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Figure S1. Research framework and workflow of our study. 
  



 

 

Supplementary Method 1：Potential forest distribution 

1) Random forest  
We obtained the potential tree cover distribution in China by using random-forest modeling following 
an approach similar to Bastin et al. (1). In that study, 78,774 measurements of tree cover (0–100%) in 
protected regions across the globe were made by direct photo interpretation and were used as tree cover 
observations under various natural environment conditions with minimal human influence. We fitted a 
random forest model (R2 = 0.81, number of trees: 20) using their observations in China (3840 
measurements, coefficient of determination and various environmental drivers (5 climatic, 3 soil and 2 
topographic variables, Table S2). The climatic, soil and topographic data were extracted from 
Worldclim2.1 (2), Soilgrid250m (3) and GMTED2010 (4), respectively (Table S1). All covariate layers 
were resampled to a unified World Geodetic System 1984 Coordinate System (WGS-1984) projection, 
at 30 arc-seconds resolution (≈1km at the equator). Layers with a higher original pixel resolution were 
re-gridded using an area-weighted mean aggregation method. The potential tree cover (0-100%) was 
then spatially extrapolated outside protected areas for each pixel using model coefficients combining 
the values of 10 selected variables across China at a spatial resolution of 30 arcsec (~ 1km). Grid cells 
at a 1km resolution with a tree cover ≥ 20% were defined as “forest”, consistent with the definition used 
in the Chinese National Forest Continuous Inventory (5). 
 
2) Potential forest coverage map from WRI 
As part of an effort made by the World Resources Institute Global Restoration Initiative to map forest 
and landscape restoration opportunities (6), the map of potential forests (1-km resolution) was generated 
as an estimate of where forests would grow under current climate conditions and without human 
influence. The global distribution of terrestrial ecoregions (7) was used as the main data source to define 
potential forest extent in this map. More specifically, each ecoregion was classified as one of four 
categories: dense forest (canopy cover>45%), open forest (canopy cover 25-45%), woodland (canopy 
cover < 25%), or non-forest. The classification was determined according to the nature of the ecoregion 
concerned. In this study, the three classes: dense forest, open forest and woodland were combined and 
considered as ‘forest’ when deriving the potential forest distribution. 
 
3) Dynamic global vegetation model simulation of ORCHIDEE 
We employed the process-based dynamic global vegetation model ORCHIDEE (Organizing Carbon and 
Hydrology in Dynamic Ecosystems) to simulate the potential forest distributions in China. We used the 
version ORC-HL-NVD which has improved parameterization for vegetation dynamics in northern 
temperate and boreal regions, including the processes of establishment, mortality, and species 
competition for different tree functional types (8). Current climate variables from the 3-hourly China 
Meteorological Forcing Dataset (CMFD) (9) at a 0.5° resolution (resampled from the original 0.1° 
resolution data) were used to force the model. These data consisted of 2-meter air temperature, surface 
pressure, specific humidity, 10-meter wind speed, downward shortwave and longwave radiation, and 



 

 

precipitation (Table S1).  
 
The simulation started from a state of 100% ground coverage (i.e., bare soil everywhere) and lasted for 
200 years, with cycling 2006-2015 CMFD climate forcing and constant contemporary CO2 
concentration (405 ppm). As ecosystems were simulated to succeed one another over time, the 
proportions of ground area covered by forest and grass ecosystems gradually increased, and finally 
reached equilibrium in the later stages of succession (Fig. S2). The average proportion of PFTs after 
model equilibration (the last 20 years) was the potential forest distribution we obtained (0.5°). Aiming 
to integrate with the other two 1-km distribution maps, we converted the potential forest coverage (%) 
as simulated by the ORCHIDEE model at a 0.5° spatial resolution to forest distribution at a 1-km 
resolution. This was done by first ranking the underlying 1-km pixels within each 0.5º grid cell by their 
tree cover as simulated by the random-forest modeling approach, and then by choosing an appropriate 
threshold such that the total area of the 1-km pixels with a predicted forest cover above the threshold 
was equal to the area of forest coverage predicted by the ORCHIDEE model for the 0.5º grid cell 
concerned. 
 
Supplementary Method 2:  Species distribution model 
We constructed species distribution models to predict the species suitability distribution (i.e., probability 
of occurrence) across China for 15 dominant forest types. This method consists of the following four 
steps: (1) preparing the species occurrence observations, (2) filtering the environment variables, (3) 
running the MaxEnt model, (4) model performance evaluation. 
 
Firstly, we prepared the species occurrence observations by resampling from the national field survey 
data, and when necessary, further spatially rarefying the observations. We obtained the initial presence 
data for each forest type by resampling the 1:1000000 vector map of the FI 2013-2017 (10) into a matrix 
of dots spaced 1-km apart. These initial species presence points have a strong spatial auto-correlation, 
which often causes model over-fitting and inflated model performance. Thus, we used the “spatially 
rarefy occurrence data” tool of SDMtoolbox2.0 (11) developed by Jason L. Brown to extract statistically 
viable observations from the complete set of species presence points by removing spatially and 
climatically redundant observations. The key function of the SDMtoolbox2.0 tool is to reduce the extent 
of spatial clustering of presence observations by filtering presence data through user-defined tolerance 
distances and/or a map of climate heterogeneity index. We first performed principal component analysis 
for all bioclimate variables across China and then used the first 3 principal components to calculate the 
climate heterogeneity index. The extent of climate heterogeneity was classified into three classes (high, 
medium, low) using the “Natural Breaks” method in SDMtoolbox2.0. Different distance thresholds were 
applied for the three classes of climate heterogeneity, with a distance threshold of 25 km used for the 
low-heterogeneity areas, 10 km for the medium-heterogeneity areas and 5 km for the high-heterogeneity 
areas. Spatially and climatically superfluous observations were removed until only a single point 
remained within the specified distance thresholds. The remaining presence data after redundancy 



 

 

removal were used as observations in the construction of species distribution models for each forest 
type. 
 
Secondly, we filtered the environment variables which were used as dependent variables in the species 
distribution models. Initially 19 bioclimatic variables from 1970-2000 WorldClim2.1 (2), 11 soil 
variables from the SoilGrid250m (3) dataset, and 4 topographic variables from GMTED2010 (4) were 
included as candidate variables, with all the variables resampled to a consistent resolution (1-km). To 
reduce the influence of multicollinearity among environmental variables, correlation analysis was 
carried out among all candidate variables. Variables that were highly correlated (with a Pearson’s 
correlation coefficient |r| > 0.7) were selectively removed based on expertise and their respective 
importance from the initial MaxEnt model with all variables input. Finally, 17 variables were retained: 
6 bioclimatic, 8 soil and 3 topographic variables (Table S2). 
 
The statistically viable species presence observations and environmental variables were then fed into 
the MaxEnt software (Version 3.4.3) (12) to fit species distribution models, using a maximum iteration 
number of 5000 and 10-fold cross validations. The occurrence and environmental datasets were divided 
randomly into 10 equal-sized groups, and models were built using k-1 bins for calibration in each 
iteration (training set), with the left-out bin used for evaluation (test set). 
 
Model performance was assessed using the receiver operating characteristic (ROC) curves, and the area 
under the curve (AUC ) scores from the 10-fold cross-validations were used to evaluate the accuracy of 
the resulting model (12). The AUC score varies from 0 to 1, with larger values indicating better model 
performance and more reliable predictions. The obtained MaxEnt models of the 15 forest types all 
showed high accuracy (AUC ≥ 0.83, Table S4), which confirmed the feasibility of using a species 
distribution model to guide forestation planning and forest type selection.  
 
Supplementary Method 3: Bias corrections for future climate 
Since outputs of climate simulations from CMIP6 models are generally biased compared to observations 
and these outputs are provided at very coarse resolutions (0.8-2.8 degrees), both bias correction and 
spatial downscaling were required. We applied a trend-preserving bias correction method (13) to the 
projected temperature and precipitation data based on the MAT and MAP ‘‘observations” from the 
Peng_China_1km (14) dataset for the same historical period (T0). Simultaneously, spatial downscaling 
can also be accomplished through spatial interpolation in cooperation with this bias correction process 

(13).  
 
The MAT and MAP outputs from the CMIP6 models were first spatially interpolated to the higher spatial 
resolution (i.e., 1-km) using a nearest-neighbor approach. Next, we selected the 30-yr period from 1985 
to 2014 as the historical reference period (T0). The monthly temperature data were corrected by an 
additive factor Cm for each month m (m=1, 2…, 12), which represents the long-term differences between 



 

 

the simulated (𝑡𝑎𝑠!!,#
$%& ) and observed (𝑡𝑎𝑠!!,#

'($ ) monthly mean data during the historical period (Eq. S1), 

i.e. 

𝑡𝑎𝑠$ ),#
$%& = 𝑡𝑎𝑠),#$%& + 𝐶# = 𝑡𝑎𝑠),#$%& + (𝑡𝑎𝑠!!,#

'($ − 𝑡𝑎𝑠!!,#
$%& *																								(𝑆1) 

where 𝑡𝑎𝑠$ ),#
$%& and 𝑡𝑎𝑠),#$%& are the corrected and uncorrected monthly mean temperatures for period t at 

the 1-km resolution.  
 
Given the positivity constraint on precipitation data, a similar additive approach is not appropriate. 
Instead, we correct the monthly mean precipitation values using a multiplicative factor cm for each month 
m (m=1, 2…, 12), representing the long-term differences between the simulated (𝑝𝑟!!,#

$%& ) and observed 

(𝑝𝑟!!,#
'($ ) monthly mean data during the historical period (Eq.S2), i.e. 

𝑝𝑟$),#
$%& = 𝑝𝑟),#$%& × 𝑐# = 𝑝𝑟),#$%& × (𝑝𝑟!!,#

'($ 	/	𝑝𝑟!!,#
$%& *																																			(𝑆2) 

where 𝑝𝑟$),#
$%& and 𝑝𝑟),#$%& are the corrected and uncorrected monthly mean temperature for period t. We 

impose an upper bound of 10 on c, to avoid unrealistically high precipitation values. The above 
algorithms accomplished not only the bias correction to observation, but also the spatial downscaling, 
and thus generated high-resolution (i.e., 1-km) and bias-corrected MAP and MAT data, which were 
appropriate for use in estimating climate change-induced changes in total forest biomass C storage. 



 

 

Table S1. Environment variables used in our study.  

Datasets Description and Variables Available 
Period 

Resolution Reference spatial temporal 
Climatic 

Worldclim2.1 

WorldClim, the most cited 
climatic dataset provides 

climatic indicators at very high 
spatial resolution(~1km). 

Variables: minimum, mean, 
and maximum temperature, 

precipitation, solar radiation, 
wind speed, water vapor 
pressure and 19 standard 

bioclimatic variables 

1970-
2000 1km 

climatolo
gical 

average / 
monthly 

(2) 

Peng_china_
1km 

Spatially downscaled from 
CRU-TS-4.03, with the 
climatology dataset of 

WorldClim using delta spatial 
downscaling and evaluated 

using observations collected in 
1951–2016 by 496 weather 

stations across China. 
Variables: monthly 

precipitation and temperature 

1901-
2020 1km monthly  (14) 

CMFD 

The China Meteorological 
Forcing Dataset (CMFD) was 
produced through fusion of 
remote sensing products, 

reanalysis datasets and in-situ 
station data.  

Variables: 2-meter air 
temperature, surface pressure, 

specific humidity, 10-meter 
wind speed, downward 

shortwave and longwave 
radiation, and precipitation 

rate 

1979-
2018 

0.1° × 
0.1° 3-hourly (9) 

Soil 

Soilgrid250m 

Provides global predictions of 
standard numeric soil 

properties: organic carbon, 
bulk density, Cation Exchange 

Capacity (CEC), pH, soil 
texture fractions and coarse 
fragments at seven standard 

depths (0, 5, 15, 30, 60, 100 and 

~ 250m ~  (3) 



 

 

200 cm), in addition to 
predictions of depth to bedrock 
and distribution of soil classes.  
The soil samples from the first 
five layers were weighed and 

averaged as the attribute values 
of the soil in the corresponding 

layer.  
Topographic 

GMTED2010 

Global Multi-resolution Terrain 
Elevation Data 2010 is a 
notably enhanced global 

elevation model that replaces 
GTOPO30 as the elevation 

dataset of choice for global and 
continental scale applications. 
Other topographic properties 

(i.e., slope, aspect, hillshade) 
were calculated in ArcGIS 10.8 

~ 
1km, 
500m, 
250m 

~  (4) 

  



 

 

Table S2. Candidate explanatory variables used for the Random Forest model and 
MaxEnt.  

Variables 
name Description Type/Resource 

Original 
Spatial 

Resolution 
Random Forest 

Bio1 ü Annual Mean Temperature 

Climatic; 
Worldclim 2.1 1km 

Bio8 ü Mean Temperature of Wettest Quarter 
Bio12 ü Annual Precipitation 

Bio15 
ü Precipitation Seasonality  
ü (Coefficient of Variation) 

Bio17 ü Precipitation of Driest Quarter 
elevation 

- Topographic: 
GMTED2010 

250m 
hillshade 

soc ü Soil Organic Carbon Stock from 0.00m-
0.05m 

Soil: 
Soilgrid250m 250m sand ü Proportion of sand particles (>0.05mm) in 

the fine earth fraction at 0.05m  
depth ü Depth to Bedrock 

MaxEnt v3.4.3 
Bio1 ü Annual Mean Temperature 

Climatic; 
Worldclim 2.1 1km 

Bio3 ü Isothermality (Mean Diurnal Range / 
Temperature Annual Range) (× 100) 

Bio4 ü Temperature Seasonality  
ü (standard deviation ×100) 

Bio12 ü Annual Precipitation 

Bio15 ü Precipitation Seasonality  
ü (Coefficient of Variation) 

hillshade 
- 

Topographic: 
GMTED2010 250m aspect 

slope 
ocs ü Organic carbon stock 

Soil: 
Soilgrid250m 250m 

bdod ü Bulk density of the fine earth fraction 

clay 
ü Proportion of clay particles (<0.002mm) 

in the fine earth fraction 

silt ü Proportion of silt particles (≥0.002mm 
and ≤0.05mm) in the fine earth fraction 

cfvo ü Volumetric fraction of coarse fragments 
(>2mm) 

cec ü Cation exchange capacity of the soil 
nitrogen ü Total nitrogen (N) 

soc ü Soil organic carbon content in the fine 
earth fraction 



 

 

Table S3. Different land cover datasets and “forest” and “cropland” definition used in 
our study.  

Datasets Description “Forest” 
Definition 

“cropland” 
definition 

Spatial 
resolution 

Referen
ce 

FI 2013-
2017 

Forest distribution map 
from the 2013-2017 

China Forest Vegetation 
Survey project 

(2013FY111600) 
conducted by the 

Chinese Academy of 
Forestry Sciences. This 
map contains specific 
forest type and species 

information. 

areas spanning 
more than 
0.0667 ha, 

canopy 
coverage >20

%, arbor forest 

- 1:1000000, 
Vector map 

 (10) 

Hansen 
2019 

Results from time-series 
analysis of Landsat 

images in characterizing 
global forest extent and 

change from 2000 
through 2019 

tree 
cover>20% - 30m  (15) 

CNLUCC 
2018 

Regularly updated 
(every 5 years) from the 
late 1980s to 2018 using 

information sourced 
from high-resolution 

satellite remote-sensing 
images 

(a) canopy 
coverage>10% 

(b) canopy 
coverage>30% 

cropland 
including 
economic 

tree species 

30m  (16) 

MODIS 
2019 

The MODIS Land 
Cover Type Product 

(MCD12Q1 C6) 
supplies global maps of 

land cover at annual 
time steps and 500-m 
spatial resolution for 

2001-present 

canopy 
coverage>30%
, tree height>2 
m (including 5 

forests and 
woody 

savannas 30-
60% tree 

cover) 

at least 
40 % 

cultivated 
cropland 

500m  (17)  

GLC-
FCS30 
2020 

Global land-cover 
product with fine 

classification system at 
30 m using time-series 

Landsat imagery 

canopy 
coverage>15% 

(*) rainfed 
and 

irrigated 
cropland 
(*add) 

rainfed and 
cropland, 
including 

herbaceous 

30m  (18) 



 

 

and orchard 

Globeland
30 2020 

The GlobeLand30 data 
sets are freely available 
and comprise ten types 
of land cover, including 

forests, artificial 
surfaces and wetlands. 
They were extracted 

from more than 20,000 
Landsat and Chinese 
HJ-1 satellite images. 

canopy 
coverage>10% 

cropland, 
including 
fruits and 
economic 

tree species 

30m  (19) 

ESA-CCI 
2020 

The European Space 
Agency (ESA) initiated 
a new program - namely 

the Climate Change 
Initiative (CCI) to 
develop a global 

monitoring dataset. The 
CCI-LC project delivers 

consistent global LC 
maps at 300 m spatial 

resolution on an annual 
basis from 1992 to 2020. 

canopy 
coverage>15%  cropland 300m  (20) 

 
 



 

 

Figure S2. The area dynamics of bare soil, forests and grass in China over the 200 model 
years in ORCHIDEE. With the introduction of new plant functional types (PFTs), competition 
and succession between PFTs, proportions of ground area covered by forest (TroBE: Tropical 
Broadleaf Evergreen, TroBD: Tropical Broadleaf  Deciduous, TemNE: Temperate Needleleaf 
Evergreen, TemBE: Temperate Broadleaf Evergreen. TemBD: Temperate Broadleaf Deciduous, 
BorNE: Boreal Needleleaf Evergreen, BroBD: Boreal Broadleaf Deciduous, BroND: Boreal 
Needleleaf Deciduous) and grass (C3grass, C4grass) ecosystems gradually increased, and 
finally reached equilibrium in the late stage of succession. The improved model version: ORC-
HL-NVD was from Zhu et al. (8).  



 

 

 Figure S3. The current land type of the potential forestation opportunity in Fig.1A. Panel 
A corresponds to the high-confidence forestation areas in the main Fig. 1A, while B, C 
correspond to the medium- and low-confidence areas, respectively.  



 

 

Figure S4. The distribution of existing forests in the 8 different landcover datasets in Fig. 
1. Details of these datasets are given in Table S3. Each forest gridcell is shown in green.



 

 

Figure S5. The distribution of cropland and urban land from the 6 different landcover 
datasets in Fig. 1. Details of these datasets are given in Table S3. Each cropland gridcell is 
orange, while the urban gridcells are red.



 

 

Table S4. The MaxEnt model accuracy (AUC value) of the 15 forest groups. The optimized 
classification thresholds were calculated as the average of the ‘maximum test sensitivity plus 
specificity threshold’ in the MaxEnt model. 

No Forest type Training 
data AUC 

Test data 
AUC 

Optimized 
classification 

threshold 
1 Picea-Abies 0.944 0.942 0.211 

2 Larix spp. 0.836 0.835 0.338 

3 Pinus tabuliformis 0.955 0.951 0.176 

4 Other temperate Pinaceae spp. 0.923 0.920 0.229 

5 Cunninghamia lanceolata 0.944 0.942 0.181 

6 Pinus massoniana 0.935 0.933 0.285 

7 Other warm Pinaceae spp. 0.844 0.843 0.341 

8 Typical deciduous broadleaf forest 0.960 0.953 0.191 

9 Betula-Populus 0.876 0.871 0.345 

10 Other deciduous broadleaf forest 0.955 0.947 0.142 

11 Typical evergreen broadleaf forest 0.954 0.952 0.223 

12 Evergreen fast-growning forest 0.978 0.976 0.173 

13 Other evergreen broadleaf forest 0.930 0.928 0.167 

14 Temperate mixed forest 0.964 0.960 0.195 
15 Subtropical mixed forest 0.985 0.982 0.129 

 

 



 

 

Figure S6. The potential suitability distribution for the 15 forest types. The gained value 
from the MaxEnt models represents the distribution probability, ranging between 0 and 1. 
With the gained value increasing, the probability of the presence of the forest type also 
increases. The threshold for each forest type is shown in Table S4.



 

 

Table S5. Updated parameters for the height-age equation 𝑯 = 𝒂𝑨𝒃𝑻#𝒄𝑷#𝒅 for each forest 
type. A is forest stand age, H is mean forest height, T is mean annual temperature, P is mean 
annual precipitation, and a, b, c, and d are parameters. 

Forest Type* a b c d 

Pinus tabulaeformis 0.20 0.043 3.6×10-4 0.51 

Pinus massoniana 0.20 0.023 -6.5×10-5 0.92 

Larix spp. 0.20 -0.017 6.5×10-4 0.68 

Picea spp. 0.20 -0.071 4.5×10-4 0.84 

Abies spp. 0.20 0.024 8.0×10-5 0.68 

Other Pinaceae spp.a 0.23 0.0050 -7.2×10-5 1.11 

Cunninghamia lanceolata 4.0 0.012 -6.8×10-5 0.31 

Other Taxodiaceae spp.b 0.44 0.099 -6.6×10-4 0.80 

Cupressaceae spp. 0.20 0.28 1.7×10-4 0.43 

Quercus spp. 3.8 -0.0096 1.9×10-4 0.27 

Betula spp. 0.85 -0.021 0.0010 0.13 

Other hardwood broadleaf spp.c 0.59 2.1×10-4 1.5×10-4 0.68 

Softwood broadleaf spp. 0.20 -0.025 0.0010 0.67 

Broadleaf mixed forests 0.57 0.016 5.1×10-4 0.58 

Needle-leaf and broadleaf mixed 
forests 

0.39 0.017 -3.7×10-4 1.2 

* We used the average forest height within each 1-km gridcell rather than the maximum 
tree height to avoid unreasonable overestimation. 

** The classification of forest types here is from Zhang et al. (21), which is different 
from the dominant 15  forest type in the main text. 

a.  Pinaceae spp. except Pinus tabulaeformis, Pinus massoniana, Larix spp., Picea spp., 
and Abies spp. 

b.  Taxodiaceae spp. except Cunninghamia lanceolata. 
c.  Hardwood broadleaf spp. excluding Quercus spp. and Betula spp. 



 

 

Table S6. The forestry goals of the Chinese government as in Fig. 3B. The bold font 
indicates targets for total forest area or total forest stock volume that were originally mentioned 
in official documents. 

 Year Total forest* 
(Mha) 

Arbor forest 
(Mha, This 

study) 

Forest 
stock 

volume 
(108 m3) 

ratio 
= Arbor / 

Total 

Historical 
change 

5th, 1994-1998 158.94 132.41 

 

0.833 

6th, 1999-2003 174.91 142.78 0.816 

7th, 2004-2008 195.45 157.54 0.806 

8th, 2009-2013 207.69 166.55 0.802 
Baseline year 
(9th) 2016 (2014-2018) 220.45 179.89 175.60 0.816 

Targe 1 (a) 2025 231.36 188.79   
Targe 2 (b) 2030 247.58** 202.03 197.21  
Targe 3 (c) 2035 249.60 203.68   
Targe 4 (d) 2050 294.72 240.50   
100% Potential  
- high 
confidence 

2062  257.79   

* “Total Forest area” reported in the national report including arbor forest, bamboo forest and 
national special shrubbery. 
** “Total forest area” of  Targe 2 = “Forest stock volume” of Targe 2 / “Forest stock volume” 
of Baseline × “Total forest area” of  Baseline 
a. The "Fourteenth Five-Year" Plan Outline for the Protection and Development of Forestry and 
Grassland: 24.1% of forest cover, by 2025 
b. Building on Past Achievements and Launching a New Journey for Global Climate Actions 
(Xi Jinping, at the Climate Ambition Summit, 2020): increase the forest stock volume by 6 
billion cubic meters from the 2005 level, by 2030 
c. National Major Project for the Protection and Restoration of Important Ecosystems Master 
Plan (2021-2035): 26% of forest cover by 2035. 
d. According to the document of the 2018 National Forestry Department Directors’ Conference, 
the national forest cover may reach the world average of 30.7% in 2050.  
The total forest area = target forest cover × 960 M ha (i.e., total land area of China) 



 

 

Table S7. Nonlinear statistical forest biomass growth models used for 15 forest types (N = 
1105). The bold terms in the equations were replaced by linear combinations of climate factors 
as (α×MAT+β×MAP+γ). MAT, mean annual temperature (℃); MAP, mean annual precipitation 
(mm). The fitted functions were obtained according to the method of Yao et al. (22), which was 
based on in situ field measurement data from Luo et al. (23). 

No. Forest Type 
Number 

of 
Samples 

Fitted function 𝛂 𝛃 γ	

1 Picea-Abies 36 y =
𝒂

1 + 𝑏 × 𝑎𝑔𝑒'( 15.96 0.13 198.45 

2 Larix spp. 62 y =
𝒂

(1 + 𝑏 × 𝑎𝑔𝑒'))( -1.47 0.15 67.83 

3 Pinus 
tabuliformis 87 y =

𝒂
1 + 𝑏 × 𝑒'(×+,- -4.68 0.40 16.24 

4 Other temperate 
Pinaceae spp. 41 y =

𝒂
1 + 𝑏 × 𝑎𝑔𝑒'( 

-
9.25×1

07 

1.77×
106 

1.07×
109 

5 Cunninghamia 
lanceolata 268 y =

𝒂
1 + 𝑏 × 𝑒'(×+,- 0.47 -0.01 506.92 

6 Pinus 
massoniana 92 y =

𝒂
1 + 𝑏 × 𝑒'(×+,- -2.32 0.03 228.11 

7 Other warm 
Pinaceae spp. 109 y = 𝒂 × 𝑒

'.
+,- 12.92 0.09 -

125.67 

8 
Typical 
deciduous 
broadleaf forest 

55 y =
𝑎

1 + 𝒃 × 𝑎𝑔𝑒'( 5.26 -0.20 249.50 



 

 

9 Betula-Populus 41 y =
𝒂

(1 + 𝑏 × 𝑎𝑔𝑒'))( 3.71 -0.04 87.96 

10 Other deciduous 
broadleaf forest 

25 y =
𝑎

1 + 𝒃 × 𝑎𝑔𝑒'( 15.79 -0.51 628.13 

11 
Typical 
evergreen 
broadleaf forest 

49 y =
𝒂

(1 + 𝑏 × 𝑎𝑔𝑒'))( 64.32 0.62 -34.23 

12 Evergreen fast-
growing forest 95 y =

𝒂
1 + 𝑏 × 𝑎𝑔𝑒'( + 𝑑 0.88 0.03 -

417.65 

13 Other evergreen 
broadleaf forest 30 y =

𝒂
(1 + 𝑏 × 𝑎𝑔𝑒'))( -62.09 0.20 1416.6

8 

14 Temperate mixed 
forest 45 y =

𝒂
(1 + 𝑏 × 𝑎𝑔𝑒'))( -10.51 1.50 -

362.32 

15 Subtropical 
mixed forest 70 y =

𝒂
(1 + 𝑏 × 𝑎𝑔𝑒'))( 19.89 0.04 -

201.15 



 

 

Table S8. List of CMIP6 models used in this study. Detailed information on the CMIP6 
experiments and these models can be obtained from O'Neill et al. (24) and from the official 
website https://pcmdi.llnl.gov/CMIP6/.  

historical, SSP1-2.6, SSP2-4.5, SSP5-8.5 

No. Models No. Models No. Models 

1 ACCESS-CM2 12 EC-Earth3 23 KACE-1-0-G 

2 ACCESS-ESM1-5 13 EC-Earth3-Veg 24 MIROC6 

3 AWI-CM-1-1-MR 14 EC-Earth3-Veg-LR 25 MPI-ESM1-2-HR 

4 BCC-CSM2-MR 15 FGOALS-f3-L 26 MPI-ESM1-2-LR 

5 CAMS-CSM1-0 16 FGOALS-g3 27 MRI-ESM2-0 

6 CAS-ESM2-0 17 FIO-ESM-2-0 28 NESM3 

7 CESM2-WACCM 18 GFDL-ESM4 29 NorESM2-LM 

8 CIESM 19 IITM-ESM 30 NorESM2-MM 

9 CMCC-CM2-SR5 20 INM-CM4-8 31 TaiESM1 

10 CMCC-ESM2 21 INM-CM5-0   

11 CanESM5 22 IPSL-CM6A-LR   

1%CO2 experiments: cVeg 

No. Models No. Models No. Models 

1 ACCESS-ESM1-5 9 EC-Earth3-Veg 17 MPI-ESM1-2-LR 

2 BCC-CSM2-MR 10 GFDL-ESM4 18 NorCPM1 

3 BCC-ESM1 11 INM-CM4-8 19 NorESM2-LM 

4 CESM2 12 INM-CM5-0 20 NorESM2-MM 

5 CESM2-WACCM 13 IPSL-CM5A2-INCA 21 SAM0-UNICON 

6 CMCC-CM2-SR5 14 IPSL-CM6A-LR 22 TaiESM1 

7 CMCC-ESM2 15 KIOST-ESM   

8 CanESM5 16 MPI-ESM-1-2-HAM   

https://pcmdi.llnl.gov/CMIP6/


 

 

Figure S7. Living biomass carbon densities in 2010. Both aboveground and belowground 
biomass carbon are included. The original biomass map is from Spawn et al. (25).



 

 

Figure S8. Biomass carbon storage and carbon sink dynamics of existing forests and newly 
established forests under the progressive forestation scenario for 2020–2100 under the 
SSP2-4.5 scenario. Same as Fig. 4 in the main text, but the climate change and CO2 effects are 
based on the SSP2-4.5 scenario. 

Figure S9. Biomass carbon storage and carbon sink dynamics of existing forests and newly 
established forests under the progressive forestation scenario for 2020–2100 under the 



 

 

SSP5-8.5 scenario. Same as Fig. 4 in the main text, but the climate change and CO2 effects are 
based on the SSP5-8.5 scenario. 
 
 

Figure S10. Biomass carbon storage and carbon sink dynamics of the entire forest 
ecosystems under the progressive forestation scenario for 2020–2100 under the SSP1-2.6 
scenario. The results for entire forest ecosystems are the sum of the results for existing forests 
and newly established forests presented in Fig. 4.
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