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Peer Review File

Expanding PROTACtable genome universe of E3 ligases



Re: NCOMMS-23-12374-T 
 
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Liu et al describe a project in which data on E3 ligases from various sources are integrated, with a 
view to assisting the selection of new/novel members of that family for example in PROTAC 
development. The integrated information is made available via a public website. This work would 
be of interest to the broader protein degradation community and is worthy of publication. However, 
I don’t consider it to contain sufficient "noteworthy" original results to warrant publication in 
Nature Communications. In some respects it is an incremental advance on previous work such as 
the PROTACtable Genome analysis of Schneider et al; furthermore the paper does not provide any 
particularly insightful analyses of the E3 ligase landscape beyond some illustrative examples 
throughout the manuscript (none of which have any experimental validation). It would seem to me 
that a more suitable home for such a study would be the companion Nature journal Scientific Data 
(though this is ultimately a decision for the editor). 
 
Response: PROTACs employ E3 ligases to tag target proteins for subsequent degradation, and the 
recruitment of E3 ligases is an essential step in the process of target protein degradation1. The 
PROTACtable Genome analysis of Schneider et al is indeed a comprehensive and very worthy 
analysis focusing on the target proteins of PROTACs2, but it did not consider the potential of new 
E3 ligase that could be co-opted into the PROTAC development. Furthermore, the prevalent use 
of VHL and CRBN has presented a challenge to the current development of PROTACs3, thereby 
motivating our search for novel potential E3 ligases. Please note, our work is the first 
comprehensive analysis focusing on the features of E3 ligases in the PROTAC, and in this respect 
is clearly not an incremental advance compared to previous work, e.g., PROTACtable genome 
analysis.  
 
To further explicate why this is indeed the case, we note that our study has carried out a 
comprehensive evaluation of all E3 ligases: to this end we collected 30 datasets covering different 
aspects of PROTAC, including chemical ligandability, expression patterns, protein-protein 
interactions (PPI), structure availability, functional essentiality, cellular location, and PPI 
interface. We then systematized and ranked the E3 ligases that could be prioritized into PROTAC. 
development. We further provide a few examples to illustrate the methodology of identifying 
potent E3 ligases that could act against key cancer targets. Finally, we developed a user-friendly 
flexible web portal (https://hanlaboratory.com/E3Atlas) that is aimed at assisting the broader 
protein degradation community to rapidly identify new E3 ligases with promising TPD activities 
against specifically desired targets, facilitating the development of PROTAC in cancer and 
beyond.  
 
An important novelty of our work relates to the computational-centralized focus. Our approach 
follows recent studies that have established the significance of rigorous analysis which is based 
on large-scale data. For example, the recent TCGA/ICGC Pan-cancer project published a series 
of high-profile papers in Nature and Cell series journals4–11. These comprehensive analyses 
provide the foundation and important insights for  further investigations, which may be performed 



independent of experimental validation (as demonstrated in studies from our group in the cancer 
genomics field12–16).  
 
I do have serious concerns about the inclusion of output from predictive models alongside data 
from ‘real’ (often peer-reviewed) experiments. The ‘hyperattentionDTI’ model in particular in my 
view provides results that are of no real value and indeed may well be misleading. An average of 
552 drug-ligase interactions is frankly unbelievable given the typical number of meaningful 
protein:ligand interactions of marketed drugs for example from chemoproteomics experiments. I 
would advise the authors to seek out someone with expertise in the practical development, 
validation and use of in silico models in drug discovery (preferably from an industrial background) 
who will be able to advise on how best to utilise such methods. 
 
Response: We thank for this valuable comment. We reevaluated our method, and adopted the data 
presentation format from the original HyperAttentionDTI study, which highlights predicted 
interactions with the highest probability as potential candidate interactions17. Addressing your 
concern, in the revised manuscript, we now present only the top predicted drug-target interactions 
for each E3 ligase. By default, the top 10 predicted interactions are displayed, and users have the 
flexibility to expand this list from 1 to 500 at their choice. Furthermore, we also included an option 
that allows users to choose a threshold to examine predicted interactions meeting a specific cutoff.  
 
The Screenshot of virtual screening of data portal has been modified accordingly: 
 

 
 
We revised the main text accordingly, which now reads (page 7):  “To search for the potentially 
new drugs for recruiting E3 ligases, we adopted a deep-learning based virtual screening ligand 
model, HyperAttentionDTI17, to search for potential interactions between E3 ligases and drugs in 
DrugBank18. The model captured complex interactions between atoms and amino acids through 
an innovative attention mechanism and achieved improved performance over the state-of-the-art 
baselines, and the new drug-target interactions falls into top virtual screening predicted interactions 
in the test case study. After evaluating and applying this model (Figure S3), we obtained predicted 
drug-target interactions, including for potentially novel E3 ligases, such as Makorin Ring Finger 
Protein 1 (MKRN1), having PPIs with key tumor drivers, TP53 and APC32, and predicted to 
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interact with DB13955 (Estradiol dienanthate) and DB03017 (Lauric acid). Utilizing these drugs 
may increase the ligandability of potentially novel E3 ligases that target additional tumor targets. 
Taken together, our systematic analysis exploited five large-scale data sources and revealed a 
number of new E3 ligases with tens of available ligands that may be utilized for PROTAC 
development.”. 
 
The authors seem to be in two minds as to whether they are addressing a cancer audience (which 
would be entirely reasonable given their own areas of research focus) or a wider, disease-agnostic 
audience (as implied in the Introduction). 
 
Response: Thanks. Considering the wide use of PROTAC in many areas, such as cancer, immune 
disorder, and neurodegenerative diseases19, we aimed at providing insights for broader fields 
beyond cancer. Accordingly, many of E3 ligases properties carefully evaluated in this manuscript 
are general characteristics involved in PROTAC development. We clarified this in the revised 
manuscript (page 18-19), stating that “Beyond facilitating the development of PROTACs targeting 
cancer, aspects such as confidence scores, ligandability, PPI, structural information, cellular 
localization, and PPI interfaces of E3 ligases also hold broad applicability in the deployment of 
PROTACs for a range of other diseases. These factors, therefore, present universal value in the 
context of PROTAC-oriented therapeutic strategies.”  
 
Some additional caveats concerning the real-world relevance of certain data types may also be in 
order and worthy of comment or more in-depth analysis. For example, how high in reality is the 
risk of on-target off-tumour tox with clinical degraders? Especially as, by design, PROTACs are 
not necessarily very potent inhibitors at the relevant E3 ligase. 
 
Response: We thank for this insightful comment. PROTACs can effectively suppress protein 
activity, and on-target toxicity has become one of the major concerns when these target proteins 
are essential in normal tissues20,21. To mitigate the on-target toxicity of PROTAC, one efficient 
method is to recruit E3 ligases that are selectively expressed in desired cell types or tissues. As a 
result, the PROTAC is less likely to exert its function in the undesired cells or tissues21. For 
example, when developing BCL-XL-targeting PROTACs, VHL was deliberately selected to 
relieve the on-target toxicity due to VHL’s unique expression pattern22. Novel advanced cancer 
therapeutics, such as CAR-T therapy, were reported to have serious and potentially life-threatening 
toxicities when more products move into clinical trials23,24. With the first PROTAC entering 
clinical trials in 2019 and more on the way, we expect more cases of toxicity will be reported. 
Thereby, our works has firstly tried to establish a systematic platform in order to circumvent on-
target, off-tumor toxicity and recommend close monitoring on potential signs of toxicity. We 
clarified this in the revised manuscript as follows: “PROTACs effectively suppress protein activity, 
but when they target essential proteins, on-target toxicity may arise20,21. To minimize this, 
PROTACs can be designed to interact with E3 ligases that are selectively expressed in specific 
tissues or cell-types, mitigating undesired effects21. As an example, VHL's unique expression was 
leveraged in BCL-XL-targeting PROTACs to reduce toxicity22. As other novel treatments like 
immunotherapy may lead to serious toxicity23–26, and with the first PROTAC entering clinical tests 
in 2019, we expect more toxicity reports. Thus, we developed a platform to evaluate such potential 
on-target, off-tumor effects and aid in toxicity monitoring.” (page 20). 



 
I found the specific references to PPARG and AURKA rather odd; are these really confirmed E3 
ligases? Furthermore, when I tested the website using these two proteins the system appeared to 
‘hang’ and provided no results, which did not inspire much confidence. 
 
Response: Collecting a list of E3 ligase is challenging due to the diverse and integrative nature of 
the ubiquitin pathway27. We therefore assembled credible E3 ligase lists from three different 
sources, including UbiHub28, Ge et al.27, and UbiBrowser2.029, and assigned a confidence score 
(1-6). This was done to capture a comprehensive list of candidate E3 ligases as is currently best 
possible.  
 
Regarding the E3 ligase functions of two specific genes, PPARG and AURKA, both genes were 
collected in Ge et al. 2018 and UbiBrowser as E3 ligases. PPARG was considered as E3 ligases in 
Ge et al. based on literature30, and in UbiBrowser based on literatures31–33. AURKA was considered 
as E3 ligase in Ge et al. based on literature34, and in UbiBrowser based on literatures35. This 
evidence suggests that PPARG and AURKA are very likely function as an E3 ligase.  
 
Regarding to the display issues, we apologize for that and have carefully resolved the issue and 
any other remaining issues, to the best of our knowledge.  
 
That aside, the website did seem to function as advertised for more established E3 ligases and 
was straightforward to use. I would however like to see an option to download the entire dataset 
for exploration using a user's own data analysis tools. 
 
Response: Thanks. We have now added a download tab to allow users process the data at their 
own preference. 
 
Screenshot of download page: 

 



 
There were also a few relatively minor typos that will need to be fixed before publication. 
 
Response: We have revised our manuscript and corrected typos in the revised manuscript. For 
example: 
 
The ideal E3 ligases of PROTAC for cancer therapy will be those highly expressed in tumors but 
sparingly expressed in normal tissues36. (page 9) 
 
The three co-opted E3 ligases, VHL, XIAP, and AHR, have been explored against cancer targets 
in PROTAC22,37–40, and their expression patterns in tumor and normal tissues suggest extensive 
future usage, such as XIAP in breast cancer (Figure 4C & Figure S10). (page 11) 
 
Expanding co-opted E3 ligases to all E3 ligases, the number of targets was increased by 76.1% 
from 10,930 to 19,248, suggesting new E3 ligases may offer great opportunities for degrading 
novel targets in the proteome through PPI. (page 12) 
 
For example, U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1), a spliceosome gene related to 
cancers and myelodysplastic syndrome41,42, has no evidence of PPI with any co-opted E3 ligase 
but interacts with SMURF1, which may serve as a novel E3 ligase in PROTAC (Figure 5b). (page 
12) 
  



Reviewer #2 (Remarks to the Author): 
 
In this manuscript, titled “Charting the Expanding PROTACtable Genome Universe of E3 Ligases,” 
Liu et al. present a purely computational analysis of E3 ligases at a genome-wide scale, exploring 
different aspects of them that, intuitively and also based on the relatively limited existing evidence, 
would qualify as desirable traits for TPD. While, according to the authors' assessment, hundreds 
of E3 ligases could be “interesting” by at least one of the metrics, they manage to narrow down 
the search to a list of 70+ E3s that are worth exploring further. There is no strong validation of any 
of the newly identified E3 ligases, but this is arguably not the goal of the work; rather, the authors 
chose to provide a panoramic view of the E3 ligase space, quantifying their ligandability, 
localization in cellular compartments, expression across tissues, and PPIs, among others. This is a 
commendable effort, and I appreciate the fact that all of this information is available through an 
intuitive web interface. I am convinced that this resource will be of interest to the community. 
Another aspect I appreciate is the focus on cancer and the widespread analysis in this context. 
 
Response: We thank the reviewer for his overall positive evaluation of our work.  
 
In my opinion, the weakest point of the paper is the assessment of ligandability of E3 ligases. 
Although, broadly speaking, the choice of resources makes sense (DrugBank/DGIdb for drugs and 
“well-known” interactions, ChEMBL for ligand-protein interactions, and electrophiles from a 
recent study), the authors should acknowledge that some of the resources are highly knowledge-
biased, which yields trivial observations, such as high ligandability for highly interesting actors 
such as VHL or CRBN. This is difficult to mitigate, but the authors should make this more explicit 
early in the text. Also, I would highly recommend that categories such as Pharos (Tdark, Tbio, 
Tchem, Tclin) are explored. 
 
Response: We thank the reviewer for these valuable suggestions. We fully acknowledge that these 
resources might be influenced by existing knowledge biases. Therefore, we've sourced data from 
multiple repositories, enabling users to select their preferred data resource. We have revised the 
introduction of our manuscript, stating that “Current data resources may reflect known biases. Thus, 
we've incorporated numerous options for users to select data sources based on their preferences.” 
(page 4) 
 
Per the reviewer suggestion, we assigned the E3 ligases into E3drug, E3chem, and E3cova. E3 
ligases with known evidence of interacting with drugs were assigned to E3drug group; E3 ligases 
with evidence of interacting with small molecules in ChEMBL were assigned to E3chem; and the 
rest E3 ligases were assigned to E3cova. We updated this in the revised manuscript, stating that 
“Inspired by Pharos, a druggable genome resource43, we labeled E3 ligases into E3drug, E3chem, 
E3cova, and E3dark (see Methods). Among the identified E3 ligases, 127 (11.8%) were labeled as 
E3drug, 75 (7.0%) as E3chem, and 484 (45.0%) as E3cova. Additionally, we quantified the number 
of ligand categories associated with the E3 ligases.” (page 6), as well as Figure 2a (see below). 
 



 
 
Likewise, it is possible that the prediction algorithm (virtual screening; VS) used produces many 
false positives and, overall, what I think is relevant from the analysis are the aggregate numbers, 
not the specific ligand-E3 ligase interactions discovered. In a VS exercise like this one, it is 
important to do leave-ligands-out and leave-proteins-out cross-validations, and I would advise that 
the authors investigate if, in their context, the reported accuracies apply in stringent cross-
validation settings. 
 
Response: Thanks for these valuable suggestions. We added these three cross-validation tests to 
reflect the different evaluation settings. The four tests we have is: 1) both drug and protein in the 
testing set could appear in the training sets. 2) drugs in the test set don’t appear in the training set. 
(3) proteins in the test set don’t appear in the training set. (4) both drugs and proteins in the test set 
don’t appear in the training set. The 4 experimental settings cover leave-ligands-out and leave-
protein-out, and the stricter test that neither the drug nor the protein has been seen during training. 
As expected, the AUC decreases when the evaluation becomes more stringent. The aggregate 
number from predictions is significantly influenced by criteria chosen. We've uploaded our 
prediction results to our web portal. Users can specify the top results and determine cutoff values, 
allowing them to view the aggregate figures directly on our web portal.  
 

 We have revised the figure S3 (see below) and manuscript as follows: “To search for the 
potentially new drugs for recruiting E3 ligases, we adopted a deep-learning based virtual screening 
ligand model, HyperAttentionDTI17, to search for potential interactions between E3 ligases and 
drugs in DrugBank18. The model captured complex interactions between atoms and amino acids 
through an innovative attention mechanism and achieved improved performance over the state-of-
the-art baselines, and the new drug-target interactions falls into top virtual screening predicted 
interactions in the test case study. After evaluating and applying this model (Figure S3), we 
obtained predicted drug-target interactions, including for potentially novel E3 ligases, such as 
Makorin Ring Finger Protein 1 (MKRN1), having PPIs with key tumor drivers, TP53 and APC32, 
and predicted to interact with DB13955 (Estradiol dienanthate) and DB03017 (Lauric acid). 
Utilizing these drugs may increase the ligandability of potentially novel E3 ligases that target 
additional tumor targets. Taken together, our systematic analysis exploited five large-scale data 
sources and revealed a number of new E3 ligases with tens of available ligands that may be utilized 
for PROTAC development.” (page 7). We also added the pertaining text in the Methods as follows: 
“We performed the evaluation employing four configurations: 1) both drugs and proteins in the 
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test set are present in the training sets; 2) drugs in the test set are excluded from the training set; 3) 
proteins in the test set are excluded from the training set; and 4) both drugs and proteins in the test 
set are absent in the training set. These setups range from traditional leave-ligands-out and leave-
protein-out methods to a stringent test ensuring that neither drug nor protein was seen during 
training.” (page 22). 
 

 
 
 
Apart from this, I think the work is sound and provides an interesting resource to the community. 
There is an enormous amount of literature discussing TPD and the role of E3 ligases, so I think the 
discussion could be richer. In particular, if so many E3 ligases appear to be interesting, why are 
only a few progressed? What makes it so difficult to go beyond VHL, CRBN, and the usual 
suspects? The authors could comment on that. Given the high interest in TPD, it is highly unlikely 
that a majority of E3 ligases have not been already explored as solid candidates: the authors should 
conduct an in-depth literature search, at least for their 70+ candidates, and see if some of them 
already have interesting chemotypes that are being investigated by medicinal chemists. Otherwise, 
the paper leaves the impression that most E3 ligases are mostly underexplored, which is certainly 
not true. 
 
Response: We thank the reviewer for this valuable suggestion. Despite E3 ligases' pivotal role in 
protein homeostasis being well-documented, their exploration within the context of targeted 



protein degradation (TPD), particularly PROTACs, has been somewhat limited. The majority of 
developed PROTACs predominantly utilize either VHL or CRBN, as evidenced by PROTACpedia 
(https://protacpedia.weizmann.ac.il), a resource actively collating PROTACs, where 94.3% 
(766/812) of PROTACs recruited either of these two ligases. 
 
The field of PROTAC itself is relatively nascent, with the first translational research starting only 
in 2019. Since then, the community has been actively investigating the target scope of PROTACs3. 
The potency of PROTACs can be significantly affected by numerous factors including the choice 
of POI binder, linker length, and linker type, where even minor alterations can drastically impact 
degradation potency44. As such, much of the initial efforts have been devoted to pairing VHL or 
CRBN with different target proteins, in a bid to save resources and expedite the progress. 
 
However, the development of resistance to PROTACs and the increasing demand for precision in 
TPD have underscored the need for additional E3 ligases3. This has motivated us to conduct our 
study, aiming to assist researchers in developing novel E3 ligases to expand the usage of PROTACs. 
This, in turn, underscores the significance of our work and the potential it holds for the field. We 
discussed this in the introduction “The PROTAC field is still in its early stages, with the initial 
translational research commencing in 2019. Since then, the community has diligently explored the 
target scope of PROTACs3, but there has been comparatively less effort dedicated to searching 
new E3 ligases. Several factors, such as ligandability, expression, cellular localization, and many 
others, can influence the efficacy of a PROTAC. These numerous factors make the search for new 
E3 ligases challenging. Much of the initial efforts have been devoted to pairing VHL or CRBN 
with different target proteins in order to save resources and expedite the progress.” (page 3) as well 
as now in the discussion section “Our study built upon insights from prior research to identify new 
E3 ligases that could be integrated into PROTAC development. As future experiments unveil more 
insights, we could identify additional factors and resources to provide more precise guidance on 
the search for new E3 ligases.” (page 20) in the revised manuscript. 
 
  



In addition, I see in the figures proteins like AURKA which are not bona fide E3 ligases. I would 
recommend that, in the figures, the authors use their literature confidence score to filter out cases 
like this one. I think it is important that all E3 ligases appearing in the figures are broadly accepted 
to perform this function in the cell. 
 
Response: Thanks for the valuable suggestions. Regarding the E3 ligase functions of AURKA, 
the gene was collected in Ge et al. 2018 and UbiBrowser as E3 ligase. AURKA was considered as 
E3 ligase in Ge et al. based on literature34, and in UbiBrowser based on literatures35. The evidence 
suggests that AURKA is very likely to function as an E3 ligase. More generally, we have gathered 
evidence from the credible sources, suggesting that certain genes could function as E3 ligases. We 
prefer not to engage in debates regarding the authenticity of a gene as a bona fide E3 ligase and 
have thus chosen to avoid claiming “bona fide E3 ligases” in our manuscript. We removed the 
highlighted description of AURKA in the text of the revised manuscript. We will be happy to 
further discuss if the reviewer has any remaining concerns. 
 
Finally, I would recommend that authors revise wording and terminology. For example: 
 
- The title: “charting the expanding” is a bit confusing in the title. Wouldn’t one of the two words 
be enough? 
 
Response: We revised it to: “Expanding PROTACtable genome universe of E3 ligases”. 
 
 
- POI usually means “Protein of Interest”, not “Point of Interest protein” 
 
Response: We revised throughout the manuscript to indicate that POI stands for "Protein of 
Interest" 
 
- In page 5, they refer to ligands from different sources as "types of ligands". The source is not a 
proper way to classify ligands by "type". 
 
Response: We changed all ‘type’ into ‘source’ in the revised manuscript. 
 
We have revised our manuscript as “We identified 686 (63.8%) E3 ligases that interact with known 
ligands from at least one category of ligand sources (Figure 2a & Figure S2a). Specifically, 127 
(11.8%) E3 ligases had evidence of targeting by or interacting with drugs in DrugBank25 and/or 
DGIdb26, 145 (13.5%) E3 ligases have bioactive ligands in ChEMBL, and 626 (58.2%) can 
interact with electrophiles in SLCABPP (Figure 2a & Figure S2b). Inspired by Pharos, a druggable 
genome resource29, we labeled E3 ligases into E3drug, E3chem, E3cova, and E3dark (see 
Methods). Among the identified E3 ligases, 127 (11.8%) were labeled as E3drug, 75 (7.0%) as 
E3chem, and 484 (45.0%) as E3cova. Additionally, we quantified the number of ligand sources 
associated with the E3 ligases. We identified that 55 (5.2%) E3 ligases can interact with all three 
sources of ligands (Figure 2a & Figure S2a), including the clinically used VHL and CRBN, and 
the experimentally explored KEAP1, XIAP, MDM2, BIRC2, and AHR. Beyond these E3 ligases, 
48 have not yet been reported to be co-opted in PROTAC, pointing them as potential candidates 
for expanding E3 ligases for PROTACs. For instance, Tripartite-motif protein 24 (TRIM24)30 has 



evidence of available ligands from drug, ChEMBL, and SLCABPP (Figure 2b), example ligands 
including salicyladehyde (CHEMBL108925) and the inhibitor (DGIdb: 252166607). In addition 
to the count of ligand sources, we also quantified the total number of ligands per E3 ligase. 77 
(7.2%) E3 ligases have over 300 ligands, including 7 out of 12 co-opted E3 ligases (Figure 
2c).”.(page 7)  



Reviewer #3 (Remarks to the Author): 
 
This article presents an integration of comprehensive data from multiple resources to investigate 
the activity of E3 ligases in human cells as a key factor in target protein degradation. The study 
pipeline is well-established, and the data sources are comprehensive. Additionally, the authors have 
created a user-friendly web portal to search for the data and present the results of the study. 
 
Response: We thank the reviewer for her/his positive evaluation of our work. 
 
However, before publishing, there are some minor revisions that should be considered: 
 
1.In the expression data, the authors should provide clarification on all pre-processing analyses, 
such as the removal of genes with very low expression, identification and removal of possible 
batch effects, and identification and removal of outlier samples. 
 
Response: Thanks. Given the large volume of omics data involved, we have taken great care in 
selecting our data sources to ensure quality. We opted to utilize the UCSC Toil RNAseq Recompute 
Compendium for bulk transcriptomics expression data derived from TCGA and GTEx45. This 
compendium processes both TCGA and GTEx using a unified pipeline and includes quality control 
measures and batch effect mitigation. We have implemented median expression level analysis to 
minimize outlier effects. For protein expression, we obtained data from the Human Protein Atlas 
pathology, and binarized samples into high-medium and low-NA groups, following the 
methodology of a recent study23. 
 
Regarding the tumor single-cell transcriptomics data, we chose the Tumor Immune Single-cell 
Hub (TISCH), a scRNA-seq database specializing in the tumor microenvironment (TME)46, to 
examine the expression level of E3 ligases in tumors at the single-cell level. All single-cell datasets 
in TISCH underwent uniform quality control, clustering, and cell-type annotation. We only utilized 
those single-cell datasets that originate from humans, are untreated, and are analyzed via 10X 
Genomics. For single-cell transcriptomics data in normal tissues, we used Tabula Sapiens, a 
benchmark human cell atlas that provides a preliminary map of nearly 500,000 cells across 24 
organs from 15 normal human subjects47. Noteworthy features of Tabula Sapiens include rapid 
sample processing, expert cell annotation, and rigorous quality control. We clarified that the most 
pre-processing was conducted by the original data sources. For example, TISCH has quantified 
and minimized the batch effects across datasets46. 
 
We added this detailed information in the revised manuscript, in the Method section (page 22 -23). 
 
2.The public PPI datasets contain a high rate of false positive interactions, such as those obtained 
solely through text mining. The authors should explain how they reduced the false positive rate in 
the PPI data. 
 
Response: Thanks for the insightful suggestion. We indeed have performed further analysis to 
reduce the potential false positive rate. For PPI sources obtained through text mining (e.g., BioGrid, 
IntAct, Reactome), we collected details on interaction types and experimental systems (when 
available), which are annotated in our web portal. While we have retained all PPIs to offer a 



comprehensive dataset, we've marked certain interactions with an asterisk. These marked PPIs, 
which were not based on physical association or were not identified via methods such as yeast 
two-hybrid studies, affinity purification-mass spectrometry, protein 3D structures, or low-
throughput experiments, serve as indicators for users that there might be a risk of false positives. 
 
Additionally, we have revised the Methods section related to PPIs to provide a clearer 
understanding of the quality control process implemented for collected PPIs. The pertaining text 
now reads:  “General PPIs between E3 ligase and target protein were collected from BioGrid48 
(https://thebiogrid.org/), IntAct49 (https://www.ebi.ac.uk/intact/), and Reactome50 
(https://reactome.org/), HuRI51 (http://www.interactome-atlas.org/), STRING52 (https://string-
db.org/). To ensure the quality of the incorporated PPIs, we extracted PPIs from literature curation 
sources such as BioGrid, IntAct, and Reactome, carefully removing any non-human entries. We 
marked PPIs that were in physical association identified via methods such as yeast two-hybrid 
studies, affinity purification-mass spectrometry, protein 3D structures, or low-throughput 
experiments, serving as indicators for users that these PPIs were obtained in a high confidence. 
Entries from HuRI were retained due to their comprising solely of experimentally verified human 
binary protein interactions. PPIs from STRING were combined with known and predicted PPIs, 
and we only retained those human-related and with high confidence (score >700). PPIs specific 
for E3-substrate interactions (ESIs) were retrieved from from UbiBrowser2.029 
(http://ubibrowser.bio-it.cn/), retaining only human ESIs documented in literature and high-
confidence predicted ESIs with scores exceeding 0.7.”.(page 24)  
 
 

 
 
3.It would be interesting to conduct an enrichment analysis on the E3 ligase targets to investigate 
the biological processes and pathways involved and their differences in normal and tumour 
samples. 
 
Response: Thanks for this valuable suggestion. We agree that the enrichment analysis might 
uncover the diverse functions of the gene. For instance, we performed Gene Ontology (GO) and 
KEGG pathway enrichment analysis on potential targets of TRIM24. According to the UniProt 
gene function annotation (https://www.uniprot.org/uniprotkb/O15164/entry), TRIM24 functions 
include transcriptional control, E3 ligase activity mediating TP53 degradation, among others. Both 
GO and KEGG enrichment analyses underscore the role of transcription regulation, with the 
KEGG enrichment analysis indicating enrichment in multiple cancer pathways. 
 

 

High confidence 
indicator 



 

 
Figure. GO enrichment analysis of potential targets of TRIM24 

GO enrichment analysis 



 
Figure. KEGG enrichment analysis of potential targets of TRIM24 
 
  



Another example pertains to the enrichment analysis conducted on proteins interacting with CRBN. 
As per the UniProt gene function annotation (https://www.uniprot.org/uniprotkb/Q96SW2/entry), 
CRBN's functions encompass E3 ligase activity, regulation of large-conductance calcium-
activated potassium channels, among others. The pathways enriched in this context include those 
involved with transporters and calcium signaling pathways, among others. 
 

 
Figure. GO enrichment analysis of potential targets of CRBN 
 

GO enrichment analysis 



 
Figure. KEGG enrichment analysis of potential targets of CRBN 
 
As evident in these examples, the enriched pathways are highly diverse and closely tied to the 
endogenous functions of these proteins. Therefore, we have incorporated GO and KEGG 



enrichment analysis into our web portal to cater to researchers' interests (see screenshot below). 
We added this in our revised manuscript, stating that “Recognizing that the PPI of E3 ligases might 
provide insights into the gene's inherent functions, our web portal incorporates both Gene 
Ontology and KEGG enrichment analyses on proteins interacting with each E3 ligase.” (page 16). 
 
It's important to note that it is challenging to determine whether targets of E3 ligases are generally 
enriched in tumor or normal tissues, as this can significantly vary depending on the specific E3 
ligase and the biological context, that is the tumor type. We assume that such enrichment analysis 
are out of scope of the current work and could be performed interpedently by readers according to 
their specific interests.  
 

 
 

  

 

View enrichment analysis result 



 
4.Investigating related pathways for E3 ligase targets or for extended PPIs (indirect targets) could 
be useful in identifying any possible side effects of specific protein degradation. 
 
Response: We thank for the suggestion. We added targets enriched pathways in the data portal 
(please refer to above comment). A single E3 ligase may interact with hundreds/thousands of 
proteins, and each of these proteins could further interact with hundreds/thousands more. For 
example, in the high confidence STRING human dataset, 298 unique proteins interact with VHL, 
leading to a total of 98,259 unique extended PPIs. Given the current lack of empirical evidence on 
how to further reliably rank or filter these interactions, we find that this extensive network of 
extended PPIs would likely be too complex for readers to navigate and understand (or, for this 
matter, to ourselves, to be honest...). Therefore, the possible inclusion of extended PPI information 
should in our minds be best left for a future study.  
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Re: NCOMMS-23-12374-T 
 
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Liu et al describe a project in which data on E3 ligases from various sources are integrated, with a 
view to assisting the selection of new/novel members of that family for example in PROTAC 
development. The integrated information is made available via a public website. This work would 
be of interest to the broader protein degradation community and is worthy of publication. However, 
I don’t consider it to contain sufficient "noteworthy" original results to warrant publication in 
Nature Communications. In some respects it is an incremental advance on previous work such as 
the PROTACtable Genome analysis of Schneider et al; furthermore the paper does not provide any 
particularly insightful analyses of the E3 ligase landscape beyond some illustrative examples 
throughout the manuscript (none of which have any experimental validation). It would seem to me 
that a more suitable home for such a study would be the companion Nature journal Scientific Data 
(though this is ultimately a decision for the editor). 
 
Response: PROTACs employ E3 ligases to tag target proteins for subsequent degradation, and the 
recruitment of E3 ligases is an essential step in the process of target protein degradation1. The 
PROTACtable Genome analysis of Schneider et al is indeed a comprehensive and very worthy 
analysis focusing on the target proteins of PROTACs2, but it did not consider the potential of new 
E3 ligase that could be co-opted into the PROTAC development. Furthermore, the prevalent use 
of VHL and CRBN has presented a challenge to the current development of PROTACs3, thereby 
motivating our search for novel potential E3 ligases. Please note, our work is the first 
comprehensive analysis focusing on the features of E3 ligases in the PROTAC, and in this respect 
is clearly not an incremental advance compared to previous work, e.g., PROTACtable genome 
analysis.  
 
To further explicate why this is indeed the case, we note that our study has carried out a 
comprehensive evaluation of all E3 ligases: to this end we collected 30 datasets covering different 
aspects of PROTAC, including chemical ligandability, expression patterns, protein-protein 
interactions (PPI), structure availability, functional essentiality, cellular location, and PPI 
interface. We then systematized and ranked the E3 ligases that could be prioritized into PROTAC. 
development. We further provide a few examples to illustrate the methodology of identifying 
potent E3 ligases that could act against key cancer targets. Finally, we developed a user-friendly 
flexible web portal (https://hanlaboratory.com/E3Atlas) that is aimed at assisting the broader 
protein degradation community to rapidly identify new E3 ligases with promising TPD activities 
against specifically desired targets, facilitating the development of PROTAC in cancer and 
beyond.  
 
An important novelty of our work relates to the computational-centralized focus. Our approach 
follows recent studies that have established the significance of rigorous analysis which is based 
on large-scale data. For example, the recent TCGA/ICGC Pan-cancer project published a series 
of high-profile papers in Nature and Cell series journals4–11. These comprehensive analyses 
provide the foundation and important insights for  further investigations, which may be performed 



independent of experimental validation (as demonstrated in studies from our group in the cancer 
genomics field12–16).  
 
I do have serious concerns about the inclusion of output from predictive models alongside data 
from ‘real’ (often peer-reviewed) experiments. The ‘hyperattentionDTI’ model in particular in my 
view provides results that are of no real value and indeed may well be misleading. An average of 
552 drug-ligase interactions is frankly unbelievable given the typical number of meaningful 
protein:ligand interactions of marketed drugs for example from chemoproteomics experiments. I 
would advise the authors to seek out someone with expertise in the practical development, 
validation and use of in silico models in drug discovery (preferably from an industrial background) 
who will be able to advise on how best to utilise such methods. 
 
Response: We thank for this valuable comment. We reevaluated our method, and adopted the data 
presentation format from the original HyperAttentionDTI study, which highlights predicted 
interactions with the highest probability as potential candidate interactions17. Addressing your 
concern, in the revised manuscript, we now present only the top predicted drug-target interactions 
for each E3 ligase. By default, the top 10 predicted interactions are displayed, and users have the 
flexibility to expand this list from 1 to 500 at their choice. Furthermore, we also included an option 
that allows users to choose a threshold to examine predicted interactions meeting a specific cutoff.  
 
The Screenshot of virtual screening of data portal has been modified accordingly: 
 

 
 
We revised the main text accordingly, which now reads (page 7):  “To search for the potentially 
new drugs for recruiting E3 ligases, we adopted a deep-learning based virtual screening ligand 
model, HyperAttentionDTI17, to search for potential interactions between E3 ligases and drugs in 
DrugBank18. The model captured complex interactions between atoms and amino acids through 
an innovative attention mechanism and achieved improved performance over the state-of-the-art 
baselines, and the new drug-target interactions falls into top virtual screening predicted interactions 
in the test case study. After evaluating and applying this model (Figure S3), we obtained predicted 
drug-target interactions, including for potentially novel E3 ligases, such as Makorin Ring Finger 
Protein 1 (MKRN1), having PPIs with key tumor drivers, TP53 and APC32, and predicted to 
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interact with DB13955 (Estradiol dienanthate) and DB03017 (Lauric acid). Utilizing these drugs 
may increase the ligandability of potentially novel E3 ligases that target additional tumor targets. 
Taken together, our systematic analysis exploited five large-scale data sources and revealed a 
number of new E3 ligases with tens of available ligands that may be utilized for PROTAC 
development.”. 
 
The authors seem to be in two minds as to whether they are addressing a cancer audience (which 
would be entirely reasonable given their own areas of research focus) or a wider, disease-agnostic 
audience (as implied in the Introduction). 
 
Response: Thanks. Considering the wide use of PROTAC in many areas, such as cancer, immune 
disorder, and neurodegenerative diseases19, we aimed at providing insights for broader fields 
beyond cancer. Accordingly, many of E3 ligases properties carefully evaluated in this manuscript 
are general characteristics involved in PROTAC development. We clarified this in the revised 
manuscript (page 18-19), stating that “Beyond facilitating the development of PROTACs targeting 
cancer, aspects such as confidence scores, ligandability, PPI, structural information, cellular 
localization, and PPI interfaces of E3 ligases also hold broad applicability in the deployment of 
PROTACs for a range of other diseases. These factors, therefore, present universal value in the 
context of PROTAC-oriented therapeutic strategies.”  
 
Some additional caveats concerning the real-world relevance of certain data types may also be in 
order and worthy of comment or more in-depth analysis. For example, how high in reality is the 
risk of on-target off-tumour tox with clinical degraders? Especially as, by design, PROTACs are 
not necessarily very potent inhibitors at the relevant E3 ligase. 
 
Response: We thank for this insightful comment. PROTACs can effectively suppress protein 
activity, and on-target toxicity has become one of the major concerns when these target proteins 
are essential in normal tissues20,21. To mitigate the on-target toxicity of PROTAC, one efficient 
method is to recruit E3 ligases that are selectively expressed in desired cell types or tissues. As a 
result, the PROTAC is less likely to exert its function in the undesired cells or tissues21. For 
example, when developing BCL-XL-targeting PROTACs, VHL was deliberately selected to 
relieve the on-target toxicity due to VHL’s unique expression pattern22. Novel advanced cancer 
therapeutics, such as CAR-T therapy, were reported to have serious and potentially life-threatening 
toxicities when more products move into clinical trials23,24. With the first PROTAC entering 
clinical trials in 2019 and more on the way, we expect more cases of toxicity will be reported. 
Thereby, our works has firstly tried to establish a systematic platform in order to circumvent on-
target, off-tumor toxicity and recommend close monitoring on potential signs of toxicity. We 
clarified this in the revised manuscript as follows: “PROTACs effectively suppress protein activity, 
but when they target essential proteins, on-target toxicity may arise20,21. To minimize this, 
PROTACs can be designed to interact with E3 ligases that are selectively expressed in specific 
tissues or cell-types, mitigating undesired effects21. As an example, VHL's unique expression was 
leveraged in BCL-XL-targeting PROTACs to reduce toxicity22. As other novel treatments like 
immunotherapy may lead to serious toxicity23–26, and with the first PROTAC entering clinical tests 
in 2019, we expect more toxicity reports. Thus, we developed a platform to evaluate such potential 
on-target, off-tumor effects and aid in toxicity monitoring.” (page 20). 



 
I found the specific references to PPARG and AURKA rather odd; are these really confirmed E3 
ligases? Furthermore, when I tested the website using these two proteins the system appeared to 
‘hang’ and provided no results, which did not inspire much confidence. 
 
Response: Collecting a list of E3 ligase is challenging due to the diverse and integrative nature of 
the ubiquitin pathway27. We therefore assembled credible E3 ligase lists from three different 
sources, including UbiHub28, Ge et al.27, and UbiBrowser2.029, and assigned a confidence score 
(1-6). This was done to capture a comprehensive list of candidate E3 ligases as is currently best 
possible.  
 
Regarding the E3 ligase functions of two specific genes, PPARG and AURKA, both genes were 
collected in Ge et al. 2018 and UbiBrowser as E3 ligases. PPARG was considered as E3 ligases in 
Ge et al. based on literature30, and in UbiBrowser based on literatures31–33. AURKA was considered 
as E3 ligase in Ge et al. based on literature34, and in UbiBrowser based on literatures35. This 
evidence suggests that PPARG and AURKA are very likely function as an E3 ligase.  
 
Regarding to the display issues, we apologize for that and have carefully resolved the issue and 
any other remaining issues, to the best of our knowledge.  
 
That aside, the website did seem to function as advertised for more established E3 ligases and 
was straightforward to use. I would however like to see an option to download the entire dataset 
for exploration using a user's own data analysis tools. 
 
Response: Thanks. We have now added a download tab to allow users process the data at their 
own preference. 
 
Screenshot of download page: 

 



 
There were also a few relatively minor typos that will need to be fixed before publication. 
 
Response: We have revised our manuscript and corrected typos in the revised manuscript. For 
example: 
 
The ideal E3 ligases of PROTAC for cancer therapy will be those highly expressed in tumors but 
sparingly expressed in normal tissues36. (page 9) 
 
The three co-opted E3 ligases, VHL, XIAP, and AHR, have been explored against cancer targets 
in PROTAC22,37–40, and their expression patterns in tumor and normal tissues suggest extensive 
future usage, such as XIAP in breast cancer (Figure 4C & Figure S10). (page 11) 
 
Expanding co-opted E3 ligases to all E3 ligases, the number of targets was increased by 76.1% 
from 10,930 to 19,248, suggesting new E3 ligases may offer great opportunities for degrading 
novel targets in the proteome through PPI. (page 12) 
 
For example, U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1), a spliceosome gene related to 
cancers and myelodysplastic syndrome41,42, has no evidence of PPI with any co-opted E3 ligase 
but interacts with SMURF1, which may serve as a novel E3 ligase in PROTAC (Figure 5b). (page 
12) 
  



Reviewer #2 (Remarks to the Author): 
 
In this manuscript, titled “Charting the Expanding PROTACtable Genome Universe of E3 Ligases,” 
Liu et al. present a purely computational analysis of E3 ligases at a genome-wide scale, exploring 
different aspects of them that, intuitively and also based on the relatively limited existing evidence, 
would qualify as desirable traits for TPD. While, according to the authors' assessment, hundreds 
of E3 ligases could be “interesting” by at least one of the metrics, they manage to narrow down 
the search to a list of 70+ E3s that are worth exploring further. There is no strong validation of any 
of the newly identified E3 ligases, but this is arguably not the goal of the work; rather, the authors 
chose to provide a panoramic view of the E3 ligase space, quantifying their ligandability, 
localization in cellular compartments, expression across tissues, and PPIs, among others. This is a 
commendable effort, and I appreciate the fact that all of this information is available through an 
intuitive web interface. I am convinced that this resource will be of interest to the community. 
Another aspect I appreciate is the focus on cancer and the widespread analysis in this context. 
 
Response: We thank the reviewer for his overall positive evaluation of our work.  
 
In my opinion, the weakest point of the paper is the assessment of ligandability of E3 ligases. 
Although, broadly speaking, the choice of resources makes sense (DrugBank/DGIdb for drugs and 
“well-known” interactions, ChEMBL for ligand-protein interactions, and electrophiles from a 
recent study), the authors should acknowledge that some of the resources are highly knowledge-
biased, which yields trivial observations, such as high ligandability for highly interesting actors 
such as VHL or CRBN. This is difficult to mitigate, but the authors should make this more explicit 
early in the text. Also, I would highly recommend that categories such as Pharos (Tdark, Tbio, 
Tchem, Tclin) are explored. 
 
Response: We thank the reviewer for these valuable suggestions. We fully acknowledge that these 
resources might be influenced by existing knowledge biases. Therefore, we've sourced data from 
multiple repositories, enabling users to select their preferred data resource. We have revised the 
introduction of our manuscript, stating that “Current data resources may reflect known biases. Thus, 
we've incorporated numerous options for users to select data sources based on their preferences.” 
(page 4) 
 
Per the reviewer suggestion, we assigned the E3 ligases into E3drug, E3chem, and E3cova. E3 
ligases with known evidence of interacting with drugs were assigned to E3drug group; E3 ligases 
with evidence of interacting with small molecules in ChEMBL were assigned to E3chem; and the 
rest E3 ligases were assigned to E3cova. We updated this in the revised manuscript, stating that 
“Inspired by Pharos, a druggable genome resource43, we labeled E3 ligases into E3drug, E3chem, 
E3cova, and E3dark (see Methods). Among the identified E3 ligases, 127 (11.8%) were labeled as 
E3drug, 75 (7.0%) as E3chem, and 484 (45.0%) as E3cova. Additionally, we quantified the number 
of ligand categories associated with the E3 ligases.” (page 6), as well as Figure 2a (see below). 
 



 
 
Likewise, it is possible that the prediction algorithm (virtual screening; VS) used produces many 
false positives and, overall, what I think is relevant from the analysis are the aggregate numbers, 
not the specific ligand-E3 ligase interactions discovered. In a VS exercise like this one, it is 
important to do leave-ligands-out and leave-proteins-out cross-validations, and I would advise that 
the authors investigate if, in their context, the reported accuracies apply in stringent cross-
validation settings. 
 
Response: Thanks for these valuable suggestions. We added these three cross-validation tests to 
reflect the different evaluation settings. The four tests we have is: 1) both drug and protein in the 
testing set could appear in the training sets. 2) drugs in the test set don’t appear in the training set. 
(3) proteins in the test set don’t appear in the training set. (4) both drugs and proteins in the test set 
don’t appear in the training set. The 4 experimental settings cover leave-ligands-out and leave-
protein-out, and the stricter test that neither the drug nor the protein has been seen during training. 
As expected, the AUC decreases when the evaluation becomes more stringent. The aggregate 
number from predictions is significantly influenced by criteria chosen. We've uploaded our 
prediction results to our web portal. Users can specify the top results and determine cutoff values, 
allowing them to view the aggregate figures directly on our web portal.  
 

 We have revised the figure S3 (see below) and manuscript as follows: “To search for the 
potentially new drugs for recruiting E3 ligases, we adopted a deep-learning based virtual screening 
ligand model, HyperAttentionDTI17, to search for potential interactions between E3 ligases and 
drugs in DrugBank18. The model captured complex interactions between atoms and amino acids 
through an innovative attention mechanism and achieved improved performance over the state-of-
the-art baselines, and the new drug-target interactions falls into top virtual screening predicted 
interactions in the test case study. After evaluating and applying this model (Figure S3), we 
obtained predicted drug-target interactions, including for potentially novel E3 ligases, such as 
Makorin Ring Finger Protein 1 (MKRN1), having PPIs with key tumor drivers, TP53 and APC32, 
and predicted to interact with DB13955 (Estradiol dienanthate) and DB03017 (Lauric acid). 
Utilizing these drugs may increase the ligandability of potentially novel E3 ligases that target 
additional tumor targets. Taken together, our systematic analysis exploited five large-scale data 
sources and revealed a number of new E3 ligases with tens of available ligands that may be utilized 
for PROTAC development.” (page 7). We also added the pertaining text in the Methods as follows: 
“We performed the evaluation employing four configurations: 1) both drugs and proteins in the 
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test set are present in the training sets; 2) drugs in the test set are excluded from the training set; 3) 
proteins in the test set are excluded from the training set; and 4) both drugs and proteins in the test 
set are absent in the training set. These setups range from traditional leave-ligands-out and leave-
protein-out methods to a stringent test ensuring that neither drug nor protein was seen during 
training.” (page 22). 
 

 
 
 
Apart from this, I think the work is sound and provides an interesting resource to the community. 
There is an enormous amount of literature discussing TPD and the role of E3 ligases, so I think the 
discussion could be richer. In particular, if so many E3 ligases appear to be interesting, why are 
only a few progressed? What makes it so difficult to go beyond VHL, CRBN, and the usual 
suspects? The authors could comment on that. Given the high interest in TPD, it is highly unlikely 
that a majority of E3 ligases have not been already explored as solid candidates: the authors should 
conduct an in-depth literature search, at least for their 70+ candidates, and see if some of them 
already have interesting chemotypes that are being investigated by medicinal chemists. Otherwise, 
the paper leaves the impression that most E3 ligases are mostly underexplored, which is certainly 
not true. 
 
Response: We thank the reviewer for this valuable suggestion. Despite E3 ligases' pivotal role in 
protein homeostasis being well-documented, their exploration within the context of targeted 



protein degradation (TPD), particularly PROTACs, has been somewhat limited. The majority of 
developed PROTACs predominantly utilize either VHL or CRBN, as evidenced by PROTACpedia 
(https://protacpedia.weizmann.ac.il), a resource actively collating PROTACs, where 94.3% 
(766/812) of PROTACs recruited either of these two ligases. 
 
The field of PROTAC itself is relatively nascent, with the first translational research starting only 
in 2019. Since then, the community has been actively investigating the target scope of PROTACs3. 
The potency of PROTACs can be significantly affected by numerous factors including the choice 
of POI binder, linker length, and linker type, where even minor alterations can drastically impact 
degradation potency44. As such, much of the initial efforts have been devoted to pairing VHL or 
CRBN with different target proteins, in a bid to save resources and expedite the progress. 
 
However, the development of resistance to PROTACs and the increasing demand for precision in 
TPD have underscored the need for additional E3 ligases3. This has motivated us to conduct our 
study, aiming to assist researchers in developing novel E3 ligases to expand the usage of PROTACs. 
This, in turn, underscores the significance of our work and the potential it holds for the field. We 
discussed this in the introduction “The PROTAC field is still in its early stages, with the initial 
translational research commencing in 2019. Since then, the community has diligently explored the 
target scope of PROTACs3, but there has been comparatively less effort dedicated to searching 
new E3 ligases. Several factors, such as ligandability, expression, cellular localization, and many 
others, can influence the efficacy of a PROTAC. These numerous factors make the search for new 
E3 ligases challenging. Much of the initial efforts have been devoted to pairing VHL or CRBN 
with different target proteins in order to save resources and expedite the progress.” (page 3) as well 
as now in the discussion section “Our study built upon insights from prior research to identify new 
E3 ligases that could be integrated into PROTAC development. As future experiments unveil more 
insights, we could identify additional factors and resources to provide more precise guidance on 
the search for new E3 ligases.” (page 20) in the revised manuscript. 
 
  



In addition, I see in the figures proteins like AURKA which are not bona fide E3 ligases. I would 
recommend that, in the figures, the authors use their literature confidence score to filter out cases 
like this one. I think it is important that all E3 ligases appearing in the figures are broadly accepted 
to perform this function in the cell. 
 
Response: Thanks for the valuable suggestions. Regarding the E3 ligase functions of AURKA, 
the gene was collected in Ge et al. 2018 and UbiBrowser as E3 ligase. AURKA was considered as 
E3 ligase in Ge et al. based on literature34, and in UbiBrowser based on literatures35. The evidence 
suggests that AURKA is very likely to function as an E3 ligase. More generally, we have gathered 
evidence from the credible sources, suggesting that certain genes could function as E3 ligases. We 
prefer not to engage in debates regarding the authenticity of a gene as a bona fide E3 ligase and 
have thus chosen to avoid claiming “bona fide E3 ligases” in our manuscript. We removed the 
highlighted description of AURKA in the text of the revised manuscript. We will be happy to 
further discuss if the reviewer has any remaining concerns. 
 
Finally, I would recommend that authors revise wording and terminology. For example: 
 
- The title: “charting the expanding” is a bit confusing in the title. Wouldn’t one of the two words 
be enough? 
 
Response: We revised it to: “Expanding PROTACtable genome universe of E3 ligases”. 
 
 
- POI usually means “Protein of Interest”, not “Point of Interest protein” 
 
Response: We revised throughout the manuscript to indicate that POI stands for "Protein of 
Interest" 
 
- In page 5, they refer to ligands from different sources as "types of ligands". The source is not a 
proper way to classify ligands by "type". 
 
Response: We changed all ‘type’ into ‘source’ in the revised manuscript. 
 
We have revised our manuscript as “We identified 686 (63.8%) E3 ligases that interact with known 
ligands from at least one category of ligand sources (Figure 2a & Figure S2a). Specifically, 127 
(11.8%) E3 ligases had evidence of targeting by or interacting with drugs in DrugBank25 and/or 
DGIdb26, 145 (13.5%) E3 ligases have bioactive ligands in ChEMBL, and 626 (58.2%) can 
interact with electrophiles in SLCABPP (Figure 2a & Figure S2b). Inspired by Pharos, a druggable 
genome resource29, we labeled E3 ligases into E3drug, E3chem, E3cova, and E3dark (see 
Methods). Among the identified E3 ligases, 127 (11.8%) were labeled as E3drug, 75 (7.0%) as 
E3chem, and 484 (45.0%) as E3cova. Additionally, we quantified the number of ligand sources 
associated with the E3 ligases. We identified that 55 (5.2%) E3 ligases can interact with all three 
sources of ligands (Figure 2a & Figure S2a), including the clinically used VHL and CRBN, and 
the experimentally explored KEAP1, XIAP, MDM2, BIRC2, and AHR. Beyond these E3 ligases, 
48 have not yet been reported to be co-opted in PROTAC, pointing them as potential candidates 
for expanding E3 ligases for PROTACs. For instance, Tripartite-motif protein 24 (TRIM24)30 has 



evidence of available ligands from drug, ChEMBL, and SLCABPP (Figure 2b), example ligands 
including salicyladehyde (CHEMBL108925) and the inhibitor (DGIdb: 252166607). In addition 
to the count of ligand sources, we also quantified the total number of ligands per E3 ligase. 77 
(7.2%) E3 ligases have over 300 ligands, including 7 out of 12 co-opted E3 ligases (Figure 
2c).”.(page 7)  



Reviewer #3 (Remarks to the Author): 
 
This article presents an integration of comprehensive data from multiple resources to investigate 
the activity of E3 ligases in human cells as a key factor in target protein degradation. The study 
pipeline is well-established, and the data sources are comprehensive. Additionally, the authors have 
created a user-friendly web portal to search for the data and present the results of the study. 
 
Response: We thank the reviewer for her/his positive evaluation of our work. 
 
However, before publishing, there are some minor revisions that should be considered: 
 
1.In the expression data, the authors should provide clarification on all pre-processing analyses, 
such as the removal of genes with very low expression, identification and removal of possible 
batch effects, and identification and removal of outlier samples. 
 
Response: Thanks. Given the large volume of omics data involved, we have taken great care in 
selecting our data sources to ensure quality. We opted to utilize the UCSC Toil RNAseq Recompute 
Compendium for bulk transcriptomics expression data derived from TCGA and GTEx45. This 
compendium processes both TCGA and GTEx using a unified pipeline and includes quality control 
measures and batch effect mitigation. We have implemented median expression level analysis to 
minimize outlier effects. For protein expression, we obtained data from the Human Protein Atlas 
pathology, and binarized samples into high-medium and low-NA groups, following the 
methodology of a recent study23. 
 
Regarding the tumor single-cell transcriptomics data, we chose the Tumor Immune Single-cell 
Hub (TISCH), a scRNA-seq database specializing in the tumor microenvironment (TME)46, to 
examine the expression level of E3 ligases in tumors at the single-cell level. All single-cell datasets 
in TISCH underwent uniform quality control, clustering, and cell-type annotation. We only utilized 
those single-cell datasets that originate from humans, are untreated, and are analyzed via 10X 
Genomics. For single-cell transcriptomics data in normal tissues, we used Tabula Sapiens, a 
benchmark human cell atlas that provides a preliminary map of nearly 500,000 cells across 24 
organs from 15 normal human subjects47. Noteworthy features of Tabula Sapiens include rapid 
sample processing, expert cell annotation, and rigorous quality control. We clarified that the most 
pre-processing was conducted by the original data sources. For example, TISCH has quantified 
and minimized the batch effects across datasets46. 
 
We added this detailed information in the revised manuscript, in the Method section (page 22 -23). 
 
2.The public PPI datasets contain a high rate of false positive interactions, such as those obtained 
solely through text mining. The authors should explain how they reduced the false positive rate in 
the PPI data. 
 
Response: Thanks for the insightful suggestion. We indeed have performed further analysis to 
reduce the potential false positive rate. For PPI sources obtained through text mining (e.g., BioGrid, 
IntAct, Reactome), we collected details on interaction types and experimental systems (when 
available), which are annotated in our web portal. While we have retained all PPIs to offer a 



comprehensive dataset, we've marked certain interactions with an asterisk. These marked PPIs, 
which were not based on physical association or were not identified via methods such as yeast 
two-hybrid studies, affinity purification-mass spectrometry, protein 3D structures, or low-
throughput experiments, serve as indicators for users that there might be a risk of false positives. 
 
Additionally, we have revised the Methods section related to PPIs to provide a clearer 
understanding of the quality control process implemented for collected PPIs. The pertaining text 
now reads:  “General PPIs between E3 ligase and target protein were collected from BioGrid48 
(https://thebiogrid.org/), IntAct49 (https://www.ebi.ac.uk/intact/), and Reactome50 
(https://reactome.org/), HuRI51 (http://www.interactome-atlas.org/), STRING52 (https://string-
db.org/). To ensure the quality of the incorporated PPIs, we extracted PPIs from literature curation 
sources such as BioGrid, IntAct, and Reactome, carefully removing any non-human entries. We 
marked PPIs that were in physical association identified via methods such as yeast two-hybrid 
studies, affinity purification-mass spectrometry, protein 3D structures, or low-throughput 
experiments, serving as indicators for users that these PPIs were obtained in a high confidence. 
Entries from HuRI were retained due to their comprising solely of experimentally verified human 
binary protein interactions. PPIs from STRING were combined with known and predicted PPIs, 
and we only retained those human-related and with high confidence (score >700). PPIs specific 
for E3-substrate interactions (ESIs) were retrieved from from UbiBrowser2.029 
(http://ubibrowser.bio-it.cn/), retaining only human ESIs documented in literature and high-
confidence predicted ESIs with scores exceeding 0.7.”.(page 24)  
 
 

 
 
3.It would be interesting to conduct an enrichment analysis on the E3 ligase targets to investigate 
the biological processes and pathways involved and their differences in normal and tumour 
samples. 
 
Response: Thanks for this valuable suggestion. We agree that the enrichment analysis might 
uncover the diverse functions of the gene. For instance, we performed Gene Ontology (GO) and 
KEGG pathway enrichment analysis on potential targets of TRIM24. According to the UniProt 
gene function annotation (https://www.uniprot.org/uniprotkb/O15164/entry), TRIM24 functions 
include transcriptional control, E3 ligase activity mediating TP53 degradation, among others. Both 
GO and KEGG enrichment analyses underscore the role of transcription regulation, with the 
KEGG enrichment analysis indicating enrichment in multiple cancer pathways. 
 

 

High confidence 
indicator 



 

 
Figure. GO enrichment analysis of potential targets of TRIM24 

GO enrichment analysis 



 
Figure. KEGG enrichment analysis of potential targets of TRIM24 
 
  



Another example pertains to the enrichment analysis conducted on proteins interacting with CRBN. 
As per the UniProt gene function annotation (https://www.uniprot.org/uniprotkb/Q96SW2/entry), 
CRBN's functions encompass E3 ligase activity, regulation of large-conductance calcium-
activated potassium channels, among others. The pathways enriched in this context include those 
involved with transporters and calcium signaling pathways, among others. 
 

 
Figure. GO enrichment analysis of potential targets of CRBN 
 

GO enrichment analysis 



 
Figure. KEGG enrichment analysis of potential targets of CRBN 
 
As evident in these examples, the enriched pathways are highly diverse and closely tied to the 
endogenous functions of these proteins. Therefore, we have incorporated GO and KEGG 



enrichment analysis into our web portal to cater to researchers' interests (see screenshot below). 
We added this in our revised manuscript, stating that “Recognizing that the PPI of E3 ligases might 
provide insights into the gene's inherent functions, our web portal incorporates both Gene 
Ontology and KEGG enrichment analyses on proteins interacting with each E3 ligase.” (page 16). 
 
It's important to note that it is challenging to determine whether targets of E3 ligases are generally 
enriched in tumor or normal tissues, as this can significantly vary depending on the specific E3 
ligase and the biological context, that is the tumor type. We assume that such enrichment analysis 
are out of scope of the current work and could be performed interpedently by readers according to 
their specific interests.  
 

 
 

  

 

View enrichment analysis result 



 
4.Investigating related pathways for E3 ligase targets or for extended PPIs (indirect targets) could 
be useful in identifying any possible side effects of specific protein degradation. 
 
Response: We thank for the suggestion. We added targets enriched pathways in the data portal 
(please refer to above comment). A single E3 ligase may interact with hundreds/thousands of 
proteins, and each of these proteins could further interact with hundreds/thousands more. For 
example, in the high confidence STRING human dataset, 298 unique proteins interact with VHL, 
leading to a total of 98,259 unique extended PPIs. Given the current lack of empirical evidence on 
how to further reliably rank or filter these interactions, we find that this extensive network of 
extended PPIs would likely be too complex for readers to navigate and understand (or, for this 
matter, to ourselves, to be honest...). Therefore, the possible inclusion of extended PPI information 
should in our minds be best left for a future study.  
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have made rather minimal changes to their manuscript which do not in my view 

substantially address the concerns that I and other reviewers raised in our initial reports. In particular, 

my concern regarding the incorporation of results from an unvalidated predictive model still stands. 

 

My views on this paper are therefore unchanged from the original version; whilst this is a useful 

resource that could be published in a specialised data/databases journal it does not seem to me that 

this paper reaches the level expected for Nature Comms. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Authors have addressed all my concerns very satisfactorily. I would like to congratulate them for their 

works and the thorough revision. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have responded to all of my concerns and I think the manuscript can be published in the 

journal. 



Re: NCOMMS-23-12374A 
 
Reviewer #1 (Remarks to the Author): 
The authors have made rather minimal changes to their manuscript which do not in my view 
substantially address the concerns that I and other reviewers raised in our initial reports. In 
particular, my concern regarding the incorporation of results from an unvalidated predictive model 
still stands. 
 
My views on this paper are therefore unchanged from the original version; whilst this is a useful 
resource that could be published in a specialised data/databases journal it does not seem to me that 
this paper reaches the level expected for Nature Comms. 
 
Response: We made substantial revision according to the suggestions from the reviewers, 
including data presentation, audience scope discussion, downloading request. Regarding the 
prediction results, we revised our approach based on the HyperAttentionDTI study's format1, 
emphasizing interactions with the highest prediction probabilities. In our updated manuscript, only 
the top drug-target interactions for each E3 ligase are showcased, with the default being the top 10. 
Users can adjust this to view anywhere from 1 to 500 interactions and can also set a specific 
threshold to filter predictions based on a desired cutoff.  
 
We have adequately addressed other reviewers’ comments, as indicated by very positive comments 
from other reviewers. We also carefully addressed reviewer 1’s original comments. 
 
Regarding to the level expected for Nature Comms, we believe it is an arbitrary argument, and 
the editor will have a better judgement on this. Recent studies demonstrated the power of rigorous 
analysis from large-scale data. For example, the recent TCGA/ICGC Pan-cancer project 
published a series of high-profile papers in Nature and Cell series journals2–9. These 
comprehensive analyses provide insights for the research community for further investigations. 
Our group also significantly contributed to the cancer genomics field10–14. Please also note, the 
PROTACtable Genome analysis also utilized similar strategy without any experimental 
validation, and published in the top journal, Nature Reviews Drug Discovery15. 
 
 
Reviewer #2 (Remarks to the Author): 
Authors have addressed all my concerns very satisfactorily. I would like to congratulate them for 
their works and the thorough revision. 
 
Response: We thank the reviewer for the positive evaluation of our revision. 
 
 
 
Reviewer #3 (Remarks to the Author): 
The authors have responded to all of my concerns and I think the manuscript can be published in 
the journal. 
 
Response: We thank the reviewer for the positive evaluation of our revision.  
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