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Membranes in close proximity repel each other due to the excluded volume effect 

of their mutual fluctuations. Tension diminishes these fluctuations and reduces 

the repulsive pressure. The following derivation follows the seminal work of 

Helfrich and Servuss1, 2, who calculated the undulation magnitude, pressure, and 

interaction energy by considering only the bending rigidity of the membranes. 

Here we accounted for the contribution of tension. For the sake of brevity, we 

explicitly follow all major derivation steps, most of which can also be found in 

previous publications1, 2.  

We consider a flat membrane subjected to tension 𝛾 and bending rigidity 𝜅. The 

Helfrich Hamiltonian 3 describes the energy in the Monge representation, 

𝐹 = ∫ [
1

2
𝜅(∆𝑢)2 +

1

2
𝛾(∇⃗⃗ 𝑢)

2
] 𝑑𝐴,    (1) 

with 𝑢(𝑟 ) the height of the membrane mid-plane at position 𝑟 = 𝑥𝑥 + 𝑦𝑦̂, ∇⃗⃗ 𝑢 is the 

height gradient and ∆𝑢 is its Laplacian. The contribution of Gaussian curvature is 

a topological constant and is omitted, and we took the limit of a small gradient 

|∇⃗⃗ 𝑢| ≪ 1. By using the equipartition theorem, the square of the magnitude of 

membrane fluctuations is given by, 

〈𝑢𝑞⃗ 
2〉 =

𝑘𝐵𝑇

𝐴(𝜅𝑞4+𝛾𝑞2)
     (2) 

with 𝑞 =
2𝜋

√𝐴
(𝑚, 𝑛) being the wave number, and 𝑚 and 𝑛 are natural numbers. 𝐴 is 

the membrane element area, which is much larger than the area of a single lipid, 

𝑎. Under this assumption, the fluctuation magnitude in real space is given by  

〈𝑢2〉 = ∑ 〈𝑢𝑞⃗ 
2〉𝑞𝑚𝑎𝑥

𝑞𝑚𝑖𝑛
=

𝑘𝐵𝑇

4𝜋𝛾
ln (1 +

𝐴𝛾

𝜋2𝜅
)    (3) 

Here we took only the contribution of long wavelengths and omitted contributions 

from short wavelengths in the order of a lipid headgroup radius. To find the 

pressure generated by the membrane fluctuations, we use a simple physical 

argument presented in previous works2, 4, 5 – The membrane is considered to be 

between two rigid walls at a distance of 2𝑙, so the fluctuations are constricted to 

ℎ2(𝑟 ) ≤ 𝑙 2. The membrane is segmented to area elements 𝐴𝑒𝑓𝑓, each of which 

fluctuates independently and is considered a particle of a one-dimensional ideal 

gas. The average force such a particle exerts on the boundaries is 𝑘𝐵𝑇/2𝑙, and the 

pressure is given by 

 𝑃 =
𝑘𝐵𝑇

2∙𝑙∙𝐴𝑒𝑓𝑓
.      (4) 

To find 𝐴𝑒𝑓𝑓, we consider no correlations between modes and write the relation 

between the mean square amplitude and the wall boundaries as 

 〈𝑢2〉 = 𝛼 ∙ 𝑙2.     (5) 



𝛼 is a numerical pre-factor determining the reduction in mean square amplitude 

due to the presence of the walls. Inserting Eq. 3 to Eq. 5 and inverting we have, 

𝐴𝑒𝑓𝑓 =
𝜋2𝜅

𝛾
(exp [

4𝜋𝛼𝑙2𝛾

𝑘𝐵𝑇
] − 1).    (6) 

The pressure is given by inserting Eq. 6 into Eq. 4: 

𝑃𝑈 =
𝑘𝐵𝑇∙𝛾

2𝜋2∙𝑙∙𝜅(exp[
4𝜋𝛼𝑙2𝛾

𝑘𝐵𝑇
]−1)

    (7) 

In the small tension limit, 
4𝜋𝛼𝑙2𝛾

𝑘𝐵𝑇
≪ 1, we can approximate Eq. 7 to  

𝑃𝑈 =
(𝑘𝐵𝑇)2

8𝜋3𝛼∙𝜅∙𝑙3
−

𝑘𝐵𝑇

4𝜋2∙𝜅∙𝑙
𝛾.    (8) 

The first term in Eq. 8 corresponds to the tension-less pressure obtained By 

Helfrich and Servuss2, and the second term is the first-order reduction in 

pressure due to tension. The pre-factor α determines, to a first-order 

approximation, the tension-independent contribution to the pressure. The lower 

limit to 𝛼 can be obtained by restricting 〈𝑢2〉 to the interval between the walls and 

exciting only one mode. In this case, it can be shown that α equals 1/12. The 

upper limit is obtained by considering the membrane to be fixed at a single point. 

In such a case, α is 1/3. Helfrich and Servuss2 estimated α as the geometric 

mean of the two limits, 1/6. However, it was argued that the interaction strength 

should be doubled if mode-mode correlations are considered 2. Therefore, 𝛼 has 

an additional ½ factor, resulting in 𝛼 being equal to 1/12. The resulting tension-

free repulsive interaction energy per unit area 

∆𝐺𝛾=0 = ∫ 𝑃𝛾=0(𝑙′)𝑑𝑙′
𝑙′=𝑙

𝑙′=∞
=

3

4𝜋3

(𝑘𝐵𝑇)2

𝜅∙𝑙2
.   (9) 

Estimating the pre-factor can also be based on the undulation repulsive 

interaction energy between membranes at the multi-lamellar phase. Based on 

theoretical considerations, the pre-factor in Eq. 9 for membrane stacks was 

calculated as 3π2/128~0.23 1 and by Monto-Carlo-based simulations as 0.11-

0.0746, 7. Based on more sophisticated variational perturbation theory, the pre-

factor was also estimated to be between 0.082-0.0778, 9. These numbers are 

larger than the pre-factor used here, 3/(4π3)~0.024. However, we consider the 

case of a membrane constricted by a single wall and not two walls, as discussed 

in these works. Therefore, amplitude reduction is significantly lower than in the 

case of a membrane stack, at least by a factor of 2. Therefore, we keep with the 

simple argumentation above and take α to be in the lower limit, 1/12. With that, 

Eq. 7 can be rewritten as  

𝑃𝑈 =
𝑘𝐵𝑇∙𝛾

2𝜋2∙𝑙∙𝜅(exp[
𝜋

3

𝑙2𝛾

𝑘𝐵𝑇
]−1)

.    (10) 



These estimates are, of course, rough, and the numerical results should be 

considered semi-quantitative. 
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