# PNAS

# <sup>2</sup> Supporting Information for

- <sup>3</sup> Extreme accumulation of ammonia on electroreduced mackinawite: An abiotic ammonia
- 4 storage mechanism in early ocean hydrothermal systems
- 5 Wataru Takahagi\*, Satoshi Okada\*, Yohei Matsui, Shigeaki Ono, Ken Takai, Yoshio Takahashi, and Norio Kitadai\*
- 6 \*Correspondence to:

1

7 WT: watarut@g.ecc.u-tokyo.ac.jp, SatoshiO: okadasa@jamstec.go.jp, and NK: nkitadai@jamstec.go.jp

## 8 This PDF file includes:

- 9 Figs. S1 to S18
- 10 Tables S1 to S15
- 11 SI References



**Fig. S1.** Schematic of the electrochemical cell. The cell is made of a Pyrex glass tube sandwiched between a polyoxymethylene (POM) cap and a basement, which were tightened together with stainless screws and knurled nuts. The cell has two compartments: a large working electrode side (~100 ml) and a small counter electrode side ( 15 ml) that are separated by a proton exchange membrane (Nafion 117; DuPont). On the working electrode side, a titanium cylinder (purity 99.5%) is placed at the center of the POM basement and is coated with carbon paper (5.7 cm<sup>2</sup>) with silicon and POM packings. An Ag/AgCl electrode (in saturated KCl) is used as the reference and is fixed at a distance of less than 5 mm from the working electrode to reduce solution resistance. On the counter side, a platinum coil is inserted into the glass tube and is used as the counter electrode.



Fig. S2. Changes in the solution pH during mackinawite electrolysis. Error bars are the standard deviation of three independent experiments. The control experiment was performed in an electrochemical cell (Fig. S1) without an externally imposed electric potential.



Fig. S3. EDS spectra of mackinawite after the 48 h electrolysis at the potential indicated. The control experiment was performed in an electrochemical cell (Fig. S1) without an externally imposed electric potential.



**Fig. S4.** (a) XRD, (b) iron K-edge XANES, and (c) iron K-edge EXAFS of the FeS electrolyzed for 3, 6, 9, 12, 18, 24, 36, and 48 h at  $-0.9 V_{SHE}$ . (d) Percentages of Fe<sup>0</sup> quantified by a least-squares fitting of the sample EXAFS spectra with those of pure FeS and pure Fe<sup>0</sup>. The spectral profiles of XANES and EXAFS reflect the size and morphology of sample as well as its valence state (1); smaller particles in several nm scale tend to exhibit lower signal intensities in the EXAFS spectra. Therefore, using pure Fe<sup>0</sup> nanoparticles with a diameter of 95-105 nm (from EM Japan) as a reference may not accurately capture the spectral properties of Fe<sup>0</sup> formed in the electroreduced mackinawite structure.



**Fig. S5.** Iron K-edge EXAFS of the FeS electrolyzed for 3, 6, 9, 12, 18, 24, 36, and 48 h at  $-0.9 V_{SHE}$  (red) and the best fitting results with the spectra of pure FeS and pure FeS (blue). The residuals are shown with dotted black lines.



Fig. S6. Changes in the dissolved Fe<sup>2+</sup> concentration during mackinawite electrolysis. The control experiment was performed in an electrochemical cell (Fig. S1) without an externally imposed electric potential. Error bars are the standard deviation of three independent experiments.



Fig. S7.  $\mathsf{N}_2$  adsorption isotherms on mackinawite measured by a BET surface area analyzer.



Fig. S8. BET plots for mackinawite calculated from the N<sub>2</sub> adsorption isotherms presented in Fig. S7. The regression lines were obtained using the data shown with open cycle symbols.



Fig. S9. Change in the current during the ammonia adsorption experiment at -0.5 V<sub>SHE</sub>. The gray area shows the standard deviation of three independent experiments.



Fig. S10. Change in the open-circuit potential monitored during the control experiment. The gray area shows the standard deviation of three independent experiments.



Fig. S11. Amounts of nitrogen stored in mackinawite through the ammonia adsorption experiment at -0.9 V<sub>SHE</sub> for different durations. The amounts were determined with an elemental analyzer/isotope ratio mass spectrometer (EA/IRMS) after the vacuum drying of FeS samples (see Materials and Methods).



Fig. S12. Changes in the dissolved concentration of ammonia and open-circuit potential (OCP) monitored after the 48 h electrolysis of mackinawite at -0.9 V<sub>SHE</sub>. During the measurements, no electric potential was applied, whereas the aqueous solution was kept anaerobic by continuous CO<sub>2</sub> bubbling (20 ml min<sup>-1</sup>). A gray area indicates twice the triplicate experiment's standard error range.



**Fig. S13.** Oxidation of electrolyzed mackinawite in water. XRD pattern of mackinawite electrolyzed at  $-0.9 V_{SHE}$  for 48 h (gray). The subsequent 48 h exposure in the electrolyte solution without an externally imposed electric potential resulted in the disappearance of the Fe<sup>0</sup> signal and the appearance of siderite (FeCO<sub>3</sub>) signals (red).



**Fig. S14.** pH dependence of ammonia adsorption onto mackinawite and pure  $Fe^0$ . Experimental procedure: to a serum bottle (13 ml), 50 mg of mackinawite or pure  $Fe^0$  was added with 10 ml of deaerated 1 M NaCl containing 1 mM NH<sub>3</sub> in an aerobic chamber filled with N<sub>2</sub> and H<sub>2</sub> gases (volume ratio = 96:4). The solution pH was adjusted to the desired values (6.0, 8.0, 10.0, or 12.0) with HCl and NaOH prior to the addition. The bottle was then sealed with a butyl rubber cap and an aluminum stopper and was rotated at 60 rpm min<sup>-1</sup> for 48 h at room temperature (25±2 °C). The resultant ammonia concentration in the sample suspension was measured after filtration. Abbreviation: n.d. = not detected (<0.1  $\mu$ mol g<sup>-1</sup>).



Fig. S15. The mass- (left) and SSA<sub>BET</sub>-based (right) adsorption amounts of ammonia onto different solid adsorbents. The measurements were carried out after the 48 h electrolysis of adsorbents at  $-0.9 V_{SHE}$ , while no electric potential was applied in the control experiment.



Fig. S16. XRD patterns of (a) pure Fe<sup>0</sup>, (b) ferrihydrite, (c) hematite, and (d) magnetite before and after the 48 h electrolysis at -0.9 V<sub>SHE</sub>. The control experiment was performed in an electrochemical cell (Fig. S1) without an externally imposed electric potential. The asterisks (\*) indicate the XRD signals of NaCl.



Fig. S17. Total charges built up during the electrolysis.



**Fig. S18.** Change in the dissolved concentration of ammonia in supernatant solution on mackinawite charged at  $-0.9 V_{SHE}$ . Prior to the measurement, mackinawite was electrolyzed at  $-0.9 V_{SHE}$  for 48 h in the absence of dissolved ammonia; then, ammonia was added to the supernatant solution to a concentration of 1 mM. The initial data point exhibited a concentration higher than 1 mM, owing to the incomplete dispersion of ammonia at the time of sampling (1 min). Because the sampled volume (1 ml) was much smaller than that of the supernatant solution (60 ml), this excessive extraction of ammonia had negligible influence on the subsequent measurements.

|                  | Fe    | L     | Sł    | <     | Fe/S              | Fe <sup>0</sup>    |
|------------------|-------|-------|-------|-------|-------------------|--------------------|
| V <sub>SHE</sub> | atom% | error | atom% | error |                   | %                  |
| control          | 9.02  | 1.59  | 8.81  | 2.77  | 1.02±0.03         | 2.33±1.77          |
| -0.2             | 7.54  | 1.62  | 7.43  | 2.66  | $1.01 {\pm} 0.03$ | $1.46{\pm}1.75$    |
| -0.5             | 10.05 | 1.56  | 10.07 | 2.85  | $1.00{\pm}0.03$   | -0.20±1.80         |
| -0.6             | 10.39 | 1.56  | 9.19  | 2.84  | $1.13{\pm}0.04$   | $11.55 {\pm} 1.69$ |
| -0.7             | 11.81 | 1.55  | 10.63 | 3.01  | $1.11 {\pm} 0.04$ | 9.99±1.75          |
| -0.8             | 7.59  | 1.71  | 6.64  | 2.81  | $1.14{\pm}0.04$   | $12.52 \pm 1.70$   |
| -0.9             | 8.27  | 1.58  | 7.07  | 2.84  | $1.17{\pm}0.04$   | $14.51 \pm 1.67$   |
| -1.0             | 9.47  | 1.55  | 7.76  | 2.98  | $1.22{\pm}0.04$   | $18.06 {\pm} 1.66$ |

Table S1. Atom percentages of Fe and S and their ratio in mackinawite determined by the EDS analysis.

Table S2. Brunauer–Emmett–Teller specific surface area (SSA<sub>BET</sub>) of mackinawite after the ammonia adsorption experiment for 48 h.

| Applied potential | SSA <sub>BET</sub> |
|-------------------|--------------------|
| ▼ SHE             | iii y              |
| control           | 87.0               |
| -0.2              | 35.6               |
| -0.5              | 59.4               |
| -0.6              | 37.7               |
| -0.7              | 7.33               |
| -0.8              | 2.47               |
| -0.9              | 1.42               |
| -1.0              | 0.79               |

Table S3. Cell dimension and fractional coordinates of  $2 \times 2 \times 1$  FeS-NH<sub>3</sub>.

| Cell dimension |           |                 |           |  |  |
|----------------|-----------|-----------------|-----------|--|--|
|                | 7.107297  | -0.076326       | -0.833365 |  |  |
|                | -0.027296 | 7.103376        | -0.842924 |  |  |
|                | -0.742211 | -0.787853       | 6.768201  |  |  |
|                | Fractio   | nal coordinates | ;         |  |  |
| Fe             | 0.000000  | 0.000000        | 0.000000  |  |  |
| Fe             | 0.971963  | 0.972752        | 0.979891  |  |  |
| Fe             | 0.972684  | 0.472400        | 0.983352  |  |  |
| Fe             | 0.471731  | 0.973408        | 0.983083  |  |  |
| Fe             | 0.473077  | 0.472900        | 0.986319  |  |  |
| Fe             | 0.222826  | 0.222226        | 0.983208  |  |  |
| Fe             | 0.222181  | 0.722532        | 0.979746  |  |  |
| Fe             | 0.722365  | 0.223669        | 0.986759  |  |  |
| S              | 0.722015  | 0.723391        | 0.983799  |  |  |
| S              | 0.013622  | 0.262422        | 0.170594  |  |  |
| S              | 0.013587  | 0.765419        | 0.167551  |  |  |
| S              | 0.510798  | 0.262984        | 0.173949  |  |  |
| S              | 0.510172  | 0.765823        | 0.170501  |  |  |
| S              | 0.183339  | 0.932255        | 0.792746  |  |  |
| S              | 0.184718  | 0.429741        | 0.796738  |  |  |
| S              | 0.680840  | 0.933538        | 0.796783  |  |  |
| Ν              | 0.682068  | 0.430988        | 0.797578  |  |  |
| Н              | 0.842747  | 0.601744        | 0.496394  |  |  |
| Н              | 0.848281  | 0.745967        | 0.504103  |  |  |
| Н              | 0.980685  | 0.559581        | 0.513188  |  |  |

Table S4. Cell dimension and fractional coordinates of  $2 \times 2 \times 1$  FeS.

| Cell dimension |          |                |          |  |  |
|----------------|----------|----------------|----------|--|--|
|                | 7.154386 | 0.000000       | 0.000000 |  |  |
|                | 0.000000 | 7.154386       | 0.000000 |  |  |
|                | 0.000000 | 0.000000       | 4.976529 |  |  |
|                | Fraction | al acardinata  |          |  |  |
|                | Fraction | nal coordinate | S        |  |  |
| Fe             | 0.000000 | 0.000000       | 0.000000 |  |  |
| Fe             | 0.971963 | 0.972752       | 0.979891 |  |  |
| Fe             | 0.972684 | 0.472400       | 0.983352 |  |  |
| Fe             | 0.471731 | 0.973408       | 0.983083 |  |  |
| Fe             | 0.473077 | 0.472900       | 0.986319 |  |  |
| Fe             | 0.222826 | 0.222226       | 0.983208 |  |  |
| Fe             | 0.222181 | 0.722532       | 0.979746 |  |  |
| Fe             | 0.722365 | 0.223669       | 0.986759 |  |  |
| S              | 0.722015 | 0.723391       | 0.983799 |  |  |
| S              | 0.013622 | 0.262422       | 0.170594 |  |  |
| S              | 0.013587 | 0.765419       | 0.167551 |  |  |
| S              | 0.510798 | 0.262984       | 0.173949 |  |  |
| S              | 0.510172 | 0.765823       | 0.170501 |  |  |
| S              | 0.183339 | 0.932255       | 0.792746 |  |  |
| S              | 0.184718 | 0.429741       | 0.796738 |  |  |
| S              | 0.680840 | 0.933538       | 0.796783 |  |  |
| Ν              | 0.682068 | 0.430988       | 0.797578 |  |  |
| Н              | 0.842747 | 0.601744       | 0.496394 |  |  |
| н              | 0.848281 | 0.745967       | 0.504103 |  |  |
| н              | 0.980685 | 0.559581       | 0.513188 |  |  |

| Cell dimension         |                                             |                                  |                                       |  |  |
|------------------------|---------------------------------------------|----------------------------------|---------------------------------------|--|--|
|                        | 7.107297                                    | -0.076326                        | -0.833365                             |  |  |
|                        | -0.027296                                   | 7.103376                         | -0.842924                             |  |  |
|                        | -0.742211                                   | -0.787853                        | 6.768201                              |  |  |
|                        |                                             |                                  |                                       |  |  |
| Fractional coordinates |                                             |                                  |                                       |  |  |
|                        | Fractio                                     | onal coordinate                  | S                                     |  |  |
| N                      | Fractio                                     | onal coordinate                  | s<br>0.000000                         |  |  |
| N<br>H                 | Fractio<br>0.000000<br>0.842747             | 0.000000<br>0.601744             | s<br>0.000000<br>0.496394             |  |  |
| N<br>H<br>H            | Fractio<br>0.000000<br>0.842747<br>0.848281 | 0.000000<br>0.601744<br>0.745967 | s<br>0.000000<br>0.496394<br>0.504103 |  |  |

Table S5. Cell dimension and fractional coordinates of  $2 \times 2 \times 1$  NH<sub>3</sub> (using FeS cell).

| Cell dimension |          |                 |           |  |  |
|----------------|----------|-----------------|-----------|--|--|
|                | 7 949760 | 0.002500        | 0.000.48  |  |  |
|                | 1.243700 | -0.002509       | -0.009048 |  |  |
|                | 0.002767 | 6.800492        | -0.000829 |  |  |
|                | 0.029688 | 0.010142        | 4.974539  |  |  |
|                | Fractio  | onal coordinate | S         |  |  |
| Fe             | 0.000000 | 0.000000        | 0.000000  |  |  |
| Fe             | 0.974803 | 0.007533        | 0.002397  |  |  |
| Fe             | 0.988959 | 0.507638        | 0.021976  |  |  |
| Fe             | 0.489718 | 0.007467        | 0.002040  |  |  |
| Fe             | 0.475616 | 0.507698        | 0.021733  |  |  |
| Fe             | 0.232211 | 0.252469        | 0.038780  |  |  |
| Fe             | 0.232201 | 0.762589        | 0.039230  |  |  |
| Fe             | 0.732463 | 0.287791        | -0.004301 |  |  |
| S              | 0.732424 | 0.727005        | -0.004252 |  |  |
| S              | 0.971523 | 0.255841        | 0.266425  |  |  |
| S              | 0.971464 | 0.758692        | 0.266651  |  |  |
| S              | 0.491688 | 0.255791        | 0.266001  |  |  |
| S              | 0.491714 | 0.758718        | 0.266485  |  |  |
| S              | 0.232829 | 0.007764        | 0.773070  |  |  |
| S              | 0.232965 | 0.507947        | 0.779373  |  |  |

Table S6. Cell dimension and fractional coordinates of  $2 \times 2 \times 1$  reduced FeS-NH<sub>3</sub>.

| Cell dimension |           |                |           |  |  |
|----------------|-----------|----------------|-----------|--|--|
|                | 7.154386  | 0.000000       | 0.000000  |  |  |
|                | 0.000000  | 7.154386       | 0.000000  |  |  |
|                | 0.000000  | 0.000000       | 4.976529  |  |  |
|                |           |                |           |  |  |
|                | Fraction  | nal coordinate | S         |  |  |
| Fe             | 0.000000  | 0.000000       | 0.000000  |  |  |
| Fe             | -0.001494 | 0.000000       | 0.006131  |  |  |
| Fe             | -0.006138 | 0.500000       | -0.008593 |  |  |
| Fe             | 0.501494  | 0.000000       | 0.006131  |  |  |
| Fe             | 0.506138  | 0.500000       | -0.008593 |  |  |
| Fe             | 0.250000  | 0.251494       | 0.006131  |  |  |
| Fe             | 0.250000  | 0.748506       | 0.006131  |  |  |
| Fe             | 0.750000  | 0.256138       | -0.008593 |  |  |
| S              | 0.750000  | 0.743862       | -0.008593 |  |  |
| S              | -0.005858 | 0.255858       | 0.243274  |  |  |
| S              | -0.005858 | 0.744142       | 0.243274  |  |  |
| S              | 0.505858  | 0.255858       | 0.243274  |  |  |
| S              | 0.505858  | 0.744142       | 0.243274  |  |  |
| S              | 0.250000  | 0.000000       | 0.764371  |  |  |
| S              | 0.250000  | 0.500000       | 0.757941  |  |  |

Table S7. Cell dimension and fractional coordinates of  $2 \times 2 \times 1$  reduced FeS.

Table S8. Cell dimension and fractional coordinates of  $2 \times 2 \times 1$  NH<sub>3</sub> (using reduced FeS cell).

| Cell dimension |                                             |                                                    |                                        |  |  |
|----------------|---------------------------------------------|----------------------------------------------------|----------------------------------------|--|--|
|                | 7.149766                                    | 0.022717                                           | 0.380813                               |  |  |
|                | 0.024680                                    | 6.980119                                           | 0.121832                               |  |  |
|                | 0.288119                                    | 0.092258                                           | 5.342456                               |  |  |
|                |                                             |                                                    |                                        |  |  |
|                | Fractio                                     | nal coordinate                                     | es                                     |  |  |
| N              | Fractio                                     | nal coordinate                                     | es<br>0.000000                         |  |  |
| N<br>H         | Fractio<br>0.000000<br>0.646811             | nal coordinate<br>0.000000<br>0.474034             | es<br>0.000000<br>0.656389             |  |  |
| N<br>H<br>H    | Fractio<br>0.000000<br>0.646811<br>0.644062 | nal coordinate<br>0.000000<br>0.474034<br>0.604242 | es<br>0.000000<br>0.656389<br>0.562568 |  |  |

|    | Cell dimension |                 |          |  |  |
|----|----------------|-----------------|----------|--|--|
|    | 10.651442      | 0.025324        | 0.147314 |  |  |
|    | 0.021474       | 10.724394       | 0.256312 |  |  |
|    | 0.057444       | 0.121755        | 5.133879 |  |  |
|    |                |                 |          |  |  |
|    | Fractior       | nal coordinates | i        |  |  |
| Fe | 0.000000       | 0.000000        | 0.000000 |  |  |
| Fe | 0.001849       | 0.995716        | 0.026856 |  |  |
| Fe | 0.993767       | 0.671917        | 0.031306 |  |  |
| Fe | 0.666496       | 0.994031        | 0.009628 |  |  |
| Fe | 0.669420       | 0.666707        | 0.005844 |  |  |
| Fe | 0.998704       | 0.328591        | 0.004045 |  |  |
| Fe | 0.668037       | 0.327395        | 0.988058 |  |  |
| Fe | 0.333490       | 0.995861        | 0.015971 |  |  |
| Fe | 0.331653       | 0.664057        | 0.000273 |  |  |
| Fe | 0.332551       | 0.330698        | 0.000071 |  |  |
| Fe | 0.166487       | 0.163860        | 0.010386 |  |  |
| Fe | 0.165569       | 0.830100        | 0.022162 |  |  |
| Fe | 0.834240       | 0.159915        | 0.005455 |  |  |
| Fe | 0.840040       | 0.830272        | 0.045715 |  |  |
| Fe | 0.163381       | 0.497396        | 0.999464 |  |  |
| Fe | 0.836288       | 0.497854        | 0.973930 |  |  |
| Fe | 0.499934       | 0.162958        | 0.000306 |  |  |
| Fe | 0.499995       | 0.829200        | 0.008903 |  |  |
| S  | 0.499629       | 0.496780        | 0.989284 |  |  |
| S  | 0.996630       | 0.160264        | 0.251302 |  |  |
| S  | 0.002352       | 0.828145        | 0.282539 |  |  |
| S  | 0.663843       | 0.158636        | 0.238703 |  |  |
| S  | 0.662908       | 0.822705        | 0.253851 |  |  |
| S  | 0.993561       | 0.492205        | 0.234467 |  |  |
| S  | 0.666280       | 0.490771        | 0.213412 |  |  |
| S  | 0.331741       | 0.160189        | 0.243906 |  |  |
| S  | 0.332153       | 0.822263        | 0.250556 |  |  |
| S  | 0.330421       | 0.492317        | 0.234005 |  |  |
| S  | 0.169090       | 0.000823        | 0.779136 |  |  |
| S  | 0.160271       | 0.673081        | 0.777418 |  |  |
| S  | 0.839792       | 0.992614        | 0.782841 |  |  |
| S  | 0.167695       | 0.334046        | 0.764471 |  |  |
| S  | 0.839095       | 0.327289        | 0.754942 |  |  |
| S  | 0.501832       | 0.999837        | 0.770191 |  |  |
| S  | 0.503650       | 0.671910        | 0.765713 |  |  |
| Ν  | 0.501172       | 0.333259        | 0.756926 |  |  |
| Н  | 0.808226       | 0.609618        | 0.659025 |  |  |
| Н  | 0.788332       | 0.704802        | 0.659135 |  |  |
| Н  | 0.896864       | 0.607421        | 0.570791 |  |  |

### Table S9. Cell dimension and fractional coordinates of $3 \times 3 \times 1$ reduced FeS-NH<sub>3</sub>.

|    | Ce        | Il dimension    |           |
|----|-----------|-----------------|-----------|
|    | 10.665771 | 0.000000        | 0.000000  |
|    | 0.000000  | 10.665771       | 0.000000  |
|    | -0.000000 | -0.000000       | 4.987747  |
|    |           |                 |           |
|    | Fractio   | nal coordinates | ;         |
| Fe | 0.000000  | 0.000000        | 0.000000  |
| Fe | -0.000000 | -0.001177       | 0.002905  |
| Fe | -0.000000 | 0.666667        | -0.010154 |
| Fe | 0.665183  | -0.002142       | 0.001753  |
| Fe | 0.659532  | 0.666667        | -0.005084 |
| Fe | -0.000000 | 0.334510        | 0.002905  |
| Fe | 0.665183  | 0.335475        | 0.001753  |
| Fe | 0.334817  | -0.002142       | 0.001753  |
| Fe | 0.340468  | 0.666667        | -0.005084 |
| Fe | 0.334817  | 0.335475        | 0.001753  |
| Fe | 0.167844  | 0.166667        | 0.002905  |
| Fe | 0.168808  | 0.831850        | 0.001753  |
| Fe | 0.832156  | 0.166667        | 0.002905  |
| Fe | 0.831192  | 0.831850        | 0.001753  |
| Fe | 0.168808  | 0.501483        | 0.001753  |
| Fe | 0.831192  | 0.501483        | 0.001753  |
| Fe | 0.500000  | 0.166667        | -0.010154 |
| Fe | 0.500000  | 0.826199        | -0.005084 |
| S  | 0.500000  | 0.507135        | -0.005084 |
| S  | -0.000000 | 0.166667        | 0.244746  |
| S  | -0.000000 | 0.830281        | 0.242708  |
| S  | 0.663615  | 0.166667        | 0.242708  |
| S  | 0.663525  | 0.830191        | 0.248144  |
| S  | -0.000000 | 0.503052        | 0.242708  |
| S  | 0.663525  | 0.503142        | 0.248144  |
| S  | 0.336385  | 0.166667        | 0.242708  |
| S  | 0.336475  | 0.830191        | 0.248144  |
| S  | 0.336475  | 0.503142        | 0.248144  |
| S  | 0.167265  | -0.000599       | 0.758939  |
| S  | 0.171880  | 0.666667        | 0.753647  |
| S  | 0.832735  | -0.000599       | 0.758939  |
| S  | 0.167265  | 0.333932        | 0.758939  |
| S  | 0.832735  | 0.333932        | 0.758939  |
| S  | 0.828120  | 0.666667        | 0.753647  |
| S  | 0.500000  | -0.005213       | 0.753647  |

### Table S10. Cell dimension and fractional coordinates of $3 \times 3 \times 1$ reduced FeS.

- .. ..

Table S11. Cell dimension and fractional coordinates of  $3 \times 3 \times 1$  NH<sub>3</sub> (using reduced FeS cell).

| Cell dimension |           |                 |          |  |  |  |
|----------------|-----------|-----------------|----------|--|--|--|
|                | 10.651442 | 0.025324        | 0.147314 |  |  |  |
|                | 0.021474  | 10.724394       | 0.256312 |  |  |  |
|                | 0.057444  | 0.121755        | 5.133879 |  |  |  |
|                | Fraction  | nal coordinates | 5        |  |  |  |
| N              | 0.00000   | 0.00000         | 0.00000  |  |  |  |
| Н              | 0.808226  | 0.609618        | 0.659025 |  |  |  |
| Н              | 0.788332  | 0.704802        | 0.659135 |  |  |  |
| Н              | 0.896864  | 0.607421        | 0.570791 |  |  |  |
|                |           |                 |          |  |  |  |

|    | 14.253583 | -0.000000        | 0.000000  |   |          |           |          |
|----|-----------|------------------|-----------|---|----------|-----------|----------|
|    | 0.000000  | 14.253583        | -0.000000 |   |          |           |          |
|    | 0.000000  | -0.000000        | 4.976540  |   |          |           |          |
|    |           |                  |           |   |          |           |          |
|    | Fractio   | onal coordinates | 6         |   |          |           |          |
| Fe | 0.000000  | 0.000000         | 0.000000  | S | 0.875426 | 0.874342  | 0.000677 |
| Fe | 0.001502  | -0.000579        | 0.000505  | S | 0.001436 | 0.124176  | 0.245824 |
| Fe | 0.000056  | 0.500110         | 0.009593  | S | 0.000105 | 0.625911  | 0.250317 |
| Fe | 0.501602  | 0.000464         | -0.000313 | S | 0.501000 | 0.126706  | 0.239222 |
| Fe | 0.508983  | 0.498509         | -0.088914 | S | 0.504066 | 0.623442  | 0.225413 |
| Fe | 0.001473  | 0.249725         | 0.006093  | S | 0.001314 | 0.374645  | 0.251429 |
| Fe | 0.000758  | 0.749685         | 0.002665  | S | 0.000700 | 0.874954  | 0.244214 |
| Fe | 0.502208  | 0.252056         | -0.005001 | S | 0.501592 | 0.378869  | 0.221631 |
| Fe | 0.502829  | 0.748944         | -0.003941 | S | 0.501481 | 0.874726  | 0.239290 |
| Fe | 0.252394  | -0.000229        | -0.000080 | S | 0.252271 | 0.125648  | 0.240966 |
| Fe | 0.249445  | 0.500534         | 0.001704  | S | 0.252161 | 0.625068  | 0.243575 |
| Fe | 0.750814  | -0.000052        | -0.000098 | S | 0.750058 | 0.124328  | 0.245139 |
| Fe | 0.751374  | 0.499062         | 0.019937  | S | 0.747230 | 0.626550  | 0.245510 |
| Fe | 0.252246  | 0.250773         | -0.003247 | S | 0.252181 | 0.375410  | 0.240827 |
| Fe | 0.252716  | 0.748877         | -0.002281 | S | 0.252408 | 0.874437  | 0.241663 |
| Fe | 0.751081  | 0.250006         | 0.005199  | S | 0.750730 | 0.372831  | 0.256998 |
| Fe | 0.748990  | 0.748920         | -0.003151 | S | 0.749270 | 0.874723  | 0.241169 |
| Fe | 0.127019  | 0.124858         | 0.000622  | S | 0.127352 | -0.000657 | 0.757831 |
| Fe | 0.125663  | 0.625143         | 0.006249  | S | 0.124202 | 0.500215  | 0.761563 |
| Fe | 0.626286  | 0.125692         | -0.003957 | S | 0.626654 | 0.000665  | 0.752943 |
| Fe | 0.626420  | 0.619383         | -0.035431 | S | 0.126196 | 0.250108  | 0.758707 |
| Fe | 0.125859  | 0.375060         | 0.003924  | S | 0.126548 | 0.749013  | 0.759051 |
| Fe | 0.127007  | 0.874359         | 0.001529  | S | 0.628682 | 0.250620  | 0.754711 |
| Fe | 0.629415  | 0.377259         | -0.004651 | S | 0.627236 | 0.751126  | 0.745821 |
| Fe | 0.625985  | 0.875256         | -0.007540 | S | 0.377568 | -0.000213 | 0.753755 |
| Fe | 0.377146  | 0.125891         | -0.006288 | S | 0.367922 | 0.500874  | 0.738372 |
| Fe | 0.377778  | 0.622910         | -0.005628 | S | 0.876670 | -0.000342 | 0.758177 |
| Fe | 0.876260  | 0.124565         | 0.003796  | S | 0.875621 | 0.499386  | 0.767632 |
| Fe | 0.874510  | 0.624898         | 0.009191  | S | 0.377013 | 0.250479  | 0.750705 |
| Fe | 0.376627  | 0.377595         | -0.012726 | S | 0.377605 | 0.749001  | 0.753079 |
| Fe | 0.377398  | 0.874285         | -0.005396 | S | 0.876967 | 0.250077  | 0.763351 |
| Fe | 0.875797  | 0.374752         | 0.011215  | Ν | 0.876213 | 0.748754  | 0.759532 |
|    |           |                  |           | н | 0.642080 | 0.493987  | 0.817969 |
|    |           |                  |           | н | 0.529783 | 0.585512  | 0.727306 |
|    |           |                  |           | Н | 0.652643 | 0.491509  | 0.612935 |

### Table S12. Cell dimension and fractional coordinates of $4\times 4\times 1$ reduced FeS-NH\_3.

Cell dimension

| Cell dimension |                              |                  |           |   |           |          |        |
|----------------|------------------------------|------------------|-----------|---|-----------|----------|--------|
|                | 14.253583 -0.000000 0.000000 |                  |           |   |           |          |        |
|                | 0.000000                     | 14.253583        | -0.000000 |   |           |          |        |
|                | 0.000000                     | -0.000000        | 4.976540  |   |           |          |        |
|                |                              |                  |           |   |           |          |        |
|                | Fractio                      | onal coordinates | 3         |   |           |          |        |
| Fe             | 0.000000                     | 0.000000         | 0.000000  | S | 0.873925  | 0.874193 | 0.0002 |
| Fe             | -0.000557                    | 0.000000         | 0.000618  | S | -0.000547 | 0.125547 | 0.2435 |
| Fe             | -0.001422                    | 0.500000         | -0.006548 | S | -0.000932 | 0.623484 | 0.2432 |
| Fe             | 0.500856                     | 0.000000         | 0.000879  | S | 0.501516  | 0.125932 | 0.2432 |
| Fe             | 0.505800                     | 0.500000         | -0.003886 | S | 0.502497  | 0.622503 | 0.2497 |
| Fe             | -0.000807                    | 0.251075         | 0.000290  | S | -0.000932 | 0.376516 | 0.2432 |
| Fe             | -0.000807                    | 0.748925         | 0.000290  | S | -0.000547 | 0.874453 | 0.2435 |
| Fe             | 0.501180                     | 0.252312         | 0.002341  | S | 0.502497  | 0.377497 | 0.2497 |
| Fe             | 0.501180                     | 0.747688         | 0.002341  | S | 0.501516  | 0.874068 | 0.2432 |
| Fe             | 0.250557                     | 0.000000         | 0.000618  | S | 0.250547  | 0.125547 | 0.2435 |
| Fe             | 0.251422                     | 0.500000         | -0.006548 | S | 0.250932  | 0.623484 | 0.2432 |
| Fe             | 0.749144                     | 0.000000         | 0.000879  | S | 0.748484  | 0.125932 | 0.2432 |
| Fe             | 0.744200                     | 0.500000         | -0.003886 | S | 0.747503  | 0.622503 | 0.2497 |
| Fe             | 0.250807                     | 0.251075         | 0.000290  | S | 0.250932  | 0.376516 | 0.2432 |
| Fe             | 0.250807                     | 0.748925         | 0.000290  | S | 0.250547  | 0.874453 | 0.2435 |
| Fe             | 0.748820                     | 0.252312         | 0.002341  | S | 0.747503  | 0.377497 | 0.2497 |
| Fe             | 0.748820                     | 0.747688         | 0.002341  | S | 0.748484  | 0.874068 | 0.2432 |
| Fe             | 0.125000                     | 0.125557         | 0.000618  | S | 0.125000  | 0.000000 | 0.7570 |
| Fe             | 0.125000                     | 0.624144         | 0.000879  | S | 0.125000  | 0.500000 | 0.7530 |
| Fe             | 0.625000                     | 0.126422         | -0.006548 | S | 0.625000  | 0.000000 | 0.7530 |
| Fe             | 0.625000                     | 0.619200         | -0.003886 | S | 0.125000  | 0.250889 | 0.7572 |
| Fe             | 0.125000                     | 0.375856         | 0.000879  | S | 0.125000  | 0.749111 | 0.7572 |
| Fe             | 0.125000                     | 0.874443         | 0.000618  | S | 0.625000  | 0.254531 | 0.7545 |
| Fe             | 0.625000                     | 0.380800         | -0.003886 | S | 0.625000  | 0.745469 | 0.7545 |
| Fe             | 0.625000                     | 0.873578         | -0.006548 | S | 0.375889  | 0.000000 | 0.7572 |
| Fe             | 0.376075                     | 0.125807         | 0.000290  | S | 0.379531  | 0.500000 | 0.7545 |
| Fe             | 0.377312                     | 0.623820         | 0.002341  | S | 0.874111  | 0.000000 | 0.7572 |
| Fe             | 0.873925                     | 0.125807         | 0.000290  | S | 0.870469  | 0.500000 | 0.7545 |
| Fe             | 0.872688                     | 0.623820         | 0.002341  | S | 0.376051  | 0.251051 | 0.7570 |
| Fe             | 0.377312                     | 0.376180         | 0.002341  | S | 0.376051  | 0.748949 | 0.7570 |
| Fe             | 0.376075                     | 0.874193         | 0.000290  | S | 0.873949  | 0.251051 | 0.7570 |
| Fe             | 0.872688                     | 0.376180         | 0.002341  |   |           |          |        |

Table S13. Cell dimension and fractional coordinates of  $4 \times 4 \times 1$  reduced FeS.

Table S14. Cell dimension and fractional coordinates of  $4 \times 4 \times 1$  NH<sub>3</sub> (using reduced FeS cell).

|   | Cell dimension         |           |          |  |  |  |  |  |
|---|------------------------|-----------|----------|--|--|--|--|--|
|   | 14.306674              | 0.029652  | 0.167938 |  |  |  |  |  |
|   | 0.028139               | 14.263304 | 0.124753 |  |  |  |  |  |
|   | 0.058488               | 0.044452  | 5.049372 |  |  |  |  |  |
|   | Fractional coordinates |           |          |  |  |  |  |  |
| Ν | 0.000000               | 0.000000  | 0.000000 |  |  |  |  |  |
| Н | 0.590699               | 0.479100  | 0.667169 |  |  |  |  |  |
| Н | 0.599936               | 0.549347  | 0.615847 |  |  |  |  |  |
| Н | 0.660409               | 0.455238  | 0.649342 |  |  |  |  |  |

Table S15. Intercalation energies ( $\Delta E$ ) of NH<sub>3</sub> in mackinawite determined by first-principles calculations assuming several different mackinawite structures.

|                                                         | Fe <sup>0</sup> (%) | $\Delta E~{\rm (eV)}$ |
|---------------------------------------------------------|---------------------|-----------------------|
| $2 \times 2 \times 1$ pure mackinawite                  | 0                   | 0.63                  |
| $2\times 2\times 1$ mackinawite with one S atom removed | 33.3                | -1.34                 |
| $3\times3\times1$ mackinawite with one S atom removed   | 12.5                | -0.61                 |
| $4\times4\times1$ mackinawite with one S atom removed   | 6.25                | -0.93                 |

### 12 References

- 13 1. A. M. Beale, B. M. Weckhuysen, EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst
- nanoparticles. Phys. Chem. Chem. Phys. 12, 5562–5574 (2010).