Coliforms, Enterococci, Thermodurics, Thermophiles, and Psychrophiles in Untreated Farm Pond Waters

G. W. MALANEY, H. H. WEISER, R. O. TURNER, AND MARILYN VAN HORN

Department of Microbiology, Ohio State University, Columbus, Ohio

Received for publication July 31, 1961

Abstract

MALANEY, G. W. (Ohio State University, Columbus), H. H. WEISER, R. O. TURNER, AND MARILYN VAN HORN. Coliforms, enterococci, thermodurics, thermophiles, and psychrophiles in untreated farm pond waters. Appl. Microbiol. 10:44-51. 1962.-Untreated waters from ten farm ponds located in central, north central, southeastern, and southwestern Ohio were examined for numbers of coliforms, enterococci, thermodurics, thermophiles, and psychrophiles. The median population densities per 100 ml water for all ponds were: coliforms, 23; enterococci, 3.6; thermodurics, 6,000; thermophiles, 450; psychrophiles, 1,000. The results indicate that these farm pond waters were only lightly polluted and suggest that farm ponds, properly maintained, are a source of raw water of high bacteriological quality, requiring a minimum of treatment to be made suitable for domestic and livestock purposes.

In many rural areas, well water is insufficient in quantity or is of such poor quality as to be unsuitable for domestic or livestock use. This situation has been reported for Ohio, Missouri, Iowa, Indiana, and Oklaoma, even during periods of normal rainfall. One solution to this problem is hauling water from more fortunate areas, at some cost to the farmer. Another solution is the construction of farm ponds for the impoundment of surface or runoff waters. By 1956, more than 300 Ohio farmers were using ponds as the source of water for the home or the milk room of the dairy farm. The rate of farm pond construction has been even greater in other states.

Very little information is available on the microbiology of farm pond water. By their nature, such waters would appear to be highly susceptible to contamination by way of surface washings, septic tank or cesspool effluents, animal droppings, etc. This suggests a potential hazard to the health of humans and livestock. Also, such waters may be a source of nuisance organisms in milk production or a source of spoilage organisms in the water used for domestic purposes in the home or in food processing plants.

In order that state health departments be in a position to make recommendations concerning the use and treatment of farm pond waters, it is essential that information on the microbiological condition of untreated pond waters be available. With this end in view, a survey of farm pond waters in Ohio was made at ten installations in seven counties during the period April, 1959, to April, 1961. The specific purpose of the study was an estimation of population densities in untreated pond water of bacterial groups of public health significance (coliforms, enterococci), as well as those of economic importance (thermodurics, thermophiles, and psychrophiles).

MATERIALS AND METHODS

The ten ponds surveyed were divided into four groups according to geographical location (Hill and Schwab, 1959). Pond 90 was located in north central Ohio in Crawford County; four in central Ohio in Delaware County (ponds 1, 5, 6, and 8); three in southeastern Ohio in Washington (pond 23), Jackson (pond 25), and Vinton (pond 26) Counties; and two in the southwestern part of the state in Highland (pond 62) and Brown (pond 60) Counties. These ponds were were also selected so that each of the three major soil regions in Ohio was represented: glacial limestone (ponds 1, 60, and 62), glacial sandstone and shale (ponds 5, 6, 8, and 90), and residual sandstone and shale (ponds 23, 25, and 26). A complete description of these ponds has been reported by Hill and Schwab (1959).

Samples were taken one foot above the bottom (the "bottom" samples) and one foot below the surface (the "top" samples), both at the deepest point in the pond. Samples were placed on ice in a portable chest immediately upon collection and remained under refrigeration until analyzed. The maximal time elapsing between collection and examination of the sample was 12 hr.

The total bacterial population was estimated by the standard plate count (SPC) technique as outlined in *Standard Methods for the Examination of Dairy Products* (APHA, 1953), with incubation at 35 C. The density of thermoduric bacteria was estimated by the *Standard Methods* laboratory pasteurization test. The water sample was heated at 143 F for 30 min in a David Bradley home milk pasteurizer and the surviving

bacterial population determined by the SPC technique. The thermophilic and psychrophilic densities were estimated by the SPC technique with incubation at 55 C and 0 to 10 C, respectively.

The conventional multiple-tube most probable number (MPN) method, using Winter-Sandholzer (W-S) media and three tubes per dilution, was employed for estimation of the enterococci population. Although the W-S enterococcus method has been reported previously as yielding low results, parallel tests for enterococci in farm pond waters by the present authors using several methods including the W-S method, the membrane filter method, and the azide dextrose-ethyl violet azide method failed to reveal any over-all trend by the W-S test toward low results as compared with values obtained with the other methods. It is possible that variations in the nature of surface waters or seasonal fluctuations in microflora cause differences in the relative response to the various test methods. The coliform density was estimated by the MPN method recommended in Standard Methods for the Examination of Water and Wastewater (APHA, 1960). The specific procedure was initial inoculation into lactose, three tubes per dilution, with confirmation in brilliant green lactose bile broth (BGB). All positive BGB tubes were streaked on eosin methylene blue (EMB) agar, followed by transfer of colonies to secondary lactose broth and agar slant (Malaney *et al.*, 1961).

EXPERIMENTAL RESULTS

The estimated population densities of the various bacterial groups in the ten ponds sampled are given in Tables 1 to 10. Results for corresponding top and bottom samples are listed in adjacent columns. It should be noted that all counts are given in terms of 100 ml of sample.

At the bottom of each column is given the range of the counts listed in that column, as well as the median value. The median rather than the arithmetic mean was used as the measure of central tendency to eliminate the effects of extreme values. Also, indeterminate values made it difficult to calculate a meaningful arithmetic average. Where indeterminate values occurred in the middle of a set of results so as to interfere with the

TABLE 1. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pond no. 1 (glacial limestone)

					Count	s per 100 ml	pond water					
Date	SP	C*	Thermo	durics	Therm	ophiles	Psychr	ophiles	Enter	ococci	Colifor	ms
	T†	B†	Т	В	Т	В	Т	В	Т	В	т	В
1959:												
4-26	6,000	28,000	3,900	4,200		—	—	—	<30	<30		
7-7	35,000	54,000	_		1,500	21,000	32,000	36,000	<30	<30		_
7-14	35,000	64,000			5,000	4,600	6,300	2,000	<30	<30		_
7-28 ·			2,600	6,300	1,900	1,300	3,500	3,100	<30	<30		
8-18	68,000	20,000	_		800	2,000	800	1,400	<30	<30	_	
1960:	,	,										
1-12	420,000			_		_	—		9.1	_		_
1-12	580,000			_			—		<3.0	—		—
1-21	2,900,000	_	—		50,000		100,000	—	—		-	
4-21	13,000	12,000	16,000	33,000	<100	<100	9,000	2,000	<3.0	<3.0		
5-6	>300,000	10,000	410,000	7,000	100		1,000	<1,000	—	—	3.6	23
5-20	11,000	_	_		<100	1,500	1,000	7,000			23	9.1
5-27	35,000	49,000	19,000	5,000	100	<100	800	200			9.1	43
6-2		82,000	65,000	8,000	<100	<100		—	23	3.6	43	15
8-2	5,000	96,000	8,000	11,000	100	100	600	6,500	<3.0	3.6	43	460
8-9	67,000	100,000	_		<100	1,700	4,800	36,000	23	9.1	43	15
9-27	50,000	35,000	11,000		<100	200	7,100	2,700	<3.0	<3.0	1,100	290
10-14	68,000	72,000	3,600	4,000	100	<100	1,500	500	3.6	<3.0	93	43
10-28	40,000	43,000	2,000	2,200	800	2,500	500	800	<3.0	3.6	460	23
12-6	20,000	41,000	1,500	1,200	300	1,000	4,300	5,000	<3.0	3.6	43	93
1961:												
1-12	25,000	3,000			200	400	5,000	6,200	<3.0	<3.0	3.6	240
2-9	1,000,000	1,100,000	1,800	2,100	200	<100	210,000	230,000	3.6	<3.0	15	<3.0
3-9	100,000	36,000	3,800	3,900	500	100	220,000	140,000	3.6	<3.0	9.1	43
Median	45,000	43,000	3,900	4,600	200	400	4,600	3,100	3.6	3.6	43	430
Max value	2,900,000	1,100,000	410,000	33,000	50,000	21,000	220,000	230,000	23	9.1	1,100	460
Min value	5,000	3,000	1,500	1,200	<100	<100	500	200	<3.0	<3.0	3.6	<3.0

* SPC = standard plate count.

calculation of the median, these indeterminate values were eliminated from the set. Unfortunately, because of laboratory accidents or equipment difficulties, it was not always possible to obtain counts of all bacterial groups on a given sample. This reduces somewhat the reliability of any comparison of median values.

DISCUSSION

To compare the populations of the various groups of bacteria in the ten ponds and thus obtain a general picture of the bacteriological condition of the ponds, the median values for the top samples only are listed in Table 11. The ponds are grouped according to soil region. It is noted that these pond waters show a very low bacterial population. They must be classed as only slightly polluted waters. The densities of thermodurics, thermophiles, psychrophiles, and total bacteria, when converted to counts per ml, are quite low. The median of the medians, given at the bottom of each column in Table 11, represents in a general way the bacterial status of farm ponds in Ohio. Of course, in any interpretation of the data, it must be kept in

TABLE 2. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pond no. 5 (glacial sandstone and shale)

					Counts ₁	per 100 ml p	ond water					
Date	SPO	C*	Thermo	odurics	Therr	nophiles	Psychr	ophiles	Enter	ococci	Coli	forms
	Tţ	Bţ	Т	В	Т	В	Т	В	Т	В	T	В
1959:												
5-7	20,000	5,600	13,000	140,000	400	200	<100	<100	<30	<30	—	
7-7	23,000	140,000			2,600	37,000	28,000	8,200	<30	<30	_	
7-14	110,000	96,000			7,200	7,000	3,300	9,500	<30	<30	_	
7-28	30,000	>30,000	33,000	>30,000	1,700		1,000	1,500	<30	230	_	
8-18	680,000	280,000			5,000	30,000	600	1,500	36	73		_
1960:		-										
3-3	130,000	210,000	<10,000	<10,000	5,000	10,000	5,000	5,000	<3.0	<3.0		_
4-21	92,000	31,000	7,000	44,000	800	<100	<1,000	<1,000	<3.0	<3.0		
5-6	>300,000	12,000	14,000	5,000	200	200	<1,000	1,000			15	43
5-27	23,000		6,000	30,000	500	300	400	500			19	150
7-25	68,000	95,000	18,000	40,000	<100	<100	100	14,000	23	240	240	1,500
8-2	94,000	65,000	7,000	11,000	900	400	1,000	14,000	75	460	150	460
8-9	24,000	200,000		61,000	300	3,900	600	20,000	150	43	23	750
11-15	45,000	46,000	7,500	8,500	6,100	9,500	4,000	4,500	3.6	9.1	23	150
Median	83,000	80,000	10,000	30,000	900	2,200	1,000	4,500	<30	<30	23	300
Max value	680,000	280,000	33,000	140,000	7,200	37,000	28,000	20,000	150	460	240	1,500
Min value	20,000	5,600	6,000	5,000	<100	<100	<100	<100	<3.0	<3.0	15	43

* SPC = standard plate count.

 $\dagger T = top samples; B = bottom samples.$

 TABLE 3. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pond no.6 (glacial sandstone and shale)

	Counts per 100 ml pond water												
Date	SP	C*	Therm	nodurics	Therm	ophiles	Psych	rophiles	Ente	rococci	Coli	forms	
	Tţ	Bţ	Т	B	T	В	T	В	Т	В	Т	В	
1959:									-				
4-30	42,000	49,000	8,400	23,000	200	600	<100	<100	<30	<30			
7-14	250,000	_			2,500		3,600	_	<30	_			
7-28	21,000	_	8,000	7,000	1,500	2,600	900	9,900	<30	36		_	
8-18	74,000	67,000			1,700	5,800	700	1,400	<30	<30		-	
1960:													
7-25		-	-	17,000			700	10,000	<3.0	14	23	240	
8-9	44,000	_	69,000	32,000	100		300	_	<3.0	<3.0	15	20	
Median	44,000	58,000	8,400	20,000	1,700	2,600	700	5,700	<30	<30	19	130	
Max value	250,000	67,000	69,000	32,000	2,500	5,800	3,600	10,000	_	36	23	240	
Min value	21,000	49,000	8,000	7,000	100	600	<100	<100	<3.0	<3.0	15	20	

* SPC = standard plate count.

mind that the results may be biased as a consequence of restricted sampling, limited number of ponds sampled, selection of ponds, and other unrecognized sampling errors. Although the SPC is of no great significance, this parameter was measured to give some indication of the heterogeneous bacterial population. Even though the pond water might consist principally of runoff from

TABLE 4. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pondno. 8 (glacial sandstone and shale)

					Coun	ts per 100 m	l pond water					
Date	SI	PC*	Ther	modurics	Thermo	philes	Psychi	rophiles	Enter	ococci	Colif	orms
	Tţ	Bţ	Т	B	T	В	т	В	Т	В	Т	В
1959:												
5-10	44,000	71,000	4,600	44,000		200	<100	<100	<30	<30		
7-7	31,000	12,000			6,800	26,000	33,000	13,000	<30	<30	_	
7-21	89,000	76,000	3,200	3,600	1,200	5,800	500	600	<30	<30		_
7-28	120,000		2,900		600	1,700	1,700	4,800	<30	<30	_	
1960:	,						, í	,				
3-9	550,000	—	490,000	3,000,000	<10,000	10,000	10,000	20,000	<3.0	<3.0	_	_
4-8	80,000		, 		200		<100					
4-21	6,000	50,000	19,000	25,000	<100	400	1,000	2,000	<3.0	<3.0		
5-6		61,000	11,000	48,000	100	3,600	<1,000	<1,000			9.1	93
5-27	15,000		9,000	15,000	<100	<100	100	<100			14	15
6-2	49,000	_	4,000	17,000	<100	400		_	9.1	23	460	93
7-18	83,000	74,000	110,000	130,000	<100	<100	3,600	67,000	<3.0	<3.0	93	4,600
7-25	97,000	94,000	7,000	_	<100	<100	2,800	40,000	<3.0	3.6	240	1,500
8-2	110,000	98,000	8,000	9,000	400	1,000	2,800	24,000	<3.0	<3.0	240	120
8-9	190,000	54,000	51,000	9,000	100	900	1,500	2,100	9.1	3.6	21	36
9-27	22,000	60,000	_	2,800	100	200	200	1,400	<3.0	<3.0	75	290
10-14	200,000	110,000	4,200	6,400	<100	<100	300	5,900	3.6	3.6	93	240
10-28	5,000	10,000	200	300	<100	100	2,600	5,000	3.6	3.6	23	150
11-15	55,000	45,000	2,100	3,800	800	900	2,400	2,800	<3.0	<3.0	23	23
12-6	17,000	45,000	2,500	2,700	1,000	500	3,500	4,000	3.6	<3.0	23	43
1961:	ŕ	,					,					
1-12	11,000	40,000			300	800	3,800	4,700	<3.0	3.0	7.3	3.6
3-9	110,000	120,000	7,500	8,500	400	200	190,000	210,000	21	240	1,100	23
Median	68,000	61,000	7,000	9,000	150	450	2,600	4,000	3.6	3.6	49	93
Max value	550,000	120,000	490,000	3,000,000	6,800	26,000	190,000	210,000	21	240	1,100	4,600
Min value.	5,000	10,000	200	300	<100	<100	<100	<100	<3.0	<3.0	7.3	3.6

* SPC = standard plate count.

 $\dagger T = top samples; B = bottom samples.$

TABLE 5. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pond no. 23 (residual sandstone and shale)

	Counts per 100 ml pond water												
Date	SP	°C*	Therm	odurics	Thermophiles Psychro		ophiles	Enter	ococci	Colif	orms		
	Tţ	Bţ	Т	В	Т	В	T	В	Т	В	Т	В	
1959:													
8-11	38,000	47,000	1,600	4,800	200	700	600	700	—	-	—		
1960:													
7-5	240,000	500,000	66,000	110,000	100	600	100	800	23	240	93	21	
1961:													
1-27	95,000	100,000	5,000	5,000			150,000	110,000	93	15	23	210	
3-2	57,000	65,000	13,000	12,000	600	500	48,000	90,000	<3.0	<3.0	<3.0	<3.0	
Median	76,000	83,000	9,000	8,500	200	600	24,000	45,000	23	15	23	21	
Max value	240,000	500,000	66,000	110,000	600	700	150,000	110,000	93	240	93	210	
Min value	38,000	47,000	1,600	4,800	100	500	100	700	<3.0	<3.0	<3.0	<3.0	

* SPC = standard plate count.

well-grassed meadow land, it would still be expected to contain large numbers of soil bacteria. When compared with plate counts of various types of natural waters, the SPC values indicate that farm ponds have a relatively low microbial population.

The significance of the coliform group of bacteria in the domestic drinking water supply as an indicator of fecal pollution is too well known to require comment. The experimental results indicate that, using coliform density as the criterion, pond water is a very lightly polluted raw water. It will be recalled that the coliform index has been used to determine the minimal treatment required of various types of raw water to produce a finished water meeting the U. S. Public Health Service Drinking Water Standards. According to Streeter (1939), raw water averaging not more than 50 coliform organisms per 100 ml may be treated by simple chlorination or its equivalent. This would be considered a good water supply. Apparently, farm pond waters fall into this category.

The concentration of coliform organisms in any milk or milk derivative reflects the care taken in the production and processing of the product. In some areas the coliform count is replacing the SPC in the evaluation of the quality of raw milk in storage tanks prior to pasteurization. Therefore, careful control of all sources of coliforms, including the water supply, is essential to the production of acceptable milk products.

TABLE 6. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pond no. 25(residual sandstone and shale)

	Counts per 100 ml pond water												
Date	SP	C*	Therm	odurics	Therm	ophiles	Psychr	ophiles	Enter	ococci	Colif	orms	
	T†	B†	Т	В	Т	В	T	В	Т	В	Т	В	
1959:													
8-11	73,000	38,000	2,500	7,000	600	500	200	300		_			
1960:													
7-5	85,000		24,000	39,000	200	100	100	500	93	460	15	20	
10-7	38,000	25,000	6,000	2,200	1,000	2,700	300	2,500	<3.0	<3.0	21	20	
11-4	40,000	35,000	2,500	3,900	900	2,000	6,600	4,400	<3.0	<3.0	2,400	240	
1961:													
1-27	70,000	25,000	3,500	1,000	_		180,000	160,000	<3.0	3.6	23	43	
Median	70,000	30,000	3,500	3,900	800	1,600	300	2,500	<3.0	<3.3	22	32	
Max value	85,000	38,000	24,000	39,000	1,000	2,700	180,000	160,000	93	460	2,400	240	
Min value	38,000	25,000	2,500	1,000	200	100	100	300	<3.0	<3.0	15	20	

* SPC = standard plate count.

 $\dagger T = top samples; B = bottom samples.$

TABLE 7. Population of enterococci,	coliforms, thermodurics	, thermophiles,	and psychrophiles in pond	no. 26
	(residual sandstone ar	nd shale)		

	Counts per 100 ml pond water													
Date	SI	PC*	Thermodurics		Ther	mophiles	Psychi	rophiles	Enter	rococci	Colifo	rms		
	T†	B†	Т	В	т	В	т	В	т	В	T	В		
1959:														
5-19	41,000	18,000	800	1,500	200	100	<100	<100	<30	<30				
8-11	100,000	130,000	4,400	10,000	100	200	500	<100				_		
1960:														
7-5	110,000	100,000	91,000	93,000	100	<100	100	<100	<3.0	3.0	15	93		
10-7	22,000	46,000	2,300	3,000	500	300	100	4,000	<3.0	<3.0	460	93		
11-4	95,000	35,000	3,000	2,100	500	100	5,700	6,100	<3.0	<3.0	93	43		
1961:		-												
3-2	85,000	2,400	13,000	8,500	500	300	4,500	7,000	<3.0	<3.0	9.1	15		
Median	90,000	41,000	3,700	5,800	350	150	300	2,100	<3.0	<3.0	54	68		
Max value	110,000	130,000	91,000	93,000	500	300	5,700	7,000	_		460	93		
Min value	22,000	2,400	800	1,500	100	<100	<100	<100	<3.0	<3.0	9.1	15		

* SPC = standard plate count.

of the conventional coliform determination. The enterococci MPN data show these pond waters to be very lightly contaminated. The enterococcus counts, therefore, corroborate the results of the coliform anallyses.

A great amount of effort is expended by the market milk industry to produce pasteurized milk with a low bacterial content. The thermoduric bacteria are especially troublesome in this regard. It has been shown that a major factor in high total counts in pasteurized milk is the presence of excessive numbers of thermoduric bacteria in raw milk from the dairy farm. Since, by definition, the thermodurics are able to survive conventional pasteurization exposures, excessive numbers in the raw milk make it difficult to meet bacterial standards for pasteurized milk.

Although high thermoduric counts are frequently found in milk from farms where cooling is inadequate, the primary cause of the excessive counts in such instances is poor utensil sanitation. In the water used for washing utensils and equipment, the presence of thermoduric bacteria, even though in small numbers as in the case of pond waters, would serve as an additional source of these nuisance organisms and would aggravate the situation. Treatment of the water prior to use should reduce the thermoduric count to an insignificant level. However, this consideration might complicate the use in farm pond water treatment of the continuous-flow pasteurizer designed by Goldstein, Mc-Cabe, and Woodward (1960).

Thermophilic bacteria, as defined by the dairy in-

TABLE 8. Population of enter	rococci, coliforms, thermodurie	s, thermophiles, and	d psychrophiles in pond no. 60)
	(glacial limes	tone)		

					Count	s per 100 ml j	ond water					
Date	SF	°C*	Thermo	durics	Therm	ophiles	Psychr	ophiles	Enter	ococci	Colif	forms
	T†	B†	Т	В	Т	В	Т	В	Т	В	Т	В
1959:												
7-23	86,000	_	500		2,700	3,500	1,400	2,100	<30	<30	_	
1960:												
3-5	470,000	200,000	210,000	220,000	<10,000	<10,000	<10,000	<10,000	<3.0	<3.0		
3-22	1,200,000	1,800,000	64,000	82,000	<10,000	<10,000	<10,000	<10,000	<3.0	<3.0		- 1
4-5	16,000		<1,000		<1,000		<1,000		<3.0		-	-
4-12	26,000	_	15,000		<1,000		<1,000	_	<3.0			_
4-19	20,000	19,000	16,000	11,000	<1,000	<1,000	1,000	3,000	<3.0	<3.0		
4-24	8,000	26,000	280,000	840,000	<100	<100	<100	<100	-		43	9.1
5-3	4,000	19,000	5,000	17,000	<100	100	<1,000	<1,000		—	<3.0	<3.0
5-10	96,000		1,000,000		<100	_	1,000		—	_	460	
5-17	60,000	51,000		6,000	200	_	<1,000	2,000			23	<3.0
5-24	32,000	870,000	<1,000	6,000	<1,000	300	200	2,500			93	1,100
7-24	89,000	30,000	50,000	170,000	<100	1,500	1,000	2,100			3.6	<3.0
8-11	300,000	33,000	20,000	58,000	600	900	10,000	24,000	43	9.1	1,500	750
9-28	26,000	46,000	5,200	6,000	<100	500	<100	1,800	<3.0	3.6	23	23
10-5	54,000	26,000	14,000		100	<100	<100	<100	<3.0	3.6	23	<3.0
10-12	170,000	39,000	1,600	3,800	<100	300	<100	3,300	3.6	3.6	21	15
10-18	32,000	42,000	4,500	7,800	900	6,000	3,100	10,000	<3.0	3.6	23	460
10-26	27,000	28,000	2,000	2,500	<100	<100	500	1,500	<3.0	3.6	23	93
11-1	32,000	40,000	2,400	4,000	1,800	1,200	3,500	4,100	3.6	9.1	460	460
11-10	80,000	75,000	3,300	5,000	1,700	2,000	30,000	22,000	<3.0	<3.0	460	210
11-23	14,000	16,000	1,700	1,900	500	1,500	500	1,200	<3.0	<3.0	43	23
11-29	30,000	25,000	1,200	1,600	1,800	5,000	3,000	3,800	<3.0	<3.0	460	93
12-8	20,000	22,000	1,800	2,100	1,000	2,200	2,400	4,000	<3.0	<3.0	29	21
12-14	7,000	_	900		1,000	_	1,200	_	<3.0	_	21	—
1961:												
1-1	16,000	25,000		- 1	200	500	7,000	13,000	<3.0	<3.0	23	43
2-21	23,000	20,000	2,200	3,000	400	400	110,000	45,000	<3.0	<3.0	43	21
3-8	54,000	55,000	7,500	7,800	400	800	130,000	85,000	43	43	3.6	15
Median	32,000	32,000	4,500	6,000	550	850	1,000	3,000	<3.0	<3.3	23	22
Max value	1,200,000	1,800,000	1,000,000	840,000	2,700	6,000	130,000	85,000	43	43	1,500	1,100
Min value		16,000	500	1,600	<100	<100	<100	<100	<3.0	<3.0	<3.0	<3.0

* SPC = standard plate count.

dustry, are those organisms able to grow at 55 C. However, the method used enumerates only the aerobic members of this group. Home canned foods are subject to spoilage by thermophilic bacteria, facultative with respect to oxygen. Inadequately treated pond water used in home packing operations may serve as a source of such spoilage organisms.

The thermophilic problem in the dairy industry centers about the growth of bacteria during the pasteurization of milk. As in the case of the thermoduric bacteria, excessive numbers of these organisms may grow and be counted in the mesophilic SPC. This makes it difficult to meet the standards for pasteurized milk. In addition, these organisms are objectionable in milk because their growth may cause off-flavors, high acidity, and a tendency for the milk to curdle upon heating.

The term psychrophilic as used in the dairy industry refers to those bacterial species which are capable of growth at temperatures in the range of 2 to 10 C. Since storage at low temperatures is a common method of preserving milk and milk products from deterioration

TABLE 9. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pond no. 62(glacial limestone)

	Counts per 100 ml pond water												
Date	SP	C*	Thern	nodurics	Therm	ophiles	Psychro	ophiles	Enter	ococci	Coli	forms	
	Tţ	B†	T	В	Т	В	Т	в	Т	В	Т	В	
1959:													
5-25	16,000	14,000	24,000	11,000	<100	900	<100	<100	<30	<30		-	
7-23	43,000	65,000	2,200	2,300	3,300	5,700	2,100	1,700	<30	<30		-	
1960:													
5-17	11,000	25,000	14,000	19,000	<100	<100	<1,000	2,000			—	-	
5-24	29,000	88,000	4,000	12,000	100	-	<100	700	—		_		
6-23	_	36,000	55,000	5,000	300	700	300	<100			3.6	75	
7-27	170,000	57,000			300	100	100	100	9.1	<3.0			
8-1	44,000	49,000	31,000	130,000	<100	200			<3.0	39	460	93	
8-11	41,000	46,000	15,000	20,000	<100	400	600	14,000	<3.0	23	150	240	
10-5	33,000	32,000	28,000	16,000	100	100	<100	4,400	3.6	9.1	36	240	
10-26	90,000	9,200	2,300	4,000	100	100	5,300	4,500	3.6	<3.0	23	93	
1961:													
2-21	14,000	40,000	2,300	3,500	800	1,000	58,000	85,000	3.6	9.1	21	23	
3-8	160,000	55,000	6,500	7,500	200	<100	110,000	85,000	15	11	<3.0	7.3	
Median	41,000	43,000	14,000	11,000	100	200	600	2,000	3.6	11	23	93	
Max value	170,000	88,000	55,000	130,000	3,300	5,700	110,000	85,000	15	39	460	240	
Min value	11,000	9,200	2,200	2,300	<100	<100	<100	<100	<3.0	<3.0	<3.0	7.3	

* SPC = standard plate count.

 $\dagger T = top sample; B = bottom sample.$

	Counts per 100 ml pond water												
Date	S	PC*	Therm	odurics	Thermophiles		Psychr	ophiles	Enter	ococci	Coliform		
	T†	B†	т	В	Т	В	т	В	Т	В	т	В	
1959:													
7-21		140,000		2,700	700	1,000	800	1,500	<30	91			
1960:						, í							
12-2	70,000	64,000	4,000	3,000	1,400	1,900	11,000	9,500	<3.0	<3.0	93	150	
1961:													
1-23	77,000	62,000	6,000	4,500	700	1,100	13,000	12,000	—	—	23	23	
Median	74,000	64,000	5,000	3,000	1,100	1,100	11,000	9,500	<17	<47	58	87	
Max value	77,000	140,000	6,000	4,500	1,400	1,900	13,000	12,000		91	93	150	
Min value	70,000	62,000	4,000	2,700	700	1,000	800	1,500	<3.0	<3.0	23	23	

 TABLE 10. Population of enterococci, coliforms, thermodurics, thermophiles, and psychrophiles in pond no. 90 (glacial sandstone and shale)

* SPC = standard plate count.

by bacterial action, the presence of bacterial types able to grow rather well at low temperatures has been a matter of concern in the transportation, processing, and keeping quality of fluid milk products. Since certain members of this group of organisms are capable of producing flavor and aroma defects in raw or pasteurized milk, initial contamination must be kept at a minimum. Pond waters with their low content of psychrophiles do not appear to be a serious hazard in this regard, since treatment of the pond water should reduce the count to an insignificant level.

There has been some discussion regarding the optimal location in depth of the raw water intake unit. Earlier installations often employed the buried pipe, the submerged barrel filled with sand and gravel, or the submerged, sand-filled trench type of inlet. Current thought favors an intake near the surface of the pond, preferably using a floating inlet. Obviously, the intake should be located at such a point as to utilize the water of highest chemical and bacteriological purity.

 TABLE 11. Relative densities of coliforms, enterococci, thermodurics, thermophiles, and psychrophiles in farm pond waters, as indicated by median values of top samples

	Counts per 100 ml pond water									
Pond no.	SPC*	Thermo- durics	Thermo- philes	Psychro- philes	Entero- cocci	Coli- forms				
1	45,000	3,900	200	4,600	3.6					
60	32,000	4,500	550	1,000		23 23 23				
62	41,000	14,000	100	600						
5	83,000	10,000	900	1,000	<30					
6	44,000	8,400	1,700	700	<30	19				
8	68,000	7,000	150	2,600	3.6	49				
90	74,000	5,000	1,100	11,000	<17	58				
23	76,000	9,000	200	24,000	23	23				
25	70,000	3,500	800	300	<3.0	22				
26	90,000	3,700	350	300	<3.0	54				
Median of										
medians.	69,000	6,000	450	1,000	3.6	23				

* Standard plate count, incubation at 35 C.

 TABLE 12. Differences in vertical dispersion of bacteria

 in farm ponds as shown by median values of top and

 bottom samples

	SPC*	Thermo- durics	Thermo- philes	Psychro- philes	Enterococci	Coliforms
Ponds with top count higher than bottom count	6	3	1	2	1	2
Ponds with top count same as bottom count			1		7	—
Ponds with top count lower than bottom count	4	7	8	8	2	8

* Standard plate count.

The individual results in Tables 1 through 10 show that either top or bottom count might be higher in a given pond on a given day. However, when median values for corresponding top and bottom samples are compared (Table 12), a definite trend for the bottom sample to show a higher count is revealed, except in the case of the SPC and the enterococci count. In the latter case, the medians for top and bottom were usually the same, suggesting a roughly uniform enterococci population throughout the pond.

These data confirm the conclusions of Daniel (1953) and Hill and Schwab (1959) as to the desirability of surface water over the bottom water of ponds. However, caution is necessary in the interpretation of these results; in collecting bottom samples, it is inevitable that occasionally the sampler will strike the bottom sediment, with resultant agitation of the mud. Such accidents would probably increase the bacterial counts of such bottom samples.

No definitive conclusions were made with regard to the effect of soil region upon bacterial densities. A superficial analysis seems to indicate higher bacterial quality in glacial limestone (ponds 1, 60, and 62); however, there are a number of variables which make evaluation of the data difficult. For example, ponds 60 and 62 are partially spring fed and spring water would be expected to have a lower bacterial content than surface runoff. Also, the care taken in the maintenance of the individual watershed and pond environs will influence water quality.

An analysis of the results was made to determine a possible relationship between bacterial density and season, but no significant correlation was observed.

Acknowledgments

This investigation was supported by research grant 871 of the National Institutes of Health. The technical assistance of Ron Hill, Department of Agricultural Engineering, Ohio State University, is gratefully acknowledged.

LITERATURE CITED

- American Public Health Association. 1953. Standard methods methods for the examination of dairy products, 10th ed. New York. 345 p.
- American Public Health Association. 1960. Standard methods for the examination of water and wastewater. 11th ed. New York. 626 p.
- DANIEL, E. R. 1953. Treating farm pond water for domestic use. Oklahoma Agr. Expt. Sta. Bull. No. B-408.
- HILL, R. D., AND G. O. SCHWAB. 1959. A study of selected farmstead surface water supply installations. Report to U. S. Dept. Agr., Agr. Research Serv., Beltsville, Md.
- GOLDSTEIN, M., L. J. MCCABE, AND R. L. WOODWARD. 1960. Continuous-flow water pasteurizer for small supplies. J. Am. Water Works Assoc. 52:247-254.
- MALANEY, G. W., H. H. WEISER, R. M. GERHOLD, AND F. A. GARVER. 1961. Evaluation of methods for coliform counts in farm pond waters. J. Am. Water Works Assoc. 53:43-48.
- STREETER, H. W. 1939. Standards of raw and treated water quality. J. Am. Water Works Assoc. 31:1479-1488.