of
107	serum (n=3).

Compound	Before TOP a	assay	After TOP a	ssay
	Blank	LOD	Blank	LOD
	concentration		concentration	
PFBA	0.15	0.47	0.12	0.49
PFPeA	0.20	0.32	0.26	0.47
PFHxA	0.03	0.10	0.13	0.39
PFHpA	0.01	0.02	0.02	0.13
PFOA	0.05	0.10	0.08	0.18
PFNA	0.00	0.02	0.01	0.03
PFDA	0.00	0.02	0.03	0.10
PFUnDA	0.00	0.02	0.00	0.04
PFDoDA	0.00	0.02	0.00	0.04
PFTrDA	0.00	0.07	0.00	0.09
PFTeDA	0.00	0.13	0.00	0.13
PFBS	0.00	0.04	0.02	0.08
PFPeS	0.00	0.07	0.00	0.07
PFHxS	0.10	0.13	0.01	0.04
PFHpS	0.00	0.03	0.00	0.03
PFOS	0.09	0.16	0.06	0.14
PFNS	0.00	0.04	0.00	0.04
PFDS	0.00	0.05	0.00	0.05
	l		I	

108

Compound	Before TOP assay	After TOP assay
¹³ C-PFBA	74 ± 7	58 ± 10
¹³ C-PFPeA	78 ± 5	62 ± 5
¹³ C-PFHxA	75 ± 7	63 ± 4
¹³ C-PFHpA	70 ± 5	65 ± 4
¹³ C-PFOA	73 ± 6	62 ± 6
¹³ C-PFNA	71 ± 5	58 ± 5
¹³ C-PFDA	78 ± 5	55 ± 3
¹³ C-PFUnDA	61 ± 8	57 ± 5
¹³ C-PFDoDA	72 ± 6	61 ± 7
¹³ C-PFTeDA	75 ± 6	58 ± 7
¹³ C-PFHxS	74 ± 5	62 ± 6
¹³ C-PFOS	75 ± 3	61 ± 8

Table S3 – Recoveries in pooled serum samples before and after TOP assay (n=46).

112 **1.6.** Target PFAS quality control

Target PFAS analyses on the EOF extracts included also the EOF extraction blanks (n=9). No
PFAA were detected in the blanks and the LODs were calculated using the standard error of
the regression divided the slope of the calibration curve multiplied by 3. LODs ranged from
0.03 to 0.13 ng/mL (Table S4). Measured PFAA concentrations in the AMAP serum samples
use as quality control were within -/+ 20% of the reference values.

118 After the TOP assay the extracts were also analysed for C_2 and C_3 -PFAA using a Raptor Polar 119 X column. Trifluoroacetic acid (TFA) was analysed in a 5 minute isocratic run with 80 % 2mM 120 ammonium acetate in methanol and 20 % 2mM ammonium acetate in 90:10 water:methanol. 121 Perfluoropropionic acid (PFPrA), trifluoromethane sulfonic acid (TFMS), difluoro 122 (perfluoromethoxy) acetic acid (1,2-PFECA), difluoroacetic acid (DiFA) and chlorodifluoro 123 acetic acid (Cl-DiFA) were analysed in a 10 minute isocratic run using 80% 60:40 methanol:water with 0.05% formic acid and 20% 10 mM ammonium formate in water with 0.05% formic acid, based on an application note from Restek [3]. For these analyses, serum extracts were spiked with ¹³C-TFA before oxidation and recoveries ranged from 56 to 65 % (n=46). Concentrations in the blanks ranged from 0.00 to 0.25 ng/mL. LODs were calculated as the average concentration in the blanks plus 3 times the standard deviation of the blanks and in case of no detection in the blanks, LODs were calculated by multiplying the noise of the blanks by 3 (Table S4).

131

Abbreviation	Name	LOD (ng/mL)
PFCA (Perfluoro	alkyl carboxylic acids)	
PFBA	Perfluorobutanoic acid	0.07
PFPeA	Perfluoropentanoic acid	0.06
PFHxA	Perfluorohexanoic acid	0.07
PFHpA	Perfluoroheptanoic acid	0.07
PFOA	Perfluorooctanoic acid	0.06
PFNA	Perfluorononanoic acid	0.07
PFDA	Perfluorodecanoic acid	0.09
PFUnDA	Perfluoroundecanoic acid	0.10
PFDoDA	Perfluorododecanoic acid	0.10
PFTrDA	Perfluorotridecanoic acid	0.10
PFTeDA	Perfluorotetradecanoic acid	0.13
PFPeDA	Perfluoropentadecanoic acid	0.13
PFHxDA	Perfluorohexadecanoic acid	0.14
PFOcDA	Perfluorooctadecanoic acid	0.13
PFSA (Perfluoro	alkyl sulfonic acids)	
PFBS	Perfluorobutane sulfonic acid	0.06
PFPeS	Perfluoropentane sulfonic acid	0.06
PFHxS	Perfluorohexane sulfonic acid	0.06
PFHpS	Perfluoroheptane sulfonic acid	0.06
PFOS	Perfluorooctane sulfonic acid	0.03
PFNS	Perfluorononane sulfonic acid	0.04
PFDS	Perfluorodecane sulfonic acid	0.05
PFUnDS	Perfluoroundecane sulfonic acid	0.06
PFECA (Perfluor	roalkyl ether sulfonic acids)	
GenX	Ammonium perfluoro-4,8-dioxa-3H-nonanoic acid	0.08
ADONA	Perfluoro-4,8-dioxa-3H-nonanoic acid	0.08
FTCA (Fluorotel	omer carboxylic acids)	
3:3 FTCA	3:3 Fluorotelomer carboxylic acid	0.06
5:3 FTCA	5:3 Fluorotelomer carboxylic acid	0.08
7:3 FTCA	7:3 Fluorotelomer carboxylic acid	0.08
FTS (Fluorotelon	ner sulfonates)	
4:2 FTS	4:2 Fluorotelomer sulfonic acid	0.06
6:2 FTS	6:2 Fluorotelomer sulfonic acid	0.08
8:2 FTS	8:2 Fluorotelomer sulfonic acid	0.08
Perfluorooctane	sulfonamido substances	
FOSA	Perfluorooctane sulfonamide	0.07
Me-FOSA	N-Methyl perfluorooctane sulfonamide	0.07
Et-FOSA	N-Ethyl perfluorooctane sulfonamide	0.0/
FOSAA	Perfluorooctane sulfonamidoacetic acid	0.06
Me-FOSAA	N-Methyl perfluorooctane sulfonamidoacetic acid	0.06
Et-FOSAA	N-Ethyl perfluorooctane sulfonamidoacetic acid	0.06
Me-FOSE	N-Methyl perfluorooctane sulfonamido ethanol	0.08
Et-FUSE	N-Ethyl perfluorooctane sulfonamido ethanol	0.08
CI-PFAES		0.10
9CI-PF3ONS	9CI-Perfluoro-3-oxononane sulfonic acid	0.10
TICI-PF30UdS	11CI-Perfluoro-3-oxoundecane suitonic acid	0.10
PAPS 4.2 man a DA D	4.2 Elucrotelomon al conhete meneorter	0.10
4:2 MONOPAP	4.2 Fluorotelomer phoenkete director	0.10
4.2 UIFAF	4.2 Fluorotelomer phoenhote mergester	0.10
0.2 IIIONOPAP	6:2 Eluorotelomor phoenhote director	0.10
$\frac{0.2 \text{ urAr}}{6.2/9.2 \text{ JDAD}}$	6:2/9:2 Elugratalomor phogehete disster	0.10
0.2/0.2 UIPAP	6:2/10:2 Eluorotalomor phosphate diester	0.10
6.2/10.2 diPAP	6:2/12:2 Eluorotelomer phosphate diester	0.12
0.2/12.2 UIFAP		0.12

133 **Table S4** – Target PFAS analysed on EOF extracts by UHPLC-Orbitrap.

6:2/14:2 diPAP	6:2/14:2 Fluorotelomer phosphate diester	0.12
8:2 diPAP	8:2 Fluorotelomer phosphate diester	0.13
8:2/10:2 diPAP	8:2/10:2 Fluorotelomer phosphate diester	0.13
10:2 monoPAP	10:2 Fluorotelomer phosphate monoester	0.13
10:2 diPAP	10:2 Fluorotelomer phosphate diester	0.13

Table S5 - Average blank concentrations and LODs before and after TOP assay in ng/mL of

```
138 serum (n=3).
```

Compound	Blank concentration	LOD
TFA	0.28	0.32
PFPrA	0.10	0.13
TFMS	0.00	0.07
1,2-PFECA	0.00	0.07
DiFA	0.00	0.07
Cl-DiFA	0.00	0.07

1.7. Data evaluation

142 For comparison with EOF values, target PFAS concentrations measured in the EOF extracts 143 and Δ PFAA concentrations from the TOP assay were converted to F equivalents using the 144 following equation:

$$Concentration\left(\frac{ng F}{mL}\right) = \frac{concentration\left(\frac{ng}{mL}\right) \cdot nF \cdot AW_F}{MW_{PFAS}}$$
(S1)

where nF is the number of fluorine atoms in the PFAS structure, A_F is the atomic weight of fluorine and MW_{PFAS} is the molecular weight of the PFAS which concentration is being converted.

Differences in TF, EOF, \sum_{12} PFAS, unidentified EOF and TOP between sampling years were assessed by multiple linear regression to account for the influence of sex and age (as weighted mean of the age of the individuals in the pools expressed in years) using the following equation:

$$y = \beta_0 + \beta_1 dummy \ 1 + \beta_2 dummy \ 2 + \beta_3 sex + \beta_4 age$$
(S2)

where y is the log transformed concentration for TF, EOF and \sum_{12} PFAS, the Δ PFAA 152 153 concentration in ng/mL for TOP and the percentage contribution to EOF for UEOF; β0 is the intercept of the multiple linear regression; β_1 , β_2 , β_3 and β_4 are the regression coefficients for 154 the predictor variables; dummy 1 is a dummy variable equal to 1 if sampling year is 1986, equal 155 to 0 if sampling year is 2007 or 2015; dummy 2 is a dummy variable equal to 1 if sampling 156 year is 2015, equal to 0 if sampling year is 1986 and 2007; sex is categorical variable equal to 157 0 for women and equal to 1 for men; age is the weighted mean age of the individuals making 158 up each pool expressed in years. 159

When sex was a significant predictor, differences in concentrations between men and women at each sampling year were assessed by adding an interaction term between sex and each sampling year dummy variable as described by equation S3.

163

$$y = \beta_0 + \beta_1 dummy \ 1 + \beta_2 dummy \ 2 + \beta_3 \ sex + \beta_4 \ age + \beta_5 \ dummy \ 1 \ sex + \beta_6 \ dummy \ 2 \ sex$$
(S3)

164

2. Results

Table S6 – PFAS concentrations (ng/mL) used for fluorine mass-balance calculations

(concentrations are not recovery corrected).

	1986 (n=15)			2007 (n=17)				2015 (n=14)				
	DF	Median	Mean	Range	DF	Median	Mean	Range	DF	Median	Mean	Range
РҒНрА	0/15	-	-	-	0/17	-	-	-	0/14	-	-	-
PFOA	15/15	1.60	1.50	0.88-2.04	17/17	2.32	2.40	2.00-2.96	14/14	1.52	1.56	1.12-2.24
PFNA	15/15	0.24	0.25	0.08-0.64	17/17	1.04	0.99	0.72-1.52	14/14	1.14	1.18	0.68-1.60
PFDA	1/15	<0.09	< 0.09	<0.09-0.24	17/17	0.40	0.39	0.20-0.84	14/14	0.50	0.50	0.20-0.84
PFUnDA	15/15	0.32	0.32	0.12-0.56	17/17	0.60	0.60	0.24-1.56	14/14	0.62	0.58	0.24-1.20
PFDoDA	0/15	-	-	-	0/17	-	-	-	0/14	-	-	-
PFHxS	15/15	0.40	0.38	0.16-0.72	17/17	1.44	1.59	1.04-4.68	14/14	1.24	1.36	0.72-3.12
PFHpS	4/15	< 0.03	< 0.03	<0.03-0.08	17/17	0.20	0.17	0.04-0.36	14/14	0.08	0.09	0.04-0.20
br-PFOS	15/15	3.68	3.58	2.48-5.16	17/17	5.44	5.26	3.68-7.16	14/14	3.14	3.40	2.56-4.88
lin-PFOS	15/15	10.9	10.4	6.72-15.4	17/17	16.2	16.5	11.1-30.2	14/14	10.4	11.3	5.52-18.8
FOSAA	9/15	0.08	0.08	<0.06-0.20	0/17	-	-	-	0/14	-	-	-
Me-FOSAA	14/15	0.16	0.13	<0.06-0.28	10/17	0.08	0.08	<0.06-0.20	0/14	-	-	-
Et-FOSAA	15/15	0.28	0.27	0.12-0.52	0/17	-	-	-	0/14	-	-	-
\sum 12 PFAS	15/15	17.8	17.2	11.0-24.1	17/17	27.9	28.3	21.5-46.1	14/14	19.2	20.3	11.4-30.0
						-						

DF = detection frequency: number of pools with PFAS concentration > LOD.

- Table S7 Descriptive statistics for TF and EOF concentrations (ng F/mL) in the Tromsø 178
- Study pooled serum samples from 1986, 2007 and 2015 and in samples from previous studies 179

Study	Country	Sampling	Matrix	n		TF (ng F/	mL)	EOF (ng F/mL)		
		year			Median	Mean	Range	Median	Mean	Range
This study	Norway	1986	Serum (pooled)	15	79.1	112	<25.0-1330	22.2	23.3	13.3-45.3
This study	Norway	2007	Serum (pooled)	17	74.2	74.8	<25.0-1212	20.8	20.5	16.2-30.3
This study	Norway	2015	Serum (pooled)	14	68.3	71.6	<25.0-265	18.5	18.4	12.6-22.6
Miyake et al. (2007)	Japan	2003-2004	Whole blood	3	208	214	181-262	<6	<6	<6-8.89

30

34

42

80

57

9

20

130

6

149

-

-

-

-

-

_

-

-

-

163

-

-

-

-

-

-

-

-

-

available in the literature (n=number of pools/number of individual samples). 180

Plasma

Whole

blood

Whole

blood

Plasma

Plasma

Serum

(pooled)

Whole

blood

Whole

blood Whole

blood

Serum

(pooled)

2001

2004

2004

1995-2009

1982-2009

1996-2017

2015

2014-2016

2018-2019

2021

181

Table S8 – Multiple linear regression coefficients estimates and 95% confidence intervals for 182

 $\ln(TF)$, $\ln(EOF)$, $\ln(\Sigma 12 PFAS)$, % UEOF and TOP in pooled serum samples from the Tromsø 183

Study. 184

Miyake et al.

(2007)

Yeung et al.

(2008)

Yeung and

Mabury

(2016) Yeung and

Mabury

(2016) Yeung et al.

(2016)

Miaz et al.

(2020)

Aro et al.

(2021)

Aro et al.

(2021)

Aro et al.

(2021)

Kaiser et al.

(2021)

USA

China

China

Germany

(Halle)

Germany

(Munster)

Sweden

Sweden

Sweden

Ronneby)

Sweden

Austria

	ln(TF)	ln(EOF)	ln((∑12 PFAS)	% UEOF	ТОР
	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)
β ₀ (intercept)	1.17 (2.68 to 5.03)	2.55 (1.91 to 3.20)	2.76 (2.33 to 3.08)	61.4 (18.8 to 104)	0.49 (-0.48 to 1.45)
β1 (1986-2007)	1.41 (-0.15 to 2.97)	0.29* (0.03 to 0.55)	-0.48*** (-0.61 to -0.35)	22.8* (5.60 to 40.0)	0.14 (-0.25 to 0.53)
β ₂ (2015-2007)	-0.39 (-1.47 to 0.68)	-0.16 (-0.34 to 0.02)	-0.41*** (-0.51 to -0.30)	18.2** (6.35 to 30.0)	0.02 (-0.24 to 0.29)
β_3 (sex)	0.04 (-0.77 to 0.85)	-0.05 (-0.18 to 0.09)	0.18*** (0.10 to 0.26)	-14.3** (-23.3 to -5.32)	-0.16 (-0.36 to 0.05)
β ₄ (age mean)	0.05 (-0.01 to 0.11)	0.01 (-0.002 to 0.017)	0.02*** (0.01 to 0.02)	-0.64 (-1.27 to 0.01)	-0.001 (-0.015 to 0.013)
R ²	0.084	0.209	0.796	0.594	0.091
F-test p-value	0.445	0.042	0.000	0.000	0.409
*p < 0.05					
**p < 0.01					
*** p < 0.001					

185

186

17.8-59.0

<6-43.4

8.22-94.4

5.29-43.9

9.20-115

8.10-32.0

17.6-37.8

<107-592

0.51-48.7

2.85-7.17

45.2

-

17

-

-

-

-

-

-

-

38.3

-

18.4

15.9

23.7

-

24.8

234

-

3.83

140-189

60.6-166

-

-

-

-

_

-

-

-

- **Table S9** Multiple linear regression (including sex and sampling year interaction terms)
- 188 coefficients estimates and 95% confidence intervals for $ln(\sum 12 PFAS)$ and % UEOF in pooled

	ln((∑12 PFAS)	% UEOF
	Estimate (95% CI)	Estimate (95% CI)
β ₀ (intercept)	2.72 (2.34 to 3.11)	64.4 (20.3 to 109)
β1 (1986-2007)	-0.17 (-0.35 to 0.01)	18.3 (-2.27 to 38.8)
β ₂ (2015-2007)	-0.40*** (-0.53 to -0.27)	17.1* (1.91 to 32.3)
β ₃ (2007 sex)	0.16* (0.02 to 0.28)	-18.3* (-33.4 to -3.14)
β_4 (age mean)	0.02*** (0.01 to 0.02)	-0.66* (-1.31 to -0.01)
β ₅ (1986 sex)	0.08 (-0.11 to 0.27)	9.24 (-12.7 to 31.2)
β ₆ (2015 sex)	-0.01 (-0.02 to 0.18)	3.04 (-19.4 to 25.5)
R ²	0.802	0.602
F-test p-value	0.000	0.000
*p < 0.05		
**p < 0.01		
*** p < 0.001		

189 serum samples from the Tromsø Study.

Table S10 – Descriptive statistics for UEOF concentrations (ng F/mL and/or %) in the Tromsø

192 Study pooled serum samples from 1986, 2007 and 2015 and in samples from previous studies

available in the literature (n=number of pools/number of individual samples).

Ct J					UEOE			
Study	Country	Sampling	Matrix	n		UEOF		
		year			Median	Mean	Range	
This study	Norway	1086	Serum	15	10.5 ng F/mL	10.9 ng F/mL	2.93-34.8 ng F/mL	
This study	INDIWay	1980	(pooled)	15	46%	46%	21-77%	
) I	2007	Serum	17	2.26 ng F/mL	3.17 ng F/mL	0.00-10.9 ng F/mL	
This study	Norway	2007	(pooled)	1/	10%	14%	0-40%	
			Serum		7.54 ng F/mL	5.32 ng F/mL	0.00-9.74 ng F/mL	
This study	Norway	2015	(pooled)	14	37%	27%	0-56%	
Miyake et al			Whole		3770	2770	0.00-1.38 ng F/mI	
(2007)	Japan	2003-2004	blood	3	-	-	0.15%	
(2007) Misseles et al			01000				0.00 4.40 m = E/m I	
Miyake et al.	USA	2001	Plasma	4	-	-	0.00-4.40 ng F/mL	
(2007)			XX71 1				0-15%	
Yeung et al.	China	2004	Whole	30	-	-	15-43%	
(2008)			blood					
Yeung and			Whole					
Mabury	China	2004	blood	34	-	-	14-69%	
(2016)			biood					
Yeung and	0							
Mabury	Germany	1995-2009	Plasma	42	-	-	0.0-9.5 ng F/mL	
(2016)	(Halle)						e	
Yeung et al.	Germany							
(2016)	(Munster)	1982-2009	Plasma	80	-	-	0.0-9.9 ng F/mL	
Miaz et al	(Withistor)		Serum					
(2020)	Sweden	1996-2017	(pooled)	57	-	-	11-75%	
(2020)			(pooled)					
Aro et al.	Sweden	2015	whole	9	-	84%	71-97%	
(2021)			blood					
Aro et al.	Sweden	2014-2016	Whole	20	-	37%	0-76%	
(2021)	(Ronneby)	2011 2010	blood	20		5170	0 ,0,0	
Aro et al.	Swadan	Sweden 2018-2010	Whole	130		0.00%		
(2021)	Sweden	2016-2019	blood	130	-	0-9970	-	
Kaiser et al.		2021	Serum	(1.17 ng F/mL		
(2021)	Austria	2021	(pooled)	6	-	24%	-	
	•		/		•			

Figure S2 – TF, EOF, TOP, \sum_{12} PFAS and UEOF concentrations (ng F/mL) in serum pools

197 from the Tromsø Study containing the same individuals in 1986, 2007 and 2015.

199

Figure S3 - UpSet plot showing the intersection of PFAA with increased concentrations after oxidation. The bar chart shows the number of pools with increases in concentrations of a combination of PFAA. The graphical table underneath indicates the PFAA combinations (black dots and lines). The frequency count of each PFAA across all subsets is shown as a smaller bar chart on the left side of the graphical table.

210 in 1986, 2007 and 2015.

Figure S5 – Concentrations of ∑12 PFAS in pooled serum samples from the Tromsø Study
collected in 1986, 2007 and 2015 in relationship with mean age of the individuals in the pools

217 in years.

Figure S6 – Target PFAS concentrations (ng/mL) in men and women from the Tromsø Study

in 1986, 2007 and 2015.

233 **References**

- AMAP, *AMAP Assessment 2021: Human Health in the Arctic.* 2022, Arctic
 Monitoring and Assessment Programme (AMAP): Tromsø, Norway. p. 240.
- Cioni, L., et al., *Total Oxidizable Precursors Assay for PFAS in Human Serum.* Environment International, 2022(170).
- Restek. Raptor Polar X: Separate a Wide Variety of Polar Analytes with a Novel
 Hybrid Stationary Phase <u>https://www.restek.com/row/technical-literature-</u>
 library/articles/raptor-polar-x-separate-a-wide-variety-of-polar-analytes-with-a- novel-hybrid-stationary-phase/. 2020.