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Supplementary Figure 1. LPS response to mouse microglia. A, B. Mouse cells were seeded in 96-well E-
plates at a density of 15,000 cells/well and monitored by a real-time impedance-based xCELLigence system.
Mouse microglia or iIMGL cells were challenged with increasing concentrations of LPS (10-1000ng/ml) in the
absence (A) or presence (B) of serum for 24hr. C. IBA1 immunostaining of control and LPS-treated mouse microglia
with and without FBS. Magnification 20x. Scale bar: 50um. D. Heatmap depicting the top 100 most significant
differentially expressed genes of 4h LPS treatment compared with the control. Color key corresponds to row Z-
score. E. Volcano plot depicting fold changes and -Log; of the adjusted p value per gene comparing responses
against LPS 24h and 4h. In panel S1A, LPS 10ng/ml, 100ng/ml, and 1000ng/ml, N=6 technical replicates and LPS
250ng/ml, N=5 of a representative experiment which was repeated 3 times with similar results. In panel S1B, LPS
10ng/ml, 100ng/ml, and 250ng/ml, N=6 technical replicates and LPS 1000ng/ml, N=5 of a representative
experiment which was repeated 3 times with similar results. For panel S1D, N=3 different animals per condition.
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Supplementary Figure 2. Human iMGLs response to LPS
A, B. Principal Component Analysis (PCA) of the transcriptomes of untreated, and LPS-treated iMGLs for 4h and
24h. In (A), samples are colored by condition. In (B), samples are colored by collection/biological replicate. C.
Heatmap depicting the top 100 most significant differentially expressed genes of 4h LPS treatment compared with
the control. Color key corresponds to row Z-score. D. Volcano plot depicting fold changes and -Log» of the adjusted
p value per gene comparing responses against LPS 24h and 4h. N=4 independent experiments per condition.
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Supplementary Figure 3. Comparison of the transcriptomes of LPS-treated iPSC-derived human microglia-
like cells from this study with other iPSC-derived microglia models.

A. Venn diagram with the overlap of DEGs of short-term LPS-treated iPSC-derived microglia-like cells from the
study of Alasoo and colleagues, Hasselman and this study. B. Circos plot depicting the overlap in the lists of DEGs.
On the outside, each arc represents the identity of each gene list, using the following color code: Blue, Hasselman;
red, Alasso; green, this study. On the inside, each arc represents a gene list, where each gene member of that list
is assigned a spot on the arc. Dark orange color represents the genes that are shared by multiple lists and light
orange color represents genes that are unique to that gene list. Purple lines link the same gene that are shared by
multiple gene lists. C. Circos plot built in the same way as (B). Blue lines link the genes that, although different, fall
under the same ontology term (the term has to be statistically significantly enriched and with size no larger than
100). Blue lines indicate the amount of functional overlap among the input gene lists. D. Heatmap depicting the top
20 statistically enriched terms (GO/KEGG, canonical pathways, etc..) hierarchically clustered into a tree based on



Kappa-statistical similarities among their gene memberships. The term with the best p-value within each cluster is
shown as its representative tem in the dendrogram. Heatmap cells are colored by their p-values, while cells indicate
the lack of enrichment for that term in the corresponding gene list. E. Heatmap depicting the top100 statistically
enriched terms in a similar fashion to (D).
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Supplementary Figure 4. Cross-species comparison of transcriptomic responses against LPS over time.
A, E. Overlap of DEGs in mouse microglia (A) and human iMGLs (E) at 4 and 24 hours after LPS stimulation. B,
F. Top enriched biological processes after performing GSEA with the metascape tool with the overlapped gene
lists for mouse microglia (B) and human iMGLs (F). C, G. Circos plot depicting how genes from the lists of DEGs
overlap for mouse microglia (C) and human iMGLs (G) for the two timepoints. On the outside, each arc represents
the identity of each gene list. On the inside, each arch represents a gene list, where each gene member of that list
is assigned a spot on the arc. Dark orange color represents the genes that are shared by multiple lists and light
orange color represents genes that are unique to that gene list. Purple lines link the same gene that are shared by
multiple gene lists (notice a gene that appears in two gene lists will be mapped once onto each gene list, therefore,
the two positions are purple linked). Blue lines link the genes, although different, fall under the same ontology term
(the term has to be statistically significantly enriched and with size no larger than 100). The greater the number of
purple links and the longer the dark orange arcs imply greater overlap among the input gene lists. Blue links indicate
the amount of functional overlap among the input gene lists. D, H. Scatterplots of the genes that were differentially



regulated by LPS 4h and 24h treatment (red dots) with an adjusted p<0.05 in mouse microglia (D) and human
iMGLs (H). A linear model was fitted among the genes that were differentially regulated and the R squared, and
the equation of the line are depicted within the scatterplot. I. Gene expression of the TIr4 and TLR4 genes depicted
by the normalized measure of TPMs per species. N=4 human independent experiments and N=3 different animals.
p=0.014 by unpaired two-tailed t-test.
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Supplementary Figure 5. Transcriptomic changes in the glycolytic and TCA pathways in LPS-treated
human iMGLs. A, B. Hierarchically clustered heatmaps depicting gene expression changes in the glycolytic
pathway (A) and in the TCA pathway (B). Color key corresponds to row Z-score. * denotes padj <0.05 LPS 4h
versus Control, # denotes padj <0.05 LPS 24h versus Control and these values can be found in Supplementary
Datasets. N=4 independent experiment per condition.
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Supplementary Figure 6. Transcriptomic and proteomic characterization of TCA cycle enzymes in mouse
microglia and human iMGLs. Mouse and human microglial cells were in vitro stimulated with LPS 250ng/mL and
collected 4 hours after stimulation for proteomic analysis by LC-MS/MS. A,B. Normalized counts depicting transcript
abundance of genes that code for Isocitrate dehydrogenase enzymes in mouse (A) (/dh1, p=1.39EA7) and human
(B) cells. C,D. Label-free quantitation values from proteomic analysis depicting relative abundance of IDH1
(p=0.00039), IDH2 (p=0.025), and IDH3A and IDH3B in mouse (C) and human (D) cells. E,F. Normalized counts
depicting transcript abundance of genes that code for TCA cycle enzymes in mouse (E) and human (F) cells (ACO1,
p=0.00065; FH, p=0.00038, CS, p=0.047). G,H. Label-free quantitation values depicting relative abundance of TCA
cycle enzymes in mouse (1) and human (J) cells. |,J. Proteomic abundances of TCA cycle enzymes measured by
LC-MS/MS with internal standards. (I) Depicts plots of relative abundances on mouse microglia and (J) depicts
human cells (ACQO2, for first peptide p=0.03, second peptide p=0.014; CS, p=0.03; DLST, p=0.018; FH, p=0.04;
IDH2, p=0.014; IDH3A, p=0.018; MDHZ2, first peptide p=0.022, second peptide p=0.03; SUCLA2, p=0.045;
SUCLG2, p=0.031). For all panels, data are presented as mean + S.E.M.. Every biological replicate is depicted as
a dot. For mouse RNAseq N=3 different animals, for human RNAseq N=4 independent experiments, for mouse
proteomics N=4 different animals and for human label free proteomics N=5 independent experiments, for human
targeted proteomics N=4 independent experiments. For RNAseq data p values were determined by the Wald test
and multi testing corrected in DESEQ2. For LFQ proteomic data, p values were determined by unpaired two-tailed
t-test and for targeted proteomic data, p values were determine by paired one-tailed t-test. *p<0.05, **p<0.01, and
***p<0.001
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Supplementary Figure 7. Proteomic characterization of pentose-phosphate pathway enzymes in mouse
microglia and human iMGLs. A, B. Absolute proteomic abundances of pentose phosphate pathway (PPP)
enzymes measured by LC-MS/MS with internal standards. Mouse microglia are depicted in (A) and mouse iMGLs
are depicted in (B) (PGD, p=0.032). C, D. Relative proteomic abundances of (A) and (B), respectively (PGD,
p=0.031). For mouse targeted proteomics N=4 different animals and for human targeted proteomics N=5
independent experiments. All data are presented as mean + S.E.M. p values were determined by paired two-tailed
t-test. *p<0.05.



Normalized Cell Index

ect A LPS 250 ng/ml

@ Ctr A LPS 250 ng/ml

200

Total Red Object Integrated Intensity
(RCU Xum?2fimage)

S S S S
Time of treatment (hours)

@ Ctr

Supplementary Figure 8. Differential response to LPS in mouse and human microglia. A. Mouse and B. iMGL
cells were seeded in 96-well E-plates at a density of 15,000 cells/well and monitored by a real-time impedance-
based xCELLigence system. Mouse microglia or iMGL cells were challenged with LPS (250 ng/ml) for 24hr.
Morphological alterations of microglia were visualized by immunostaining with Iba-1 antibody in mouse C and in D
iIMGL cells. Magnification 20x. Scale bar: 50um. Phagocytic activity of mouse E and human F differentiated iPSC
microglia in the Incucyte system displaying phagocytosis reagent pHrodo red E. coli BioParticles being engulfed
by cells vs cells treated with the inhibitor Cytochalasin D (CytoD) with its corresponding time-lapse curves and
representative pictures at time 0 and 24hr after the addition of the particles and phagocytic activity inhibitor.
Magnification 20x. Scale bar: 200um. For all panels, N=6 technical replicates of a representative experiment which
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was repeated 3 times with similar results. Figures S8A and S8B were made with Biorender.
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Supplementary Figure 9. Effect of FBS on viability of iMGLs. A. IBA1 immunostaining of untreated and LPS-
treated human iMGLs with and without serum. Magnification 20x. Scale bar: 50um. Representative micrographs of
three independent experiments with similar results.



Supplementary Table 1: Key glycolytic enzymes changes upon LPS stimulation in human
microglia. Comparison between key glycolytic genes by taking Log2Fold Changes and padjusted
values upon LPS stimulation in human microglial models by Alasoo et al., 2015, Hasselman et al.,
2019 and the present study.

Alasoo and colleagues, 2015

Hasselman and colleagues, 2019

This study

Gene

LPS LOG2FC

LPS p adjusted

LPS LOG2FC

LPS p adjusted

LPS LOG2FC

LPS p adjusted

HK1
HK2
HK3
PFKL
PFKM
PFKP
PFKFB2
PFKFB3
PFKFB4

-0,033945571
1,725753088
-0,537599882
0,225884443
-0,240184491
0,832655278
-2,480182269
3,78475598
0,662009829

0,869757095
4,97E-08
0,083773302
0,315874198
0,538907676
0,000560821
1,49E-14
2,32E-41
0,240592732

0,311869655
0,16974605
1,209588858
-0,489771107
0,083985022
0,443239198
-0,172979321
4,205201541
1,936316186

0,715240884
0,860490848
0,069627517
0,241800574
0,938397175
0,467758675
0,805604011
1,89E-10
0,004624704

-0,449345293
0,155577255
-0,441352212
0,032290815
-0,64519715
0,218589369
-0,544419049
0,679523678
-0,908830721

0,000778876
0,603020607
0,035084305
0,852953539
0,065800871
0,313727481
0,006348326
0,002267515
0,038238826



Supplementary Table 2: Key TCA cycle enzymes changes upon LPS stimulation in human
microglia. Comparison between key glycolytic genes by taking Log2Fold Changes and padjusted
values upon LPS stimulation in human microglial models by Alasoo et al., 2015, Hasselman et al.,

2019 and the present study.

Alasso and colleagues Hasselman and colleagues This study

Gene LPS LOG2FC  LPS p adjusted LPS LOG2FC  LPS p adjusted LPS LOG2FC  LPS p adjusted
ACO1 0,421255237 0,025235254 -0,36264084 0,542526946 0,697360145 0,000652458
ACO2 -0,197243328 0,42950605  -0,652235174 0,102594347 0,083759295 0,544608075
CS 0,015316572 0,929757664  -0,570141527 0,092493501 0,291576022 0,047077513
DLST 0,359539115 0,00167459 0,211144398 0,738888198 0,133740006 0,250510975
FH 0,008833245 0,971012849  -0,688039184 0,199720543 0,422484283 0,000382666
IDH1 -1,266030386 2,29E-05 0,00116655 0,998041115 -0,378472565 0,000393245

IDH2 -0,827082955 0,004406717  -2,069535342 3,40E-14 -0,34908629 0,02583341

MDH1 -0,376936268 0,205612346 0,591075912 0,560827374 0,026806508 0,901072063
MDH?2 -0,071247416 0,742852071 0,154950073 0,825393354 0,003924168 0,983967589
OGDH -0,053030142 0,848309813  -0,891771874 0,281191754 0,056926869 0,768809426
SUCLG1 -0,370416189 0,063284257  -0,180815122 0,799951978 -0,03890903 0,871030102
SUCLA2 -0,193489157 0,159857482  -0,732743216 0,054113095 0,038148576 0,901142661



Supplementary Table 3: Primary microglia studies and technical aspects for microglia culture.
Columns specify the study, type of culture, if pups or adult mice were used, and whether FBS was

used or not.
. . From adult mice or Was FBS
Study Microglia culture type pups? included?
Acutely isolated ex vivo,
Gosselin et al, percoll gradient with
2014 FACS purification 8-9 weeks Yes
CD11b+ CD45Low
. . Young (1-2 month old)
Nike et al, 2012 Acutelyisolated ex vivo, 1 "a cey (14-16 month Yes
percoll gradient old)
Acutely isolated ex vivo,
Gosselin et al., percoll gradient with
2017 FACS purification 8-9 weeks Yes
CD11b+ CD45Low
Brain dissociation and
Geric et al., platting with posterior : )
2019 subculturing by Post-natal day 0-1 Yes
mechanical shaking.
Acutely isolated ex vivo,
Bohlen et al., myelin depletion and with
2017 MACS purification for 3-5 weeks Yes
CD11b+
Brain dissociation and
Chhor et al., platting with posterior : .
2013 subculturing by Post-natal day 0-1 Yes
mechanical shaking.
Brain dissociation and
Dolga et al., platting with posterior :
2012 subculturing by Post-natal day 1-3 Yes
mechanical shaking.
Brain dissociation and
This study platting with posterior Post-natal day 1-3 Yes

subculturing by
mechanical shaking.



Supplementary Table 4: Studies that have stimulated myeloid cells with TLR4 agonism and
assessed metabolic outcomes. Columns specify the study, studied species, model, stimuli
employed and main metabolic features. (BMDM: Bone marrow-derived macrophages, PBMC:
peripheral blood mononuclear cells, BMD: Bone marrow-derived)

Study Species Model Stimuli Features
No glycolytic reprogramming
Viayan etal: Human hBMDM LPS No mitochondrial ROS production
Mitochondrial dysfunction
Vuayzaon1 St al. Mouse BMDM LPS Glycolytic reprogramming
Immature, tolerogenic and LPS-treated
Malinarich et al., Human PBMCs- LPS tolerogenic DCs were poorly
2015 derived DCs. immunogenic and exhibited increased
oxidative metabolism.
Verberk et al., LPS + Increased glycolysis and decreased
2022 Mouse BMDM IFNy oxygen consumption.
Verberk et al., LPS + Increased glycolysis and no effect on
2022 Human hMDM IFNy oxidative metabolism parameters.
Enhancers were linked to genes like
Naler et al.. 2022 Mouse BMD Low dose Csf1, Irf5, Rab11a, Ccrb, Irf7, Ticam2,
v Monocytes ~ (100pg/mL)  [fit3, and Irf1 and with low signal to Arg1,
Hdac5b, and Tremi1.
. Enhancer-linked genes of autophagy,
Naler et al., 2022 Mouse BMD High dose endocytosis and TLR4 signaling were
Monocytes (1 pg/mL) .
negatively regulated.
Maoldomhnaigh Warburg effect occurs rapidly in adult
ot al 20219 Human hMDM LPS MDM but oxidative metabolism is no
” longer decreased after 24hr.
Umbilical
Maoldomhnaiah Cord Blood Warburg effect takes longer than in adult
ot al 20219 Human Monocyte LPS MDMs and oxidative metabolism is
” Derived decreased after 24hr.

Macrophages



