Supplementary material

Engineered lentivirus-derived nanoparticles (LVNPs) for delivery of CRISPR/Cas ribonucleoprotein complexes supporting base editing, prime editing and *in vivo* gene modification

Jakob Haldrup¹, Sofie Andersen^{1,2}, Alexander Rafael LaVilla Labial¹, Jonas Holst Wolff¹, Frederik Plum Frandsen¹, Thomas Wisbech Skov¹, Anne Bruun Rovsing¹, Ian Nielsen¹, Thomas Stax Jakobsen¹⁺³, Anne Louise Askou^{1,3}, Martin K. Thomsen¹, Thomas J. Corydon^{1,3}, Emil Aagaard Thomsen¹, and Jacob Giehm Mikkelsen¹.

¹Department of Biomedicine, Aarhus University, Aarhus C, Denmark

²Current address: RNA and Gene Therapies, Research & Early development, Novo Nordisk A/S, Måløv, Denmark

³Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark

Supplementary Methods

Cloning of GagPol-IntSpCas9

For construction of LVNP1.0, two fragments encoding (i) FLAG-tagged SpCas9 was PCR amplified from pX330 (Addgene #42230) and, (ii) a C-terminal GagPol fragment from pMDLg/p-PCS-hyPBase(1) and inserted into a BspTI/Kpn2I (Thermo Fisher Scientific) digested pMDLg/p-PCS-hyPBase(1) using NEBuilder[®] HiFi DNA Assembly Master Mix (New England Biolabs). Primers are listed in Supplementary Table 6.

Cloning of GagPol-MatSpCas9

For construction of LVNP2.0, FLAG-tagged SpCas9 was PCR amplified from pX330 (Addgene #42230) and inserted into BshTI/Kpn2I (Thermo Fisher Scientific) digested pGFP-PH-GagPol-D64V(2) using NEBuilder[®] HiFi DNA Assembly Master Mix (New England Biolabs). Primers are listed in Supplementary Table 6.

Cloning of GagPro-SpCas9/BE/PE

For construction of pGagPro-POI (protein of interest), three fragments were inserted into EcoRI (Thermo Fisher Scientific) digested pMD.2G using NEBuilder[®] HiFi DNA Assembly Master Mix (New England Biolabs). Fragment 1 (TWIST Bioscience) encode a MCS and the N-terminal part of Gag. Fragment 2 was PCR amplified from pGagPoI-MatSpCas9 and encode the C-terminal fragment of Gag. Fragment 3 (TWIST Bioscience) encodes the HIV-1 protease, a protease cleavage site (SQNYPIVQ), 3xFLAG, cMyc/SV40 NLS, and a Xbal restriction site for insertion of POI. SpCas9, ABE8e, or PE2 was PCR amplified by Platinum SuperFi II DNA Polymerase (Thermo Fisher Scientific) from pLentiCRISPRv2-eGFP (Addgene #82416) and pABE8e (Addgene #138489), respectively, and inserted into Xbal (Thermo Fisher Scientific) linearized pGagPro-Xbal using NEBuilder[®] HiFi DNA Assembly Master Mix (New England Biolabs). For generation of GagProPEmax and GagPro-PEmini, two fragments encoding the C-and N-terminal parts of Pemax were amplified form pCMV-Pemax (Addgene #174820) or

pLentiPEmini-eGFP-WPRE and a fragment encoding the *rev*-responsive element (RRE) were amplified form pMDLg-RRE-D64V. The three fragments were then assembled into a XbaI-digested pMD.2G-MCS-GagPro-FLAG-NoNLS-XbaI backbone using NEBuilder. Primers are listed in Supplementary Table 6.

pCCL/PGK-d2eGFP-IRES-puro

A third-generation LV vector encoding pCCL/PGK-d2eGFP-IRES-puro was constructed by digestion of pCCL/PGK-MCS-IRES-puro with BamHI (Thermo Fisher Scientific) following insertion of the d2eGFP fragment amplified from pT2/UASTK-d2eGFP-SV40-neo and assembled by NEBuilder[®] HiFi DNA Assembly Master Mix (New England Biolabs). Primers are listed in Supplementary Table 6.

Supplementary Figures

Supplementary Figure S1. Characterization of LVNP1.0. (a) Western blot analysis of FLAG-tagged SpCas9 (FLAG antibody) and p24 loading control of purified LVNP1.0 (90 ng p24) and IDLV (90 ng p24) in the presence or absence of the HIV-1 protease inhibitor saquinavir (SQV). (b) Schematic of the LentiGuide-Puro plasmid. (c) Indel rates in the *AFF1* locus following administration of 300 ng p24 LVNP1 in a 6-well plate. (d) Schematic of the U6-sgRNA-Cbh-eGFP plasmid. (e) Indel rates in the *AFF1* locus following administration of 90 ng p24 LVNP1.0 (+/- VSV-G) in 24 well-plates.

Supplementary Figure S2. Characterization of LVNPs2.0. (a) Western blot analysis of FLAG-tagged SpCas9 (FLAG antibody) and p24 loading control of purified LVNP2.0 (90 ng p24) and IDLV (90 ng p24) in the presence or absence of the HIV-1 protease inhibitor saquinavir (SQV). (b) Indel rates in the *AFF1* locus following administration of 300 ng p24 LVNP2.0 in a 6-well plate. Data is presented as mean of ±SD of triplicates.

Supplementary Figure S3. Flow cytometry. (a) Representative gating strategy for quantification of eGFP-positive cells following transduction of LVNP2.2 loaded with a sgRNA and a vector encoding the eGFP transgene (15 ng p24). All experiments were performed in triplicates.

Supplementary Figure S4. (a) Upper: Schematic of the U6-sgRNA-CBh-eGFP plasmid, Middle: Schematic of pCCL-PGK-mCherry plasmid that was used to produce LVNP2.2 loaded with a sgRNA targeting d2eGFP and a mCherry transgene. Lower: Schematic of the lentiviral pCCL-PGK-d2eGFP-IRES-Puro backbone. (b) Representative gating strategy to quantify the number of eGFP-positive cells following LV/PGK-d2eGFP-IRES-Puro transduction (90 ng p24). c) Representative gating strategy to quantify the number of mCherry-positive cells following transduction of LVNP2.2 loaded with a sgRNA targeting d2eGFP and a mCherry-encoding vector genome. (d) Representative gating strategy for quantification of double positive mCherry/eGFP cells following co-transduction of LV/PGK-d2eGFP-IRES Puro and LVNP2.2 loaded with sgRNA targeting d2eGFP and a mCherry vector genome at day 0. (e) Same as (d) after 4 days. All experiments were performed in triplicates.

 PAM

 On-target
 AGCAGCAGCGGCGCAACAG GGG

 Off-target 1
 AGCAGCAGCÃGCÃGCAACAG GGG

 Off-target 2
 AGCAGCAGCÃGCÃGCAACAG GGG

 Off-target 3
 AGCAGCAGCÃAGCAACAG GGG

 Off-target 4
 AGCAGCAGCÃAGCAACAG GGG

chr4:81612-81635 chr7:73927327-73927350 chr15:88958219-88958242 chr19:24013247-24013270 chr10:37138620-37138643

Supplementary Figure S5. Transient LVNP delivery. (a) The genomic sequences (murine) and genomic coordinates (murine) of the tested Pcsk9 off-target sites (b) AML12 hepatocytes were transduced with increasing quantity of LVNP2.2 and the level of Pcsk9 disruption and a well-characterized off-target locus (Off-target 1) after 7, or (c) 14 days. (d) AML12 hepatocytes were nucleofected with decreasing amounts of RNP and synthetic sgRNA to non-saturating conditions, and (e) following LVNP2.2 transduction. Indel frequencies were evaluated in the Pcsk9 locus 3-days post administration. All experiments were performed in triplicates.

а

Supplementary Figure S6. *In vivo* studies. (a) Representative gating strategy to sort eGFP-positive and eGFP-negative RPE cells from Naïve or LVNP2.2-treated eyes. (b) Schematics of LVNP3.0 production including an additional purification step by Amicon filtrat

а

Supplementary Figure S7. Base Editing of 'Site 2'. (a) of Schematics of pGagPol-MatF7.10 base editor composed of FLAG-Tagged 7.10 (F7.10) fused to the N-terminus of Gag harboring an intervening phospholipase C- δ 1 pleckstrin homology (PH) domain. (b) Editing frequencies of the base editors ABE7.10 or 3xFLAG-tagged ABE7.10 (ABE(F7.10)) for ChimScf. OptScf1, and OptScf2 in 'Site 2' in HEK293T 3 days after transfection. (c) The level of bystander editing of plasmid DNA transfection and LVNP-3.0-ABE8e in a dose-escalation manner. Data are presented as +/- SD of at least duplicates.

PEmax-Rep1

Supplementary Figure S8. Quantification of desired/undesired prime editing events following LVNP delivery of PEmax. (a) The percentage of reads aligned to the wild-type HEK3 reference sequence or the CTT insertion (red box) in the HEK3 locus (upper). Dashed lines highlights the quantification window of intented/unintended prime editing and unwanted scaffold incorporation. (b) same as (a) for replicate two.

а

a PEmax∆RH-Rep1

Supplementary Figure S9. Quantification of desired/undesired prime editing events following LVNP delivery of PEmax. (a) The percentage of reads aligned to the wild-type HEK3 reference sequence or the CTT insertion (red box) in the HEK3 locus (upper). Dashed lines highlights the quantification window of intented/unintended prime editing and unwanted scaffold incorporation. (b) same as (a) for replicate two.

	LVNP1.0	LVNP2.0	LVNP2.1	LVNP2.2	LVNP3.0-SpCas9	LVNP3.0-BE	LVNP3.0-PE	eVLP
pRSV-REV	3.00	3.00	3.00	3.00	3.00	3.00	3.00	-
pLVNP backbone*	13.00	8.70	8.70	3.90	3.90	9.80	3.90	-
pMDlg/p-RRE-D64V	-	4.30	4.30	9.10	9.10	3.30	9.10	-
pMD.2G (VSV-G)	3.75	3.75	3.75	3.75	3.75	3.75	3.75	1.28
pU6-sgRNA/pegRNA-Cbh-eGFP	13.00	13.00	13.00	5.20	5.20	5.20	5.20	14.08
pCCL/PGK-eGFP or mCherry**	-	-	-	7.80	7.80	7.80	7.80	-
pMMLV-Gag-3xNES-Cas9	-	-	-	-	-	-	-	3.60
pMMLV-Gag-Pro-Pol	-	-	-	-	-	-	-	10.80

Supplementary Table S1. The production parameters of the indicated LVNP configuration. Each value represents the required amount of plasmid (µg) per p10 dish for each configuration.

*pGagPol-IntSpCas9; pGagPol-MatSpCas9/BE; pGagPro-SpCas9/BE/PE

**Titer experiments were performed with 13 μ g pCCL-PGK-eGFP and 0 μ g sgRNA

Supplementary Table S2. Oligonucleotides of sgRNA/epegRNA including cloning sites.

sgRNA/epegRNA	Forward (5´- 3´)	Reverse (5´- 3´)
sgRNA_Pcsk9	caccgagcagcagcggcggcaacag	aaacctgttgccgccgctgctgctc
sgRNA_AFF1	caccgccttcagctcagtgacagtg	aaacactgtcactgagctgaaggc
sgRNA_Vegfa	caccgctcctggaagatgtccacca	aaactggtggacatcttccaggagc
sgRNA_Fah	caccggatggtcctcatgaacgac	aaacgtcgttcatgaggaccatcc
sgRNA_d2eGFP	caccgggcgaggagctgttcaccg	aaaccggtgaacagctcctcgccc
sgRNA_SERPING1	caccgtttgcaagacagaggcgaa	aaacttcgcctctgtcttgcaaac
sgRNA_Pcsk9- Synthetic	agcagcagcggcggcaacag	n/a
sgRNA_Site2	caccggagtatgaggcatagactgc	Aaacgcagtctatgcctcatactcc
epegRNA-HEK3 CTTins	caccggcccagactgagcacgtga	aaactcacgtgctcagtctgggcc
(spacer)		
epegRNA-HEK3 CTTins	gtgctctgccatcaaagcgtgctcagtctgttaaatac	cgcggtatttaacagactgagcacgctttgatggcaga
(extension)		
ChimScf	agagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccga	gcaccgactcggtgccactttttcaagttgataacggactagccttattttaacttgctatttctagctct
OptScf1	agagetatgetggaaacageatageaagtttaaataaggetagteegttateaacttgaaaaag	
	tggcaccgagtcg	g
OptScf2	agagctatgctggaaacagcatagcaagtttaaataaggctagtccgttatcaactttgctgga aacagcaaagtggcaccgagtcg	gcaccgactcggtgccactttgctgtttccagcaaagttgataacggactagccttatttaaacttgctatgctgt ttccagcatag

Supplementary Table S3. Oligonucleotides for PCR and Sanger sequencing

PCR/Sequencing oligoes	Forward (5´- 3´)	Reverse (5´- 3´)
PCR_Pcsk9	gaggccgaaacctgatcctt	cttagagaccaccagacggc
PCR_Vegfa_Nested-R1	gagcccagggagcaaaggtca	ggttcctggttgtgcttagtggga
PCR_Vegfa_Nested-R2-P1	aaaggtcacgaaagcagatggtcaa	gtgtatatacatagctgtccccgg
PCR_Vegfa_Nested-R2-P2	agagcttcggcagggaagtaca	tatttgatgagtggctgttggcct
PCR_Vegfa_Nested-R2-P3	ttgtaccactgtcctcctgc	gtggagctgtaaggagtggt
PCR_SERPING1	ctcatctgccgcactgtcagaaattactct	gattggtgactcttatgggagtgtccaaca
PCR_Site2	atgtaaaggtggcaagggaacaa	tgacaaggtaaaggaaagaggaggc
PCR_Vegfa (transgene)	aaaggtcacgaaagcagatggtcaa	gtgtatatacatagctgtccccggt
PCR_Fah	gttgccaaattggctccacttac	ccacaccacagagtcagaa
PCR_HEK3	atgtgggctgcctagaaagg	cccagcccaacttgtcaacc
ChIP_Pcsk9	ggctcccgttctctctct	ctcgggaaggacatggacg
ChIP_Reference	ctgctcctgactgggtaatgaa	attttgtgctgcataacctcct
Vegfa_OT1	ggagactgtttggcctctgt	aatagtcccctgttcgtgcc
Vegfa_OT2	gctggtccctgtggattaca	tgagagacttcggggacaga
Pcsk9_OT	gtacaaggctccacaggtca	ctcctgctctaggagaggtgt

Supplementary Table S4. Oligonucleotides and probes for ddPCR

ddPCR oligoes	Sequence (5´- 3´)
ddPCR_AFF1.FOR	ccttcagtgacagtgg
ddPCR_Pcsk9.FOR	cagcagcggcggcaacaggt
ddPCR_Vegfa.FOR	cctggaagatgtccaccagt
ddPCR_SERPING1.FOR	ttgcaagacagaggcgaagt
ddPCR_sgRNA(universal).BOT	ccgactcggtgccacttt
ddPCR_Probe_universal	FAM-aaataaggctagtccgttatcaactt-BHQ-1

Supplementary Table S5. Oligonucleotides for NGS

NGS oligonucleotides	Sequence (5′- 3′)
HEK3 CTT NGS.FOR	acactctttccctacacgacgctcttccgatctgcaattagtctatttctgctgcaag
HEK3 CTT NGS.REV	gtgactggagttcagacgtgtgctcttccgatctgtcaaccagtatcccggtgc
15	atgatacggcgaccaccgagatctacacnnnnnnnacactctttccctacacgac
17	caagcagaagacggcatacgagatnnnnnnngtgactggagttcagacgtgt

Supplementary Table S6. oligonucleotides used for NEBbuilder of indicated plasmids

NEBuilder	Sequence (5´- 3´)	Reverse (5´- 3´)
GagPol-IntSpCas9	gagtgctggccgaggccatgagcgactataaggaccacgacg	cctgcggccgctccggaattccatgtgtcactttttcttttttgcctg
GagPol-MatSpCas9	gatccgctagcgctaccggtaccaccatggactataaggac	ctcgagatctgagtccggtctgcacaatcggatagttctggctaaagttctttttcttttttgcctggccg
GagPro-Frag1	gcccatcactttggcaaagcacgtgagatctgctcagatctcgagctcaagctt	agtacagggtggccacggtgttgtacaggctcctcagctcct
GagPro-Frag2	gcagaccggcagcgaggagctgaggagcctgtacaacaccgtggccaccctg	cttctggtggggctgttggctctggtctgctctgaagaaa
GagPro-Frag3	ccaccatttcttcagagcagaccagagccaacagcccaccagaa	tgataggcagcctgcactggtggggtgtctagactttccgcttcttctttgggc
GagPro-SpCas9	ggggtagcccaaagaagaagcggaaagtcgacaagaagtacagcatcggcctggac	taggcagcctgcactggtggggtgtttactttttcttttttgcctggccg
GagPro-ABE8e	gtagcccaaagaagaagcggaaagtctctgaggtggagttttcccacgag	ggcagcctgcactggtggggtgtttagactttcctcttcttgggct

References to Supplementary Material

- 1. Skipper, K.A., Nielsen, M.G., Andersen, S., Ryo, L.B., Bak, R.O. and Mikkelsen, J.G. (2018) Time-Restricted PiggyBac DNA Transposition by Transposase Protein Delivery Using Lentivirus-Derived Nanoparticles. *Mol Ther Nucleic Acids*, **11**, 253-262.
- 2. Cai, Y., Bak, R.O. and Mikkelsen, J.G. (2014) Targeted genome editing by lentiviral protein transduction of zinc-finger and TALeffector nucleases. *Elife*, **3**, e01911.