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Appendix Figure S1. Histopathological analysis of young growing mice after 
expression of SMRad51 for 12 days. (A) Western blot analysis of  exMmRAD51 and 
SMRAD51 protein content in extracts f rom various tissues of  young mice af ter 5 days of  

Dox treatment. (B) Summary of  the results of  pathological analysis and SMRAD51 
presence assessment by immunohistochemistry in various tissues of  SMRad51 and Ctrl 
mice. At least 3 dif ferent mice of  each genotype were analyzed. (C) Cell numbers in tibia 

and femur bone marrow samples f rom young Ctrl and SMRad51 mice af ter 7 days of  Dox 
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treatment. Each point represents a biological replicate and the horizontal bar show the 
mean. Statistical analysis: Student’s t-test. *p<0.05. 
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Appendix Figure S2. SMRad51 expression for 7 days does not change basic blood 

parameters. WBC, RBC and HGB density analysis of  blood samples f rom growing mice 
af ter 7 days of  Dox treatment in Ctrl (n=9) and SMRad51 (n=7) mice. Each point 
represents a biological replicate and the horizontal bar show the mean.      
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Appendix Figure S3. SMRad51 expression in growing mice leads to tissue-specific 

DDR activation and apoptosis.      A.      Quantif ication of  γH2AX+ cells in various 
tissues of  Ctrl and SMRad51 mice af ter 12 days of  Dox treatment.      B.      
Quantif ication of  cCasp3+ positive cells in various tissues of  Ctrl and SMRad51 mice af ter 

12 days of  Dox treatment. Each point represents a biological replicate and the horizontal 
bar show the mean. Statistical analysis: Student’s t-test. * p<0.05; ** p<0.01. 
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Appendix Table S1. Pre-mature ageing phenotypes compared to other models of  DNA 
repair and/or progeroid syndrome 

 

Phenotype 

ERCC1-/- XPDTTD mTR-/- ATRs/s BRCA1Δ1153BP1S25A 

SMRad51 ExMmRad51 

LmnaHG/+ 

(Weeda et 

al, 1997; 
Robinson 
et al, 

2018; 
Dollé et 
al, 2011) 

(De Boer 
et al, 

2002; 
Wijnhoven 
et al, 

2005) 

(Rudolph 
et al, 

1999) 

(Murga 

et al, 
2009; 
Ruzan

kina et 
al. 
2007) 

(Callen et al, 2020) 
(Yang et 
al, 2008) 

Hair Loss - + + + na + - na 

Kyphosis + + + + + + - + 

Reduced 

Activity 
+ na na na + + - na 

Priapism + na na na na + - na 

Decreased 
Body weight 

+ + + + + + - + 

Subcutaneous 
Fat Loss 

+ + + na na + - + 

 

 
n/a = not available      
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Appendix Table S2. Classif ication of  Cytokines and Chemokines presented in Figure 2 
(Turner et al. 2014 http://dx.doi.org/10.1016/j.bbamcr.2014.05.014)  

CYT

OKI
NES 

pro-inflammatory 
cytokines 

anti-inflammatory 
cytokines 

adaptive immunity 
cytokines 

 IL-1a IL-23 IL-3 

 Il-1b IL-27 IL-5 

 IL-1ra IL-28 IL-2 

 INF-g  IL-15 

   IL-13 

CHE
MOK

INES 

angiostatic 

chemokines 

allergic pro-
inflammatory 

chemokines matrix remodeling 

 CXCL11 CCL17 MMP-3 

   MMP-9 

    

    

CXCL16= pro-inflammatory chemokine induced by IFNg   

CCL12= chemo-attracted chemokine (monocytes, eosinophils)  
CCL20 or MIP3A (Macrophage Inflammatory Protein -3)= pro-inflammatory 

chemokine  

CXCL13= chemo-attracted chemokine (lymphocytes B)  
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Appendix Table S3. List of  primers used for real time RT-PCR. 

Gene Symbol Forward primer 5' - 3' Reverse primer 5' - 3' 

β-Actin 
GCCCTGAGGCTCTTTT
CCAG 

TGCCACAGGATTCCATACCC 

Gapdh 
AGGTCGGTGTGAACG
GATTG 

TGTAGACCATGTAGTTGAGG
TCA 

Il6 
TAGTCCTTCCTACCCC

AATTTCC 

TTGGTCCTTAGCCACTCCTT

C 

Ccl2 
TTAAAAACCTGGATCG
GAACCAA 

GCATTAGCTTCAGATTTACG
GGT 

IIlβ 
CAGGCAGGCAGTATCA
CTCA 

AGCTCATATGGGTCCGACAG 

Tnfα 
GAACTGGCAGAAGAG
GCACT 

AGGGTCTGGGCCATAGAACT 

Cxcl1 
CTGGGATTCACCTCAA
GAACATC 

CAGGGTCAAGGCAAGCCTC 
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Appendix material and methods 

 

Colony formation assay 
For a colony formation assay, one hundred exMmRad51 or SMRad51 iMEFs were 

plated per well in 6-well plates. Af ter 24 h, the cells were treated or not treated with 10 

μg/mL doxycycline, and 24 h later, the cells were treated or not with mitomycin C (MMC; 
Roche #10107409001) or olaparib (Selleckchem #S1060) for 10 days.  The drugs were 
added only once at the start of  the treatment. The clones were stained with crystal violet 

and counted. 
 
Homology-dependent gene targeting assay 

The gene targeting procedure was derived f rom (Zhang et al, 2014). This protocol 
consists of  replacing the second exon of  the 53BP1 gene with a hygromycin resistance 
(Hyg+) gene using a homology-dependent donor plasmid (here called pDonor) af ter 

Cas9-mediated production of  a DNA DSB. A total of  300,000 cells were resuspended in 
100 μL of  nucleofection buf fer (Lonza #VCA-1003) containing 1 μg of  pCas9 and 2 μg of  
pDonor with or without 1 μg of  pgRNA1 or pgRNA2. The cells were nucleofected using 

Amaxa (Lonza) protocol T30. Immediately af ter nucleofection, 500 μL of  medium was 
added, and the cells were plated on a 10 mm petri dish. Af ter 48 h, the targeted clones 
(Hyg+) were selected for 10 days with medium containing hygromycin that was renewed 

every 48 h. The clones were stained with crystal violet and counted.  
 

Protein purification 

Previously generated pcDNA3.1-MmRad51 and pcDNA3.1-SMRad51 constructs 
(Lambert & Lopez, 2000) encoding sequences were subcloned into a pCDF-His-SUMO 
backbone using a complementary single-strand annealing-based method. His-SUMO-

MmRAD51 and his-SUMO-SMRAD51 were both expressed in the E. coli strain 
BRL(DE3)pLysS. All of  the protein purif ication steps were carried out at 4°C. Protein 
expression was induced in 3 L of  cell culture medium with 0.5 mM isopropyl-1-thio-β-D-

galactopyranoside overnight at 20°C, af ter which the cells were resuspended in PBS with 
350 mM NaCl, 20 mM imidazole, 10% glycerol, 0.5 mg/mL lysozyme, complete protease 
inhibitor (Roche), and 1 mM 4-(2-aminoethyl)benzenesulfonyl f luoride (AEBSF). Then, 

the cells were lysed by sonication, and the insoluble material was removed by 
centrifugation at 150,000 × g for 1 h. The supernatant was incubated with 5 mL of  Ni-
NTA resin (Qiagen) for 2 h. The mixture was poured into an Econo-Column 

Chromatography Column (Bio-Rad), and the beads were washed with 80 mL of  W1 
buf fer (20 mM Tris HCl pH 8, 500 mM NaCl, 20 mM imidazole, 10% glycerol, 0.5% 
NP40) followed by 80 mL of  W2 buf fer (20 mM Tris HCl pH 8, 100 mM NaCl, 20 mM 

imidazole, 10% glycerol, 1 mM DTT). His-SUMO-tagged proteins bound to the beads 
were then resuspended in 8 mL of  W2 buf fer and incubated with SUMO protease at a 
ratio of  1/80 (w/w) for 16 h. The proteins in which the His-SUMO tag was cleaved were 

then recovered in the f lowthrough and directly loaded onto a HiTrap heparin column (GE 
Healthcare). The column was washed with W2 buf fer, and then a 0.1-1 M NaCl gradient 
was applied. Fractions containing purif ied proteins were dialyzed against storage buf fer 

(20 mM Tris HCl pH 8, 50 mM KCl, 0.5 mM EDTA, 10% glycerol, 1 mM DTT, 0.5 mM 
AEBSF), aliquoted and stored at -80°C. The concentrations of  purif ied MmRad51 and 
SMRad51 were calculated using extinction coef f icients of  1.664 × 104 M-1cm-1 and 1.813 

× 104 M-1cm-1 at 280 nm, respectively. 
 

D-Loop assay 

For the D-loop assay, 19 nM molecules (7.5 μM nt) of  a 400 nulcetides ssDNA 
labeled with the Cy5 f luorophore were incubated with MmRAD51, SMRAD51 or both 
(SM:MmRAD51 ratio: 0, 8, 16, 24, 32, 48 and 100%) at a f inal concentration of  25 μM (1 

protein per 3 nt) for 3 minutes at 37°C. RPA was then added to a f inal concentration of  
0.075 μM (1 protein per 100 nt) over a span of  15 minutes in buf fer containing 10 mM 
Tris-HCl (pH 8), 50 mM sodium chloride, 2 mM calcium chloride, 2 mM Magnesium 
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chloride, 1 mM DTT and 1.5 mM ATP. Then, a homologous double-stranded DNA 
(dsDNA) pUC19 plasmid (purchased f rom New England  Biolabs) was added to the 

reaction at a concentration of  16 nM molecules in a f inal volume of  8 μL over a span of  
30 minutes. The total reaction was stopped by the addition of  1% SDS (w/v) plus 25 mM 
EDTA and deproteinized (by 30 minutes of  incubation at 37°C with 2 mg/mL proteinase 

K). The samples were run in a 1.2 % (w/v) agarose gel at 80 V for 35 minutes in 0.5× 
TAE buf fer. Fluorolabeled DNA species were visualized by using a Typhoon FLA 9500 
(GE Healthcare Life Sciences). 

 
TEM analysis of RAD51 filaments 

RAD51 presynaptic f ilaments were assembled on a 5’ DNA junction with a single-

stranded overhang (the construction of  which has been described in (Tavares et al, 
2019) using MmRAD51, SMRAD51 or a mix of  both, as follows: 0.2 µM (36 μM nt) of  5’ 
junction DNA molecules were incubated with MmRAD51, SMRAD51 or both at a f inal 

concentration of  12 μM (1 protein per 3 nt) for 5 minutes at 37°C. RPA was then added to 
a f inal concentration of  0.6 μM (1 protein per 100 nt) over a span of  10 minutes in buf fer 
containing 10 mM Tris-HCl (pH 8), 50 mM sodium chloride, 2 mM calcium chloride, 1 mM 

DTT and 1.5 mM ATP. The reactions were quickly diluted 25× in buf fer, and a 5 μL drop 
was deposited on a 600-mesh copper grid previously covered with a thin carbon f ilm and 
activated with pentylamine by glow discharge using a Dubochet device. Each grid was 

rinsed, positively stained with aqueous 2% (w/v) uranyl acetate, dried careful ly with f ilter 
paper and observed in annular dark-f ield mode using a Zeiss 902 transmission electron 
microscope. Images were captured at a magnif ication of  85,000× with a MegaViewIII 

charge-coupled device (CCD) camera and analyzed with iTEM sof tware (Olymp us Sof t 
Imaging Solution). 

 

Western blotting. 
Cells were lysed in buf fer containing 20 mM Tris HCl (pH 7.5), 1 mM Na2EDTA, 1 mM 

EGTA, 150 mM NaCl, 1% (w/v), 1 mM -glycerophosphate, NP40, 1% sodium 

deoxycholate, 2.5 sodium pyrophosphate, 1 mM NA3VO4, 1 µg/ml leupeptin and 
complete ULTRA Tablets (Roche, Basel, Switzerland). Denatured proteins (20-40 µg) 
were electrophoresed in 9% SDS-PAGE gels or MiniPROTEAN® TGX™ 4-15% Precast 

gels (Bio-Rad, Hercules, CA, USA) transferred onto a nitrocellulose membrane and 
probed with specif ic antibodies. Anti-Vinculin (1/8,000, SPM227, ab18058, Abcam, 
Cambridge, UK), anti-RAD51 (1/1,000, Ab-1, PC130, Millipore, Burlington, MS, USA). 

Immunoreactivity was visualized through an enhanced chemiluminescence detection kit 
(ECL, Pierce). 
 

Measurement of SSA and EJ efficiency by FACS. 
Cells were transfected with the pCBASceI plasmid (Addgene, Watertown, MA, USA, 

#26477) and incubated for 72 hours. Then cells were collected with 50 mM EDTA diluted 

in PBS, pelleted and f ixed with 2% paraformaldehyde for 20 minutes. The percentage of  
GFP-expressing cells was scored by FACS analysis using a BD Accuri C6 f low 
cytometer (BD, Franklin Lakes, NJ, USA). The percentage of  CD4-expressing cells was 

measured af ter incubation for 10 minutes with 1 µl of  anti-CD4 antibody coupled to Alexa 
647 (rat isotype, RM4-5, Invitrogen, Waltham, MA, USA).       
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