Supplementary Tables and Figures

ADRA2A and IRX1 are putative risk genes for Raynaud's phenomenon

Sylvia Hartmann¹, Summaira Yasmeen¹, Benjamin M Jacobs², Spiros Denaxas^{3,4,5,6}, Munir Pirmohamed⁷, Eric R. Gamazon⁸, Mark J. Caulfield⁹, Genes & Health Research Team, Harry Hemingway^{3,4,6}, Maik Pietzner^{1,10,11*}, Claudia Langenberg^{1,10,11,*}

¹Computational Medicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany

²Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK

³Institute of Health Informatics, University College London, London, UK

⁴Health Data Research UK, London, UK

⁵British Heart Foundation Data Science Centre, London, UK

⁶National Institute of Health Research University College London Hospitals Biomedical Research Centre

⁷Department of Pharmacology and Therapeutics, The Wolfson Centre for Personalised Medicine, University Liverpool, Liverpool, UK, Liverpool, UK

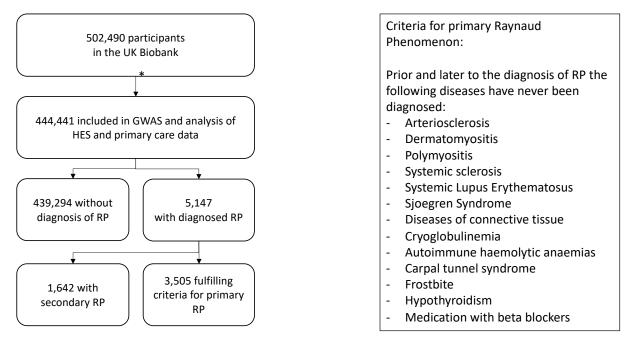
⁸Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37203, USA
⁹William Harvey Research Institute, Queen Mary University of London, London, UK

¹⁰MRC Epidemiology Unit, University of Cambridge, Cambridge, UK

¹¹Precision Healthcare Institute, Queen Mary University of London, London, UK *these authors jointly supervised the work

Correspondence

Prof Claudia Langenberg (Claudia.langenberg@bih-charite.de) Dr Maik Pietzner (<u>maik.pietzner@bih-charite.de</u>)

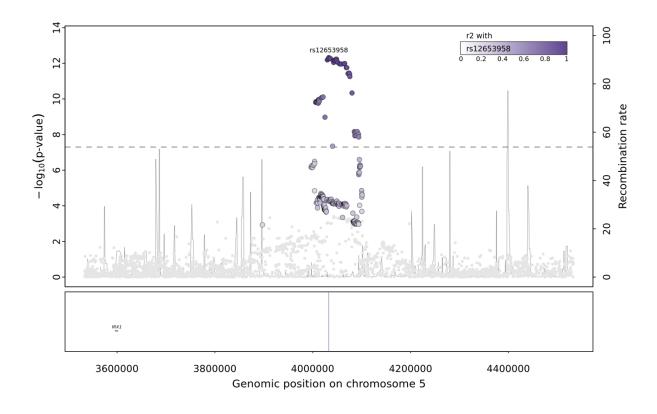

Content

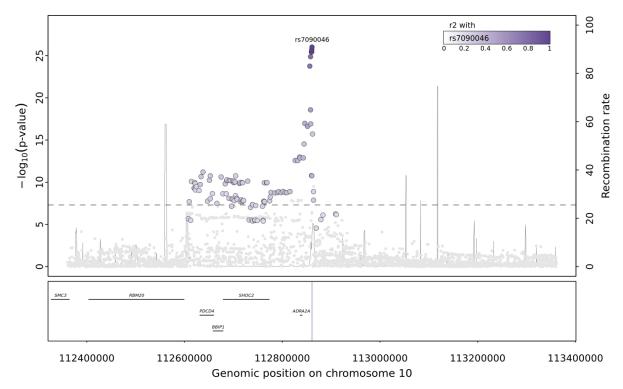
Supplementary Figures	. 2
Supplementary Figure 1 – Inclusion criteria and primary RP definition	. 2
Supplementary Figure2 – Regional association plot	. 3
Supplementary Figure 3 – Q-Q plot	. 4
Supplementary Figure 4 – Beta-correlation plot	. 5
Supplementary Figure 5 – Genetic correlation plot	. 6
Supplementary Tables	. 7
Supplementary Table 1 – Characteristics of cases and controls	. 7
Supplementary Table 2 – OR for sex and sex*SNP interaction	. 8
Supplementary Table 3 – Effect estimates for all and primary RP cases	. 9
Supplementary Table 6b – Latent causal variable analysis	10

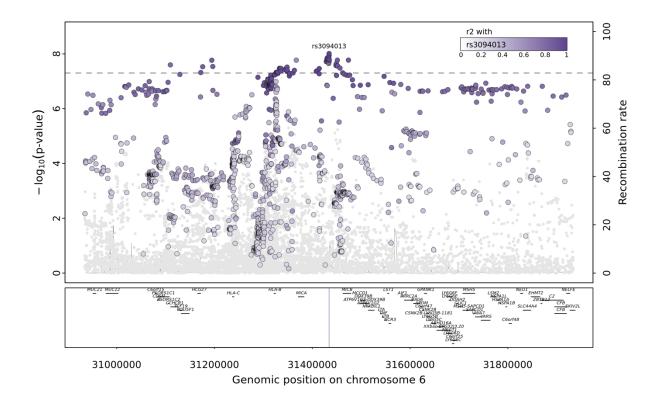
Supplementary Figures

Supplementary Figure 1 – Inclusion criteria and primary RP definition

Flowchart for the criteria for inclusion into the study and criteria for definition as primary Raynaud's phenomenon.

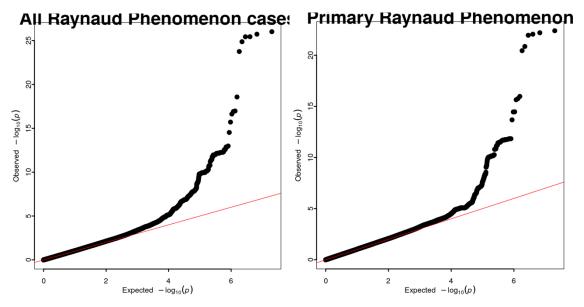


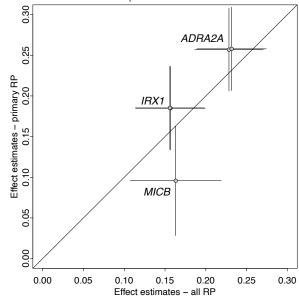

RP = Raynaud phenomenon, HES = hospital episode statistics


*Excluded due to missing genetic data, genetic data did not pass quality control, or withdrawn consent

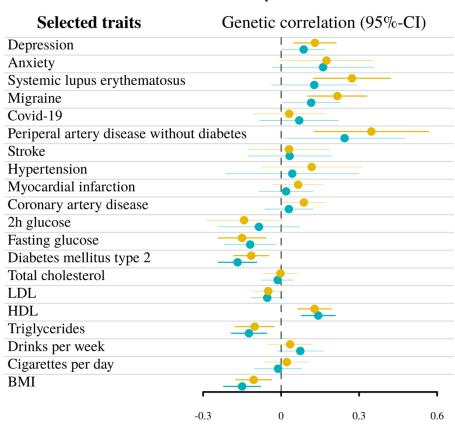
Supplementary Figure 2 – Regional association plot

Regional association plot for variants reported in table 1 for Raynaud's Phenomenon (RP). Each plot displays p-values from logistic regression models associating single nucleotide variants in a \pm 500kb window around the lead signal with the risk of RP. The colour gradient indicates the linkage disequilibrium (r²) with the lead signal (annotated) at the respective locus.




Supplementary Figure 3 – Q-Q plot

Q-Q plot


Supplementary Figure 3 QQ-plot of the genome-wide association results for all RP cases (left) and restricting to primary RP cases (right).

Supplementary Figure 4 – Beta-correlation plot

Supplementary Figure 4 Comparison of effect estimates for three genetic loci, five distinct variants, significantly associated with RP risk among all RP cases (x-axis) and when restricting to primary RP cases only (y-axis).

Supplementary Figure 5 – Genetic correlation plot

•All RP cases •Primary RP

Supplementary Figure 5 Forest plot summarizing genetic correlation analyses between RP and selected traits Results for selected traits as listed in Supplementary Data 2. Dots indicate point estimates for genetic correlations and lines indicate 95%-confidence intervals.

Supplementary Tables

Supplementary Table 1 – Characteristics of cases and controls

Supplementary Tab. 1: Characteristics of case and control population Sample size, demographic factors, and comorbidities of Raynaud's phenomenon (RP) cases and controls. P values were obtained using Chi-Square test for categorical variables and ANOVA for continuous variables. All p-values are two-sided.

Variable (cases/controls (in case participants did not declare an answer))	Participants with Raynaud's phenomenon	Controls	p-value	
n	5,147	439,294		
Age in years (mean (SD))	57.84 (7.9)	56.80 (8.0)	5.9 × 10 ⁻⁷	
Sex (%) [Male]	1,639 (31.8)	201,704(45.9)	<2.2 × 10 ⁻¹⁶	
BMI in m2/kg (mean (SD))	25.86 (4.6)	27.42(4.8)	<2.2 × 10 ⁻¹⁶	
Smoking (%) (9048/433817)			4.3×10^{-7}	
Never	2,493 (50.6)	236,881 (54.1)		
Ever	2,535 (49.4)	200,856 (45.9)		
Alcohol (%)			6.5 × 10 ⁻⁴	
Never	205 (4.0)	13,789(3.1)		
Ever	4,937 (96.0)	425,114 (96.9)		
Diastolic blood pressure in mmHg (mean (SD))	80.49 (10.6)	82.22 (10.7)	<2.2 × 10 ⁻¹⁶	
Systolic blood pressure in mmHg (mean (SD))	138.91 (20.2)	140.03 (19.6)	1.3 × 10 ⁻⁴	
Town Deprivation Index (mean (SD))	-1.42 (3.0)	-1.49 (3.0)	0.131	
Household income in Pound (%)			<2.2 × 10 ⁻¹⁶	
Less than 30,999	2,527 (49.3)	180,752 (41.3)		
31,000 to 100,000	1,658 (32.3)	177,331 (40.5)		
Greater than 100,000	116 (2.3)	20,216 (4.6)		
Not declared	827 (16.1)	59,498 (13.6)		
Migraine (%)	519 (10.1)	19,287 (4.4)	<2.2 × 10 ⁻¹⁶	
Hypertension (%)	2,190 (42.5)	144,872 (33.0)	<2.2 × 10 ⁻¹⁶	
Type 1 Diabetes mellitus (%)	60 (1.2)	4,058 (0.9)	8.4 × 10 ⁻²	
Type 2 Diabetes mellitus (%)	381 (7.4)	36,770 (8.4)	0.014	
Other chronic ischemic heart disease (%)	601 (11.7)	29,892 (6.8)	<2.2 × 10 ⁻¹⁶	
Systemic Lupus Erythematosus (%)	131 (2.5)	528 (0.1)	<2.2 × 10 ⁻¹⁶	
Systemic Sclerosis (%)	229 (4.4)	148 (0.0)	<2.2 × 10 ⁻¹⁶	
1				

Supplementary Table 2 – OR for sex and sex*SNP interaction

Supplementary Tab. 2: OR for variants for men and women separatly as well as p-value for sex*SNP interaction term. Statistics were derived using logistic regression models.

SNP	Allele	Frequ	GW	OR	CI	CI	p-value	OR	CI lower	Cl upper	p-value	p-value
	S	ency	AS	wome	lower	upper	women	men	men	men	men	interaction
				n	women	women						
rs7090046	A/G	0.31	all	1.28	1.21	1.36	1.01e-18	1.20	1.11	1.31	7.97e- 06	0.20
rs12653958	A/G	0.30	all	1.14	1.07	1.20	8.58e-06	1.20	1.11	1.30	1.23e- 05	0.28
rs3094013	G/A	0.14	all	1.15	1.07	1.24	1.24e_04	1.23	1.11	1.37	6.48e- 05	0.31
rs1343449	A/G	0.32	prim ary	1.30	1.22	1.39	3.64e-14	1.19	1.09	1.30	1.71e- 04	0.13
rs72731435	T/C	0.30	prim ary	1.17	1.09	1.26	9.39e-06	1.23	1.12	1.35	9.88e- 06	0.41

OR = odds ratio; CI = confidence interval; GWAS = type of outcome, all – all RP cases, primary – excluding secondary RP cases

Supplementary Table 3 – Effect estimates for all and primary RP cases

Supplementary Tab. 3: Comparison of effect estimates for genetic variants associated with RP between all and primary cases. Statistics were derived from logistic regression models.

Variant						RP (N = 444,44: 1 435,357 contr	•	GWAS of Primary RP(N = 441,542, 3505 cases and 435,357 controls)			
SNP	Chromosome number	Position	Alleles	Frequency	OR	R CI P value		OR	СІ	P value	
rs12653958	5	4032849	A/G	0.30	1.17	(1.12;1.22)	4.76E-13	1.20	(1.14;1.27)	1.69E-12	
rs72731435	5	4048526	T/C	0.30	1.17	(1.12;1.22)	5.85E-13	1.20	(1.14;1.27)	1.46E-12	
rs3094013	6	31434366	G/A	0.14	1.18	(1.11;1.24)	9.73E-09	1.10	(1.03;1.18)	5.40E-03	
rs1343449	10	112860526	A/G	0.32	1.26	(1.20;1.31)	1.85E-26	1.29	(1.23;1.36)	4.04E-23	
rs7090046	10	112860930	G/A	0.31	1.26	(1.21;1.32)	9.58E-27	1.29	(1.23;1.36)	6.39E-23	

Supplementary Table 4 – Latent causal variable analysis

Results from latent causal variable analysis for phecodes with evidence of significant genetic correlations (rg)

T1	Phecodes	rg	SE(rg)	p.fdr(rg)	GCP	SE(GCP)	p.fdr(GCP)
All RP cases	Osteoporosis NOS	0.40	0.08	1.36E-04	0.72	0.19	1.58E-03
Primary RP	Osteoporosis NOS	0.35	0.09	7.93E-03	0.66	0.22	1.17E-02