Supplementary information

Fertility-preserving myeloablative conditioning using single-dose CD117 antibody-drug conjugate in a rhesus gene therapy model

Naoya Uchida^{1,2*}, Ulana Stasula¹, Selami Demirci¹, Paula Germino-Watnick¹, Malikiya Hinds¹, Anh Le¹, Rebecca Chu¹, Alexander Berg¹, Xiong Liu¹, Ling Su³, Xiaolin Wu³, Allen E Krouse⁴, N Seth Linde⁴, Aylin Bonifacino⁴, So Gun Hong⁴, Cynthia E Dunbar⁴, Leanne Lanieri⁵, Anjali Bhat⁵, Rahul Palchaudhuri⁵, Bindu Bennet⁵, Megan Hoban⁵, Kirk Bertelsen⁵, Lisa M Olson⁵, Robert E Donahue¹, John F Tisdale¹

1) Cellular and Molecular Therapeutics Branch, NHLBI/NIDDK, NIH, Bethesda, MD, USA

2) Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan

3) Genomics Technology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA

4) Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA

5) Magenta Therapeutics, Cambridge, Massachusetts (MA), USA

Supplementary Figure 1. Impact of 0.2 mg/kg CD117-ADC conditioning on rhesus macaque marrow hematopoietic stem/progenitor cell content and engraftment of lentivirally-transduced autologous CD34+ cells. (A) Experimental design. Rhesus macaques (n=2), 13U047 and 12U032, were mobilized and CD34+ cells ($3.4\pm0.7e6/kg$) collected by apheresis from the peripheral blood were purified and transduced with a lentiviral vector encoding a human β -globin gene (*HBB*) at MOI 50. Transduced CD34+ cells (VCN 4.7±1.2) were transplanted into autologous macaques 6 days after a single intravenous dose of 0.2 mg/kg CD117-ADC. (B) Hematoxylin and eosin-stained bone marrow biopsies sampled at baseline, transplant day (day 0), and day 14 post-transplant (12U032), and shown at 20x magnification (similar observation at n=2 biologically independent animals). (C) Peripheral blood counts of granulocytes, lymphocytes, reticulocytes, and platelets in rhesus macaques beginning before CD117-ADC (day -6) and through transplantation and recovery. (D) Gene marking levels (VCN) in granulocytes and lymphocytes post-transplantation, evaluated by qPCR. LCR: locus control regions, HBBp: the *HBB* promoter. Source data are provided as a Source Data file.

Supplementary Figure 2. Additional blood counts in rhesus macaques following conditioning. (A-D) Blood counts (white blood cells, red blood cells, hemoglobin concentrations, and hematocrit) before and after transplantation with (A) 0.2 mg/kg CD117-ADC (13U047 and 12U032), (C) myeloablative busulfan 5.5 mg/kg x 4 days (12U018 and 12U020), and (D) 0.3-0.4 mg/kg CD117-ADC (0.3 mg/kg in ZL13 and ZJ62, 0.4 mg/kg in H635 and H96G), as well as (B) before and after CD117-ADC administration (0.2 mg/kg in JJ50, 0.3 mg/kg in ZJ10, and 0.6 mg/kg in Zl07) without autologous CD34+ cell infusion. Source data are provided as a Source Data file.

Supplementary Figure 3. Liver and kidney tests before and after CD34+ cell transplantation in rhesus macaques. (A-C) Liver enzymes (AST, ALT, and LDH), liver function tests (TBIL and ALB), and kidney function tests (BUN, CREA, and K) before and after transplantation with (A) 0.2 mg/kg CD117-ADC (13U047 and 12U032), (B) myeloablative busulfan (12U018 and 12U020), and (C) 0.3-0.4 mg/kg CD117-ADC (0.3 mg/kg in ZL13 and ZJ62, 0.4 mg/kg in H635 and H96G). Source data are provided as a Source Data file.

Supplementary Figure 4. Subset analysis of peripheral blood mononuclear cells (PBMCs) in transplanted animals. Subset analysis (CD4+ T cells, CD8+ T cells, CD20+ B cells, CD11b+CD18+ activated granulocytes, CD14+ monocytes, and CD16+CD56low natural killer (NK) cells) of PBMCs at various time points after transplantation with CD117-ADC (0.3 mg/kg in ZL13 and ZJ62, 0.4 mg/kg in H635 and H96G) and myeloablative busulfan (12U018 and 12U020). Source data are provided as a Source Data file.

Supplementary Figure 5. Positive correlation between HbF induction levels and granulocyte VCN in rhesus macaques. The relationship between HPLC-measured HbF (γ -globin) amounts and granulocyte VCN of the thEpoR/shmiR-BCL11A vector, using three timepoints for each transplanted animal (ZL13, ZJ62, H635, H96G, 12U018, and 12U020). The correlation was evaluated by R² and p-value for coefficient of correlation. p=2.08e-7. Source data are provided as a Source Data file.

_												
A.[Animal ID			ZL13 ZJ6		ZJ62	H635	Н	96G	12U0	18	12U020
	VCN			0.017		0.124 0.26		0	0.060 1.0		5 0.282	
	Total IS			405		2938	4765	8	372	6368	3	4398
	Unique IS		221		1073	3553	3	338 41		9 2553		
	Max IS counts			13		38	23		32	19		22
	Max IS%		3.21%		1.29%	0.48%	3.	67%	0.309	%	6 0.50%	
	Min IS counts		1		1	1		1	1		1	
		UC ₅₀		56		180	1171	54		1087	7	604
	S	impson's diversity i	on's diversity index		0.99247		0.99959	0.9	9200	0.999	61	0.99928
B.[IS	ZL13	ZL13 ZJ62		H635		H96G	H96G 12U(018	1	2U020
	1	PHIP (3.2%)	DACH	1 (1.3%)	CCDC	0.5%) (0.5%)	PPP2R2A (3.7	7%)	CHM (0.3%)	LINC0	1526 (0.5%)
	2	2 LINC02760 (2.5%) GPD2 (1.2%) 3 CPNE4 (2.2%) NDUFB4 (0.9%) 4 COL8A1 (1.5%) FARS2 (0.9%) 5 LOC100130111(1.5%) RBMS1 (0.8%)		MARCHF1 (0.3%) TRPM6 (0.3%) ZNF654 (0.2%) THSD7B (0.2%)		SESTD1 (2.6	ESTD1 (2.6%) CO		3LL1 (0.3%)		SERPINI1 (0.5%)	
	3					MIR31HG (2.2	2%) LOC	LOC105370457 (0.3%) RIT2 (0.3%)) KANSL1L (0.4%) RPL13AP20 (0.4%)		
	4					NDST3 (1.99	%)					
	5					GLRB (1.9%	GLRB (1.9%) PIK3CA		(0.2%)	C15o	rf41 (0.4%)	
	6	PTGS2 (1.2%)	PDGF	C (0.7%)	SYNF	O2 (0.2%)	TNIP3 (1.8%	%) M	THFD2	L (0.2%)	MCI	M8 (0.3%)
	7	LRP1B (1.2%)	INTU	(0.7%)	MRPI	_19 (0.2%)	HAS2 (1.7%	6) P	CDH11	Y (0.2%)	PTP	RQ (0.3%)
	8	MTMR2 (1.2%)	INTU	(0.7%)	LINC02	2476 (0.2%)	MPEG1 (1.6	%) I	NABP1	(0.2%)	ACA	DL (0.3%)
	9	XIST (1.2%)	KANSL	1L(0.6%)	ABI	R (0.1%)	ZNF277 (1.5	%)	CDH9	(0.2%)	ZBTE	320 (0.3%)
L	10	LINC02760 (1.0%)	PCDH	9 (0.6%)	MIB	1 (0.1%)	DDX3X (1.59	%) LII	NC0147	'8 (0.1%)	DP	YD (0.3%)

Supplementary Figure 6. High diversity of lentiviral integration sites (IS) in transplanted animals. (A) IS analysis of lentiviral vectors in granulocytes one year after transplantation with CD117-ADC (0.3 mg/kg in ZL13 and ZJ62, 0.4 mg/kg in H635 and H96G) and myeloablative busulfan (12U018 and 12U020). Diversity was evaluated by Simpson's diversity index (0 representing no diversity, and 1 representing infinite diversity). (B) Gene names of top 10 ISs along with IS percentages. VCN: average vector copy number per cell, UC₅₀: unique clone number of top 50%. Source data are provided as a Source Data file.

Supplementary Figure 7. Similar erythropoietin levels between before and after transplant with thEpoR/shmiR-BCL11A gene addition. Erythropoietin levels in rhesus serum pretransplant and 14-22 months post-transplant with thEpoR/shmiR-BCL11A gene addition following CD117-ADC conditioning (0.3 mg/kg in ZL13 and ZJ62, 0.4 mg/kg in H635 and H96G, n=4 biologically independent animals) and myeloablative busulfan conditioning (12U018 and 12U020, n=2 biologically independent animals). Data are presented as mean +/- standard deviation. Not significant (n.s.) evaluated by one-tailed paired *t*-test between pre- and posttransplant for CD117-ADC animals. Source data are provided as a Source Data file.

Supplementary Figure 8. Gating strategies in flow cytometry. (A) A flow cytometry panel for HbF analysis. (B) Flow cytometry panels for PBMC subset analysis, including CD4+ T cells, CD8+ T cells, CD20+ B cells, CD11b+CD18+ activated granulocytes, CD14+ monocytes, and CD16+CD56low NK cells. APC: allophycocyanin, FSC: forward scatter, PE: phycoerythrin, V450: Violet 450, R718: Red 718, FITC: fluorescein isothiocyanate, PE-Cy7: PE-Cyanine 7.