Supplemental Materials

Supplemental Methods. Supplemental Table 1. Coding definitions for comorbidities

Supplemental Table 2. Characteristics by individual variants

Supplemental Table 3. Characteristics of COL4A3 P/LP Heterozygotes and non-heterozygotes before and after matching

Supplemental Table 4. COL4A3 P/LP heterozygotes with an additional rare variant in COL4A3/4/5

Supplemental Table 5. Chart Review data of COL4A3 AD Alport Syndrome-related Diagnosis and Management

Supplemental Figure 1. KDIGO Risk Categories by COL4A3 P/LP Variant Group and Controls

Supplemental Figure 2. KDIGO Risk Categories in Glycine collagenous domain variants vs. controls, by age group

STROBE Statement

Supplemental Methods.

Sequencing was performed by paired end 75bp reads on either an Illumina HiSeq2500 or NovaSeq. Coverage depth was sufficient to provide more than 20% coverage over 85% of the targeted bases in 96% of the VCR samples and 90% coverage for 99% of IDT samples. Alignments and variant calling were based on GRCh38 human genome reference sequence. We required AD_ALT>3 and balance AD_ALT/AD_REF ≥0.5.

Supplemental Table 1. Coding definitions for comorbidities

Comorbidities	Codes
	ICD-10: R31.0, R31.1, R31.21, R31.29, R31.9; ICD-9:
Hematuria	599.7*
FSGS	ICD-10: N03.1, N04.1, N05.1, N06.1; ICD-9: 581.1
Alport Syndrome	ICD-10: Q87.81
Sensorineural hearing loss	ICD-10: H90.3; ICD-9: 389.11, 389.12, 389.14, 389.18
	Dialysis ICD codes 39.27, 39.42, 39.53, 39.54, 585.6,
	V45.11, V45.12, V56.1, V56.2, V56.31, V56.32, V56.8,
	V45.1, N18.6, Z91.15, N18.5+Z99.2
	Transplant ICD codes 00.91, 00.92, 00.93, 55.53, 55.69,
ESKD	V42.0, 0TY****, Z94.0
Hypertension	ICD-9: 401 - 405
	ICD-10: I10 - I16
Diabetes mellitus	ICD-9: 250*
	ICD-10: E10, E11, E13

Supplemental Table 2. Characteristics by individual variants

Variant	ClinVar (as of 2/23/23)	Varsome ACMG Classifier (as	Age	Hematuria ICD code	Hearing loss ICD code	eGFR <60	eGFR <30	ESKD ICD code	UA available	Trace blood on	1+ blood on
rs1014839148 (n = 2) 2: 227248494:G:A c.520G>A	Conflicting (1 pathogenic, 1 likely pathogenic, 2 uncertain significance); 4	of 2/23/23) Likely pathogenic (9 points)	80.7 (SD 13.8)	50%	50%	50%	0	0	100%	50% 100%	<u>50%</u> 100%
p.Gly174Arg rs1057516204 (n=1) 2:227293218:GGAAA:G	submissions; 1 star Pathogenic; 2 submissions; 1 star	Pathogenic (10 points)	74.2	0%	0	100%	0	0	100%	0	0
c.3244_3247del p.Lys1082fs rs1064796094 (n=2) 2:227290085:CCA:C	Pathogenic/Likely pathogenic; 3	Pathogenic (17 points)	54 (SD 18.4)	50%	0	0	0	0	100%	100%	50%
c.3068_3069del p.Pro1023fs rs1158937060 (n=5)	submissions; 2 stars	Pathogenic	55.6 (SD	0	0	33.30%	0	0	100%	0	0
2:227273119:T:C c.1927+2T>C rs1167411352 (n=1)	submissions; 2 stars Pathogenic; 1	(11 points) Pathogenic	21.2) 48.8	0	0	0	0	0	100%	100%	0
2:227297727:G:C c.3619G>C Gly1207Arg rs1173685095 (n=9)	ssubmission; 1 star Likely pathogenic; 1	(16 points) Pathogenic	60.0 (SD	33.30%	0	37.50%	25%	22.20%	77.80%	85.70%	71.40%
2:227290090:T:C c.3070+2T>C rs1175052474 (n=12)	submission; 0 stars	(10 points) Likely	21.2) 65.8 (SD	50%	0.00%	50%	8.30%	0.00%	83.30%	90%	70%
2:227295295:A:AGAG c.3546_3548dup p.Gly1183dup	2 likely pathogenic, 2 uncertain significance); 9 submissions; 1 star	pathogenic (6 points)	12.4)								
rs1192750535 (n=1) 2:227293230:G:T c.3250G>T p.Glu1084Ter	Pathogenic; 2 submissions; 2 stars	Pathogenic (13 points)	39.5	0	0	0	0	0	100%	100%	0
rs1196996393 (n=1) 2:227284210:G:C c.2747-1G>C	Pathogenic; 2 submissions; 2 stars	Pathogenic (13 points)	73.6	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	N/A	N/A
rs756539994 (n=21) 2:227293286:CCCTGGAAGT:C c.3312_3329del	Conflicting (2 pathogenic, 1 likely pathogenic, 3 uncertain significance); 4	Likely pathogenic (6 points)	56.3 (SD 15.7)	14.3%	14.3%	10.5%	5.3%	0.0%	76.2%	18.8%	18.8%
rs759043857 (n=20) 2:227282495:AG:A c.2621del	submissions; 1 star Likely pathogenic; 3 submissions; 2 stars	Pathogenic (17 points)	57.6 (SD 20.6)	15.0%	10.0%	23.5%	0.0%	0.0%	65.0%	7.7%	7.7%
p.Gly874fs rs760462252 (n=39) 2:227307839:C:T c.4382C>T	Pathogenic; 1 submission; 1 star	Uncertain significance (5 points)	56.6 (SD 20.5)	10.3%	15.4%	19.4%	2.8%	2.6%	84.6%	12.1%	9.1%
p.Pro1461Leu rs760846085 (n=32) 2:227310822:CT:C c.4803del	Pathogenic/likely pathogenic; 4	Pathogenic (17 points)	61.6 (SD 17.7)	12.5%	0.0%	25.0%	7.1%	6.3%	87.5%	28.6%	17.9%
p.Gly1602fs rs868002181 (n=10) 2:227280970:G:A	submissions; 2 stars Conflicting (2 pathogenic, 1 likely pathogenic, 1	Likely pathogenic (7	63.0 (SD 14.0)	30.0%	0.0%	30.0%	20.0%	0.0%	90.0%	62.5%	50.0%
c.2452G>A p.Gly818Arg rs200287952 (n=161) 2:227277511:G:A	uncertain significance); 6 submissions; 1 star Pathogenic; 3 submissions; 1 star	points) Likely pathogenic (8	59.4 (SD 19.1)	35.4%	4.4%	31.7%	12.4%	8.1%	79.5%	70.3%	55.5%
2083G>A 2083G>A Gly695Arg rs121912824 (n=3)	Pathogenic; 7	points) Pathogenic	56.5 (SD	0.0%	0.0%	0.0%	0.0%	0.0%	66.6%	0.0%	0.0%
2:227307897:C:T c.4441C>T p.Arg1481Ter	submissions; 2 stars	(17 points)	28.4)	0.0%	0.0%	0.0%	0.0%	0.0%	66.7%	0.0%	0.0%
rs1306992119 (n=1) 2:227280529:ACTCCCTGGACTTCCAGGT:A c.2323_2340del rs1445615417 (n=2)	Pathogenic/Likely pathogenic; 3 submissions; 2 stars Pathogenic; 4	Likely pathogenic (7 points) Pathogenic	51.5 52.0 (SD	50.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
2:227307867:GTTTTC:G c.4420_4424del p.Leu1474fs	submissions; 2 stars	(17 points)	22.3)								
rs1453590085 (n=1) 2:227164754:C:T c.28C>T p.Gin10Ter	Pathogenic; 2 submissions; 2 stars	Pathogenic (13 points)	39	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	N/A	N/A
rs1469479748 (n=1) 2:227253310:AAG:A c.663_664del	Pathogenic/likely pathogenic; 4 submissions; 2 stars	Pathogenic (17 points)	64.9	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
p.Arg221fs rs1553751120 (n=1) 2:227247583:AG:A c.468+1del	Likely pathogenic; 1 submission; 1 star	Pathogenic (11 points)	62.2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	N/A	N/A
rs1553751122(n=5) 2:227247585:G:T c.468+1G>T	Likely pathogenic; 1 submission; 1 star	Pathogenic (11 points)	60.8 (SD 20.0)	20.0%	0.0%	60.0%	20.0%	0.0%	80.0%	75.0%	25.0%
rs1553766404 (n=3) 2: 227309077:G:T c.4640+1G>A	Likely pathogenic; 1 submission; 1 star	Pathogenic (11 points)	53.5 (SD 17.5)	33.3%	0.0%	33.3%	0.0%	0.0%	100.0%	0.0%	0.0%

rs1559854632 (n=2) 2: 227237968 c.88G>C	Likely pathogenic; 1 submission; 0 stars	Uncertain significance (2 points)	62.3 (SD 16.3)	50.0%	0.0%	50.0%	0.0%	0.0%	100.0%	50.0%	0.0%
Gly30Arg rs 1559873550 (n=1) 2: 227257621:G:T	Pathogenic/likely pathogenic; 4	Pathogenic (14 points)	55.3	0.0%	0.0%	100.0%	0.0%	100.0%	100.0%	100.0%	100.0%
c.1006G>T p.Gly336Cys	submissions; 2 stars										
rs1559878824 (n=2) 2: 227263830:G:A c.1201G>A	Conflicting (1 likely pathogenic, 1 uncertain	Likely pathogenic (6	55.7 (SD 9.0)	50.0%	50.0%	50.0%	0.0%	0.0%	100.0%	50.0%	50.0%
p.Gly401Arg rs1559897288 (n=2)	significance); 3 submissions; 1 star Likely pathogenic; 1	points) Likely	45.4 (SD	100.0%	50.0%	0.0%	0.0%	0.0%	100.0%	100.0%	100.0%
2: 227282523:G:A c.2647G>A p.Gly883Arg	submission; 0 stars	pathogenic (7 points)	1.5)								
rs1574658390 (n=2) 2: 227240203:G:T c.205G>T	Likely pathogenic; 1 submission; 0 stars	Pathogenic (10 points)	78.9 (SD 15.5)	100.0%	0.0%	100.0%	0.0%	0.0%	50.0%	100.0%	0.0%
p.Glu69Ter rs200672668 (n=2) 2: 227273108:G:A	Pathogenic/likely pathogenic; 6	Pathogenic (18 points)	49.0 (SD 19.4)	50.0%	0.0%	0.0%	0.0%	0.0%	50.0%	100.0%	0.0%
c.1918G>A p.Gly640Arg rs 202147112 (n=4)	submissions; 2 stars Conflicting (2 likely	Likely	44.8 (SD	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	25.0%	25.0%
2: 227245972:G:A c.343G>A p.Gly115Arg	pathogenic, 1 uncertain significance); 4 submissions; 1 star	pathogenic (8 points)	12.02)								
rs567606745 (n=3) 2: 227295044:G:A c.3499G>A	Pathogenic; 6 submissions; 2 stars	Pathogenic (20 points)	44.1 (SD 15.1)	100.0%	0.0%	50.0%	0.0%	0.0%	100.0%	100.0%	100.0%
p.Gly1167Arg rs368434069 (n=4) 2: 227297751:C:T	Pathogenic; 3 submissions; 2 stars	Pathogenic (17 points)	41.3 (SD 18.3)	<u>50.0%</u>	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
c.3643C>T p.Arg1215Ter rs371334239 (n=5)	Pathogenic; 6	Likely benign	48.9 (SD	20.0%	0.0%	0.0%	0.0%	0.0%	100.0%	60.0%	20.0%
2:227263845:C:T c.1216C>T p.Arg406Ter	submissions; 2 stars	(-4 points)	23.1)	0.0%	0.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%
rs375040636 (n=1) 2: 227279882:G:A c.2215G>A p.Gly739Arg	Likely pathogenic; 3 submissions; 2 stars	Pathogenic (20 points)	72.5	0.0%	0.0%	100.0%	0.0%	0.0%	100.0%	100.0%	100.0%
rs573527051 (n=6) 2: 227253637:C:T 764C>T	Conflicting (1 likely pathogenic; 2 uncertain significance); 4	Uncertain significance (2 points)	63.4 (SD 28.2)	0.0%	16.7%	0.0%	0.0%	0.0%	66.7%	0.0%	0.0%
Thr255Met rs748026887 (n=2) 2:227307800:TCACCCGA:T c.4347_4353del	submissions; 1 star Pathogenic; 5 submissions; 2 stars	Pathogenic (17 points)	73.3 (SD 15.9)	0.0%	0.0%	0.0%	0.0%	0.0%	50.0%	0.0%	0.0%
p.Arg1450fs rs766208466 (n=6) 2: 227310803:G:A	Conflicting (1 likely pathogenic, 1 uncertain	Uncertain significance (5	57.6 (SD 15.9)	0.0%	0.0%	20.0%	0.0%	0.0%	83.3%	0.0%	0.0%
c.4783G>A p.Gly1595Arg rs766306957 (n=8)	significance); 3 submissions; 1 star Pathogenic; 6	points) Pathogenic	65.5 (SD	37.5%	0.0%	0.0%	0.0%	0.0%	100.0%	12.5%	12.5%
2:227284229:GAGTAAAGGGCC:G c.2768_2778del rs766900945 (n=2)	submissions; 2 stars Pathogenic; 5 stars; 2 stars	(17 points) Likely benign	16.4) 81.2 (SD	50.0%	0.0%	50.0%	50.0%	0.0%	100.0%	50.0%	0.0%
2:227290785:C:T c.3109C>T p.Arg1037Ter	·	(-2 points)	13.2)								
rs769683665 (n=3) 2:227289230:G:A c.2962G>A	Likely pathogenic; 1 submission; 0 stars	Pathogenic (10 points)	79.4 (SD 9.8)	33.3%	0.0%	33.3%	0.0%	0.0%	66.7%	0.0%	0.0%
p.Gly988Arg rs769863513 (n=4) 2:227308922:C:T c.4486C>T	Pathogenic/likely pathogenic; 4 submissions; 2 stars	Pathogenic (17 points)	61.3 (SD 14.8)	0.0%	25.0%	0.0%	0.0%	0.0%	50.0%	0.0%	0.0%
p.Arg1496Ter rs779575469 (n=1) 2:227270788:G:T c.1594G>T	Pathogenic; 2 submissions; 1 star	Pathogenic (14 points)	51.8	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	100.0%	100.0%
p.Gly532Cys rs867868993 (n=1) 2:227310818:CCCC:CCC	Pathogenic/Likely pathogenic; 2	Pathogenic (11 points)	75.4	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
c.4802del p.Pro1601fs rs914878176 (n=3) 2:227295016:G:C	submissions; 2 stars Conflicting (1 pathogenic, 2 likely pathogenic, 1	Likely pathogenic (7	43.3 (SD 5.5)	33.3%	0.0%	0.0%	0.0%	0.0%	100.0%	100.0%	66.7%
c.3472G>C p.Gly1158Arg rs988439345 (n=2)	uncertain significance); 5 submissions; 1 star Pathogenic; 1 submission;	points) Pathogenic	69.5 (SD	0.0%	0.0%	100.0%	0.0%	0.0%	100.0%	50.0%	50.0%
2:227253581:AC:A c.713del p.Pro240fs	1 star	(11 points)	8.3)	0.00	0.001	0.001	0.000	0.001	100.001	50.00	50.000
rs993103826 (n=2) 2:227282410:GC:G c.2535del p.Leu846fs	Pathogenic/Likely pathogenic; 3 submissions; 2 stars	Pathogenic (17 points)	39.1 (SD 6.3)	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%	50.0%	50.0%

Supplemental Table 3. Characteristics of COL4A3 P/LP Heterozygotes and non-heterozygotes before and after matching

	Before matchin	ng (N=174361)*			After propensity score	matching (N=2411)		
	COL4A3 P/LP	Non-heterozygotes	P value	SMD	COL4A3 P/LP	Non-heterozygotes		SMD
	heterozygotes (n=402)	(n=173959)			heterozygotes (n=402)	(n=2009)	P value	
Age, Mean (SD)	59.0 (18.6)	57.5 (18.9)	0.104	0.082	59.1 (18.7)	59.1 (18.5)	0.986	0.001
Female (%)	257 (63.9)	105441 (60.6)	0.19	0.069	257 (63.9)	1284 (63.9)	1	<0.001
Black, n (%)	9 (2.2)	3951 (2.3)	1	0.002	9 (2.2)	32 (1.6)	0.482	0.047
Hispanic, n (%)	4 (1.0)	4613 (2.7)	0.056	0.124	4 (1.0)	47 (2.3)	0.128	0.105
Year of first outpatient visit, median (IQI)	2003 (2001-2011)	2004 (2001-2011)	0.12	0.079	2003 (2001-2011)	2003 (2001-2011)	0.939	0.004
Hypertension (%)	226 (56.2)	92964 (53.3)	0.259	0.059	226 (56.2)	1129 (56.2)	1	<0.001
Diabetes (%)	90 (22.4)	41056 (23.6)	0.608	0.029	90 (22.4)	449 (22.3)	1	0.001
Nephrolithiasis (%)	22 (5.5)	10155 (5.8)	0.838	0.016	22 (5.5)	109 (5.4)	1	0.002
Hematuria, n (%)	110 (27.4)	23404 (13.5)	<0.001	0.35	110 (27.4)	279 (13.9)	<0.001	0.338
FSGS, n (%)	7 (1.7)	437 (0.3)	<0.001	0.15	7 (1.7)	4 (0.2)	<0.001	0.158
Bilateral sensorineural hearing loss, n (%)	23 (5.7)	8340 (4.8)	0.453	0.042	23 (5.7)	109 (5.4)	0.906	0.013
eGFR available, n (%)	358 (89.1)	154420 (88.8)	0.918	0.009	358 (89.1)	1815 (90.3)	0.484	0.042
eGFR mean (SD)	74.9 (28.8)	80.9 (26.6)	<0.001	0.214	74.9 (28.8)	80.3 (27.1)	0.001	0.192
eGFR <60, n (%)	97/360 (26.9)	31512/154586 (20.4)	0.003	0.155	97/360 (26.9)	388/1817 (21.4)	0.024	0.131
eGFR <30, n (%)	30/360 (8.3)	5551/154586 (3.6)	<0.001	0.201	30/360 (8.3)	59/1817 (3.3)	<0.001	0.219
Urinalysis available, n(%)	326 (81.1)	131667 (75.7)	0.014	0.132	326 (81.1)	1561 (77.7)	0.15	0.084
Trace or greater, n (%)	158/326 (48.5)	28166/131667 (21.4)	<0.001	0.592	158/326 (48.5)	327/1561 (21.0)	<0.001	0.604
1+ or greater, n (%)	119/326 (36.5)	16508/131667 (12.5)	<0.001	0.58	119/326 (36.5)	184/1561 (11.8)	<0.001	0.603
ESKD per USRDS, n (%)	19 (4.7)	1827 (1.1)	<0.001	0.187	19 (4.7)	18 (0.9)	<0.001	0.194
ESKD per ICD code, n (%)	23 (5.7)	2668 (1.5)	<0.001	0.225	23 (5.7)	25 (1.2)	<0.001	0.246
ESKD per USRDS or ICD code, n (%)	23 (5.7)	2862 (1.7)	<0.001	0.218	23 (5.7)	27 (1.3)	<0.001	0.239
ACR available, n (%)	118 (29.4)	48836 (28.1)	0.607	0.028	118 (29.4)	539 (26.8)	0.329	0.056
ACR >30, n (%)	50/118 (42.4)	11990/48836 (24.6)	<0.001	0.385	50/118 (42.4)	133/539 (24.7)	<0.001	0.382
ACR >300, n (%)	20/118 (17.0)	2692/48836 (5.5)	<0.001	0.368	20/118 (17.0)	29/538 (5.4)	<0.001	0.374
At least 1 phenotypic feature^	242 (60.2)	76311 (38.7)	<0.001	0.44	242 (60.2)	797 (39.7)	1	0.419
••					1		-	

*Whole Exome Sequencing (WES): WES was performed by paired end 75bp reads on either an Illumina HiSeq2500 or NovaSeq. Coverage depth was sufficient to provide more than 20% coverage over 85% of the targeted bases in 96% of the VCR samples and 90% coverage for 99% of IDT samples. Alignments and variant calling were based on GRCh38 human genome reference sequence. We required AD_ALT>3 and balance od AD_ALT/AD_REF ≥0.5.

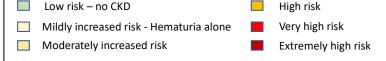
Supplemental Table 4. COL4A3 P/LP heterozygotes with an additional rare variant in COL4A3/4/5

This table does not use USRDS data and Sample/Patient IDs are not known to anyone outside of the research group

Study ID	COL4A3 P/LP variant	Additional heterozygous rare variant(s) in COL4A3/4/5; ACMG classification per Varsome	Phenotype
study_108043	p.Gly30Arg	COL4A4 p.Thr1474Met (LB; -1 points)	Stage 3a CKD. No dipstick hematuria, FSGS, bilateral sensorineural hearing loss, ESKD. Missing ACR data.
study_111302	c.468+1del	COL4A4 p.Pro1587Arg (B; -8 points)	No CKD. No FSGS, bilateral sensorineural hearing loss, ESKD. Missing UA and ACR data.
Study_130305	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	ESKD, eGFR<15, +dipstick hematuria, + severe albuminuria. No FSGS or bilateral sensorineural hearing loss.
Study_130349	p.Gly695Arg	COL4A4 p.Pro1587Arg (B; -8 points)	No CKD. No FSGS, bilateral sensorineural hearing loss, ESKD. Missing UA and ACR data.
Study_143022	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	Hematuria alone. No FSGS, bilateral sensorineural hearing loss, albuminuria, or ESKD.
Study_14567	p.Gly695Arg	COL4A4 p.Gly774Arg (VUS; 5 points) in collagenous domain; COL4A4 p.Gly1465Asp (VUS; 3 points) in noncollagenous domain	Hematuria + severe albuminuria, eGFR >60.
Study_146959	p.Gly115Arg	COL4A3 p.Arg341His (VUS; 1 point)	No CKD. No dipstick hematuria, FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data.
Study_149658	p.Gly874AspfsTer9	COL4A4 p.Arg877Gln (B; -12 points)	No CKD. No dipstick hematuria, FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data.
Study_151405	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	No CKD. No dipstick hematuria, FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data.
Study_152777	c.468+1G>T	COL4A3 p.Val1560lle (LB; -3 points)	Stage 3a CKD with severe albuminuria and dipstick hematuria. No FSGS, bilateral sensorineural hearing loss, or ESKD.
Study_15491	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	No CKD. No dipstick hematuria, FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data
Study_158376	p.Gly640Arg	COL4A4 p.Gln1473Lys (VUS; 4 points)	No CKD. No FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR and UA data.
Study_1600	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	Stage 3a CKD. No FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR and UA data.
Study_42724	p.Gly695Arg	COL4A4 p.Arg877Gln (B; -12 points)	Hematuria alone. eGFR>60, no albuminuria, FSGS, bilateral sensorineural hearing loss, or ESKD.
Study_46348	c.3070+2T>C	COL4A3 p.Leu1474Pro (VUS; 3 points)	ESKD + hematuria. No FSGS, bilateral sensorineural hearing loss. Missing ACR data
Study_48927	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	Hematuria alone. eGFR>60, no albuminuria, FSGS, bilateral sensorineural hearing loss, or ESKD.
Study_49318	p.Gly336Cys	COL4A4 p.Lys17Arg (B; -13 points)	ESKD + Hematuria + mild albuminuria. No FSGS, bilateral sensorineural hearing loss.
Study_5112	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	Hematuria only. eGFR>60, no FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data
Study_55019	p.Gly695Arg	COL4A4 p.Pro1587Arg (B; -8 points)	Hematuria alone. eGFR>60, no FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data
Study_61689	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	No CKD. No FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR and UA data.
Study_66784	p.Gly1602AlafsTer13	COL4A3 p.Asn1508Ser (VUS; 0 points)	Hematuria alone. eGFR>60, no FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data
Study_69681	p.Gly818Arg	COL4A4 p.Pro1587Arg (B; -8 points)	Hematuria alone. eGFR>60, no FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR data
Study_77870	p.Gly30Arg	COL4A4 p.Thr1474Met (LB; -1 points)	Hematuria alone. eGFR>60, no albuminuria, FSGS, bilateral sensorineural hearing loss, or ESKD.
Study_80355	p.Gly695Arg	COL4A3 p.Arg1661Cys (LP; 9 points)	Missing eGFR, ACR, and UA data. No FSGS, bilateral sensorineural hearing loss, or ESKD.
Study_87695	p.Gly874AspfsTer9	COL4A3 p.Leu1474Pro (VUS; 3 points)	No CKD. No FSGS, bilateral sensorineural hearing loss, or ESKD. Missing ACR and UA data.
Study_89428	p.Gly695Arg	COL4A3 p.Leu1474Pro (VUS; 3 points)	ESKD + hematuria + bilateral sensorineural hearing loss. No FSGS. Missing ACR data.

Supplemental Table 5. Chart Review data of COL4A3 AD Alport Syndrome-related Diagnosis and Management

Variables n, (%)	Prevalence of P/LP overall COL4A3 variants and their subgroups								
	Overall (n=402)	Gly695Arg (n=161)	Other collagenous domain glycine variants (n=47)	PTVs (n=119)	Other missense or inframe deletions (n=75)				
Diagnosed with Alport Syndrome/TBMD/nephritis, n (%)	4 (0.9)	1 (0.6)	3 (0)	0 (0)	0 (0)				
Family history of AS or kidney disease, n (%)	7 (1.7)	5 (3.1)	2 (4.1)	0 (0)	O (O)				
Urology workup for hematuria, n (%)	75 (18.6)	50 (31.0)	17 (34.7)	4 (3.4)	4 (5.3)				
Genetic Testing for Alport Syndrome, n (%)	8 (2.0)	5 (3.1)	2 (4.1)	0 (0)	1 (1.3)				
Kidney Biopsy performed, n (%)	12 (3.0)	9 (5.6)	3 (4.1)	0 (0)	0 (0)				
Taking ACEi or ARBs, n (%)	101 (25.1)	49 (30.4)	18 (36.7)	21 (17.6)	13 (17.3)				


This table does not use USRDS data.

CKD Risk Categories

Overall		ACR, mg/g						
	<30	30-299	300+	Total				
60+ without								
hematuria	17 (13.9%)	6 (4.9%)	2 (1.6%)	25 (20.5%)				
60+ with hematuria	40 (32.8%)	12 (9.8%)	6 (4.9%)	58 (47.5%)				
45-59	4 (3.3%)	5 (4.1%)	1 (0.8%)	10 (8.2%)				
30-44	6 (4.9%)	4 (3.3%)	3 (2.5%)	13 (10.7%)				
15-29	0	1 (0.8%)	4 (3.3%)	5 (4.1%)				
<15	2 (1.6%)	1 (0.8%)	8 (6.6%)	11 (9.0%)				
Total	69 (56.6%)	29 (23.8%)	24 (19.7%)					

PTVs (n=85)

<30 42 (49.4%) 8 (9.4%) 9 (10.6%)	30-299 3 (3.5%) 3 (3.5%)	300+ <u>3 (3.5%)</u> <u>5 (5.9%)</u>	Total 48 (56.5%) 16 (18.8%)					
8 (9.4%)	3 (3.5%)	5 (5.9%)	16 (18.8%)					
<i>(</i>			. ,					
9 (10.6%)	1 (1 00/)							
0 (10.070)	1 (1.2%)	2 (2.4%)	12 (14.1%)					
3 (3.5%)	1 (1.2%)	0	4 (4.7%)					
0	1 (1.2%)	0	1 (1.2%)					
0	0	4 (4.7%)	4 (4.7%)					
62 (72.9%)	9 (10.6%)	14 (16.5%)						
	0	0 1 (1.2%) 0 0 52 (72.9%) 9 (10.6%)	0 1 (1.2%) 0 0 0 4 (4.7%) 52 (72.9%) 9 (10.6%) 14 (16.5%)					

KDIGO CKD Risk Categories: Hematuria only category had trace hematuria but eGFR>60 and ACR<30; moderately increased risk (eGFR>60 with ACR 30-300 or eGFR 45-59 with ACR<30); high risk (eGFR>60 with ACR >300, eGFR 45-59 with ACR 30-300, eGFR 45-59 with ACR<30); orey high risk (eGFR>61 >29 with ACR<30, eGFR 15-29 with ACR<30); eGFR 15-29 with ACR<300, or EGFR 15-29 with ACR>300, eGFR 15-29 with ACR>300, or EGFR 15-20 wit

Other glycine variants (n=39)

Overall				
	<30	30-299	300+	Total
60+ without hematuria	7 (18.0%)	0	0	7 (17.9%)
60+ with hematuria	15 (38.5%)	3 (7.7%)	1 (2.6%)	19 (48.7%)
45-59	3 (7.7%)	1 (2.6%)	1 (2.6%)	5 (12.8%)
30-44	1 (2.6%)	1 (2.6%)	2 (5.1%)	4 (10.3%)
15-29	0	0	1 (2.6%)	1 (2.6%)
<15	0	0	3 (7.7%)	3 (7.7%)
Total	26 (66.7%)	5 (12.8%)	8 (20.5%)	

Other missense variants or inframe deletions (n=54)

Overall				
	<30	30-299	300+	Total
60+ without hematuria	28 (51.9%)	9 (16.7%)	2 (3.7%)	39 (72.2%)
60+ with hematuria	3 (5.6%)	1 (1.9%)	1 (1.9%)	5 (9.3%)
45-59	3 (5.6%)	0	0	3 (5.6%)
30-44	3 (5.6%)	1 (1.9%)	1 (1.9%)	5 (9.3%)
15-29	0	0	0	0
<15	0	0	2 (3.7%)	2 (3.7%)
Total	37 (68.5%)	11 (20.4%)	6 (11.1%)	

Controls (n=1438)

Overall				
	<30	30-299	300+	Total
60+ without hematuria	752 (52.3%)	95 (6.6%)	42 (2.9%)	889 (61.8%)
60+ with hematuria	154 (10.7%)	39 (2.7%)	27 (1.9%)	220 (15.3%)
45-59	146 (10.2%)	37 (2.6%)	15 (1.0%)	198 (13.8%)
30-44	47 (3.3%)	25 (1.7%)	7 (0.5%)	79 (5.5%)
15-29	8 (0.6%)	10 (0.7%)	5 (0.4%)	23 (1.6%)
<15	11 (0.8%)	1 (0.1%)	17 (1.2%)	29 (2.0%)
Total	1118 (77.7%)	207 (14.4%)	103 (7.9%)	

CKD Risk Categories

All glycine collagenous domain variants – Age 30-65 (n=82)

Overall				
	<30	30-299	300+	Total
60+ without hematuria	12 (14.6%)	3 (3.7%)	1 (1.2%)	16 (19.5%)
60+ with hematuria	43 (52.4%)	9 (11.0%)	6 (7.3%)	58 (70.7%)
45-59	1 (1.2%)	1 (1.2%)	0	2 (2.4%)
30-44	1 (1.2%)	1 (1.2%)	2 (2.4%)	4 (4.9%)
15-29	0	0	0	0
<15	0	0	2 (2.4%)	2 (2.4%)
Total	57 (69.5%)	14 (17.1%)	11 (13.4%)	

Controls – Age 30-65 (n=671)

Overall	ACR, mg/g			
	<30	30-299	300+	Total
60+ without hematuria	433 (64.5%)	48 (7.2%)	21 (3.1%)	502 (74.8%)
60+ with hematuria	93 (13.9%)	18 (2.7%)	14 (2.1%)	125 (18.6%)
45-59	25 (3.7%)	3 (0.5%)	3 (0.5%)	31 (4.6%)
30-44	3 (0.5%)	1 (0.2%)	1 (0.2%)	5 (0.7%)
15-29	1 (0.2%)	0	0	1 (0.2%)
<15	3 (0.4%)	1 (0.1%)	3 (0.4%)	7 (1.0%)
Total	558 (83.2%)	71 (10.6%)	42 (6.3%)	

All glycine collagenous domain variants 65+ (n=75)

Overall	ACR, mg/g			
	<30	30-299	300+	Total
60+ without hematuria	11 (14.7%)	2 (2.7%)	1 (1.3%)	14 (5.3%)
60+ with hematuria	10 (13.3%)	6 (8.0%)	1 (1.3%)	17 (22.7%)
45-59	6 (8.0%)	5 (6.7%)	2 (2.7%)	13 (17.3%)
30-44	6 (8.0%)	4 (5.3%)	3 (4.0%)	13 (17.3%)
15-29	0	1 (1.3%)	5 (6.7%)	6 (8.0%)
<15	2 (2.7%)	1 (1.3%)	9 (12.0%)	12 (16.0%)
Total	35 (46.7%)	19 25.3%)	21 (28.0%)	

Control	s – 65+ ((n=698)
---------	-----------	---------

Overall	ACR, mg/g			
	<30	30-299	300+	Total
60+ without hematuria	274 (39.3%)	36 (5.2%)	17 (2.4%)	327 (46.8%)
60+ with hematuria	58 (8.3%)	18 (2.6%)	10 (1.4%)	86 (12.3%)
45-59	121 (17.3%)	34 (4.9%)	12 (1.7%)	167 (23.9%)
30-44	44 (6.3%)	24 (3.4%)	6 (0.9%)	74 (10.6%)
15-29	7 (1.0%)	10 (1.4%)	5 (0.7%)	22 (3.2%)
<15	8 (1.2%)	0	14 (2.0%)	22 (3.2%)
Total	512 (73.4%)	122 (17.5%)	64 (9.2%)	

Low risk – no CKD
 Mildly increased risk - Hematuria alone
 Moderately increased risk
 Koderately increased risk

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2	Health system-based cohort study
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2	See abstract
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3, 4	See introduction
Objectives	3	State specific objectives, including any prespecified hypotheses	4	See introduction
Methods				
Study design	4	Present key elements of study design early in the paper	4, 5	See Methods
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4, 5, 6	see Methods
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	4, 5, 6	see Methods
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	7	Not applicable
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5, 6, 7	see Methods
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5, 6,7	see Methods
Bias	9	Describe any efforts to address potential sources of bias	7	See methods
Study size	10	Explain how the study size was arrived at	4, 5, 7	See methods and results

Continued on next page

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5, 6, 7	see statistical analysis
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	5, 6, 7	
methods		(b) Describe any methods used to examine subgroups and interactions	7	See statistical analysis (logistic regression, chi-square tests, propensity-score matching)
		(c) Explain how missing data were addressed	5, 6, 7	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed		Not applicable
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy		
		€ Describe any sensitivity analyses		Not applicable
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7, 8, 9	Included in the Results
		(b) Give reasons for non-participation at each stage		Not applicable
		(c) Consider use of a flow diagram	7	Included in the Results (Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7, 8, 9	Included in the Results Summarized in Tables 1, 2 and Supplemental Table 3
		(b) Indicate number of participants with missing data for each variable of interest	7	Included in the Results (1 COL4A3 P/LP heterozygote excluded due to missing data)
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	8	Included in the Results
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	8, 9, 10	Included in the Results
		Case-control study-Report numbers in each exposure category, or summary measures of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9	Included in the Results
		(b) Report category boundaries when continuous variables were categorized	8, 9	Included in the Results
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		Not applicable

Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	8,9	Included in the Results (Phenotype variability by subgroup)
Discussion				
Key results	18	Summarise key results with reference to study objectives	10	Included in the Discussion
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13	Included in the Discussion
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10, 11, 12, 13	Included in the Discussion
	21	Discuss the generalisability (external validity) of the study results	13	Included in the Discussion
Other information	tion			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based		Not applicable

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.