# **Supplementary information**

# A cross-species proteomic map reveals neoteny of human synapse development

In the format provided by the authors and unedited

# SI Guide

## A cross-species proteomic map reveals neoteny of human synapse development

Li Wang<sup>1,2\*</sup>, Kaifang Pang<sup>3,4</sup>, Li Zhou<sup>1,2</sup>, Arantxa Cebrián-Silla<sup>1,5</sup>, Susana González-Granero<sup>6</sup>, Shaohui Wang<sup>1,2</sup>, Qiuli Bi<sup>1,2</sup>, Matthew L. White<sup>1,2</sup>, Brandon Ho<sup>1,2</sup>, Jiani Li<sup>7</sup>, Tao Li<sup>1</sup>, Yonatan Perez<sup>1,2</sup>, Eric J. Huang<sup>8</sup>, Ethan A. Winkler<sup>5</sup>, Mercedes F. Paredes<sup>1,2</sup>, Rothem Kovner<sup>9</sup>, Nenad Sestan<sup>9</sup>, Alex A. Pollen<sup>1,2</sup>, Pengyuan Liu<sup>10</sup>, Jingjing Li<sup>1,2</sup>, Xianhua Piao<sup>1,11,12</sup>, José Manuel García-Verdugo<sup>6</sup>, Arturo Alvarez-Buylla<sup>1,5</sup>, Zhandong Liu<sup>3,4</sup>, Arnold R. Kriegstein<sup>1,2\*</sup>

<sup>1</sup>The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA.

<sup>2</sup>Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA.

<sup>3</sup>Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston, Texas 77030, USA.

<sup>4</sup>Department of Pediatrics, Baylor College of Medicine; Houston, Texas 77030, USA.

<sup>5</sup>Department of Neurological Surgery, University of California San Francisco; San Francisco, CA 94143, USA.

<sup>6</sup>Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED; Valencia, Spain.

<sup>7</sup>Gilead Sciences, Foster City, CA 94404, USA.

<sup>8</sup>Department of Pathology, University of California San Francisco; San Francisco, CA 94143, USA.

<sup>9</sup>Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA

<sup>10</sup>Department of Chemistry, University of Massachusetts Lowell; Lowell, MA 01854, USA.

<sup>11</sup>Division of Neonatology, Department of Pediatrics, University of California San Francisco; San Francisco, CA 94158, USA.

<sup>12</sup>Newborn Brain Research Institute, University of California San Francisco; San Francisco, CA 94158, USA.

\*Corresponding author. e-mail: Li.Wang@ucsf.edu; Arnold.Kriegstein@ucsf.edu.

SI Figure 1 | Uncropped immunoblots from Extended Data Fig. 1a,c and Extended Data Fig. 8a.

SI Figure 2 | Uncropped immunoblots from Extended Data Fig. 8b-d.

Supplementary Table 1 | Metadata of the human brain samples used in this study.

Supplementary Table 2 | PSD protein abundance and pathway enrichment in the developing human cortex.

Supplementary Table 3 | PSD modules and their pathway enrichment.

Supplementary Table 4 | Protein domains in PSD proteins.

Supplementary Table 5 | PSD protein abundance and pathway enrichment in the developing human primary visual cortex.

Supplementary Table 6 | Transcription of PSD proteins and its regulation.

Supplementary Table 7 | Cell type-specific transcription of PSD proteins.

Supplementary Table 8 | Metadata of the macaque and mouse brain samples used in this study.

Supplementary Table 9 | PSD protein abundance and pathway enrichment in the developing macaque cortex.

Supplementary Table 10 | PSD protein abundance and pathway enrichment in the developing mouse cortex.

Supplementary Table 11 | Comparison of PSD development among three species.

Supplementary Table 12 | ShRNA and quantitative RT-PCR primer sequences.

Supplementary Table 13 | Association of human PSD modules with cognitive functions and brain disorders.

#### SI Figure 1

### Extended Data Fig. 1a



#### Extended Data Fig. 1c



|                               |   |   |        |      | .04 | 1°.04 | a Car | 50 an | 10 . S | 1.5 Y |      |      |    |
|-------------------------------|---|---|--------|------|-----|-------|-------|-------|--------|-------|------|------|----|
| 260<br>160<br>125<br>90<br>70 |   | 1 | - 1112 | × 11 |     | -     |       |       | -      |       | ] GR | :IN2 | 2B |
| 50<br>38                      |   |   |        |      |     |       |       |       |        |       |      |      |    |
| 25<br>15                      |   |   |        | <br> |     |       |       | 1.1   | 11     |       |      |      |    |
|                               | - | 1 |        |      |     |       |       |       |        |       |      |      |    |

|                               |  | d | M <sup>19</sup> GM <sup>2</sup> G | CD- not | 1 |      |
|-------------------------------|--|---|-----------------------------------|---------|---|------|
| 260<br>160<br>125<br>90<br>70 |  | - |                                   |         |   | DLG4 |
| 50 —                          |  |   |                                   |         |   |      |
| 30<br>25                      |  |   |                                   | 11      |   |      |
| 15                            |  |   |                                   |         |   |      |
|                               |  |   |                                   |         |   |      |

#### Extended Data Fig. 8a







| GW22 23 Year0 1 Year18 22 |  |   |   |   |   |   |   |   |   |        |            |
|---------------------------|--|---|---|---|---|---|---|---|---|--------|------------|
|                           |  |   |   | - | _ | - |   | - |   |        |            |
| 260<br>160<br>125         |  | - | - | - | - | - | - | - | - | ] PREX | <b>(</b> 1 |
| 90 -                      |  |   | - | - | - |   | - | - |   |        |            |
| 70 -                      |  |   | - |   |   |   |   |   |   |        |            |
| 50                        |  |   |   |   |   |   |   |   |   |        |            |
| 38                        |  |   |   |   |   |   |   |   |   |        |            |
| 30                        |  |   |   |   |   |   |   |   |   |        |            |
| 25                        |  |   | - |   |   |   |   |   |   |        |            |
|                           |  |   |   |   |   |   |   |   |   |        |            |
| 15                        |  |   |   |   |   |   |   |   |   |        |            |
|                           |  |   |   |   |   |   |   |   |   |        |            |





#### SI Figure 2

Extended Data Fig. 8b PSD PSD E17.5 P0 P5 P9 P13 P18 P36 E17.5 P0 P5 P9 P13 P18 P36 P75 P0 P5 P9 P13 P18 P36 PREX1 260 -160 --125 --260-160 ARHGEF7 isoforms 90 -70-70 50 50 30-30

# Extended Data Fig. 8c



#### Extended Data Fig. 8d

15

8



8

Name have not start more not that

.

15 CFL

8