
6 He et al.

Appendices
Appendix A simpleaf subcommands
Simpleaf provides subcommands for various purposes. Here

we briefly discuss the current subcommands exposed in

simpleaf. The alevin-fry team is actively working to improve

existing modules in the alevin-fry ecosystem as well as

developing new modules that will be most useful for the

community. For complete and up-to-date documentation,

one can refer to the official simpleaf documentation at

https://simpleaf.readthedocs.io/en/latest/. Table 1 lists all

accessible tutorials that have been developed and released. New

tutorials will be continuously developed and posted to the the

alevin-fry tutorials library at https://combine-lab.github.io/

alevin-fry-tutorials.

In order to operate properly, simpleaf requires that

the environment variable ALEVIN FRY HOME exists. It will use

the directory pointed to by this variable to cache useful

information (e.g., the paths to selected versions of the tools

it invokes, configurations containing the mappings for custom

chemistries that have been registered, and other information

like the permit lists for certain chemistries). In popular

shells such as bash and zsh, this variable be set with export

ALEVIN FRY HOME=/full/path/to/dir/you/want/to/use

A.1 simpleaf set-paths

Before calling simpleaf, one has to run the simpleaf set-paths

command to set the paths to the underlying tools. If

no flags are provided, this program will try to find the

dependencies in the shell’s PATH. Currently, to use simpleaf,

one must provide a compatible version of alevin-fry (https:

//alevin-fry.readthedocs.io/en/latest/), and at least one of

the alevin-fry mappers, piscem or salmon.

A.2 simpleaf inspect

This subcommand inspects the configuration of simpleaf in the

current environment — such as the path to its dependencies

and the custom chemistries that have been registered — and

reports on the current configuration.

A.3 simpleaf index

The simpleaf index subcommand provides the functionality to

build a reference index from the provided reference set using

either the default salmon or the improved piscem indexing tool.

Usually, for a species, protocol pair, simpleaf index needs only

to be run once, and all subsequent experiments can utilize that

index. By default, simpleaf index takes a reference genome in

FASTA format and gene annotation in GTF format, and makes

the spliced+intronic (splici) reference index after extracting

the sequence of the spliced transcripts and intronic regions.

Other augmented reference types, such as the spliced+unspliced

(spliceu) reference, are also available in simpleaf index by

setting the --ref-type argument appropriately.

If one would like to build the index directly from the

provided reference sequences, for example, when the genome

build of a species is unavailable and the transcriptome

sequences are provided directly, one can pass the reference

sequence file to the --ref-seq argument.

A.4 simpleaf quant

The simpleaf quant subcommand is designed as an all-in-one

program to generate a gene×barcode count matrix directly from

the provided index and sequencing reads. By default, it takes a

piscem or salmon index, and the sequencing read (lists of FASTQ

files) as input. It maps the reads and resolves the associated

UMIs after detecting and correcting the cellular barcodes. It

also provides the option to directly begin quantification from

an already-computed set of mapping results, thereby skipping

the mapping process, via the --map-dir argument.

A.5 simpleaf add-chemistry

This subcommand adds a new custom fragment geometry

specification to the simpleaf geometry library together

with a unique name. Once added, one can specify

that custom geometry specification using the associated

name when running simpleaf quant. For example, if one

wants to store the geometry specification of sci-RNA-

seq3, one can invoke simpleaf add-chemistry --name sci-seq3

--geometry "1{b[9-10]f[CAGAGC]u[8]b[10]}2{r:}". Then, one

can use this geometry when calling simpleaf quant by

specifying --chemistry sci-seq3.

A.6 simpleaf workflow get

This subcommand gets the template of a registered workflow

from a local copy of the protocol estuary GitHub repository

(https://github.com/COMBINE-lab/protocol-estuary). If missing,

simpleaf will automatically download the protocol estuary

from GitHub into the ALEVIN FRY HOME directory. If invoking

unpublished workflows, one can skip this step and provide

the workflow templates directly to simpleaf workflow via the

--template flag.

A.7 simpleaf workflow run

The simpleaf workflow run command is designed to run

potentially complex single-cell data processing workflows

according to an instantiated workflow template. During

execution, the provided template in Jsonnet format will be first

parsed into to a simpleaf workflow manifest in JSON format.

Whereas the template provides logic and functions to handle

features like variables and logical operations, the resulting

workflow manifest is a simple imperative description of the

commands that are to be executed.

Table 1. Current published simpleaf tutorials.

URL Description

https://tinyurl.com/index-quant This tutorial gives an example of processing a 10X Chromium v3 dataset from

a provided set of FASTQ files natively or via simpleaf’s Singularity container.

https://tinyurl.com/published-workflow This tutorial introduces the flags exposed in the simpleaf workflow run

program and shows the steps of processing a 10x feature barcode dataset

through a readily available simpleaf workflow template.

https://tinyurl.com/custom-workflow This tutorial elucidates the inner workings of the simpleaf workflow module

and guides you through the step-by-step creation of a simpleaf workflow

template for processing 10X Chromium v3 data from the ground up..

https://simpleaf.readthedocs.io/en/latest/
https://combine-lab.github.io/alevin-fry-tutorials
https://combine-lab.github.io/alevin-fry-tutorials
https://alevin-fry.readthedocs.io/en/latest/
https://alevin-fry.readthedocs.io/en/latest/
https://github.com/COMBINE-lab/protocol-estuary
https://tinyurl.com/index-quant
https://tinyurl.com/published-workflow
https://tinyurl.com/custom-workflow


7

To ease the later parsing process, the values of all simpleaf

flag arguments in any simpleaf template must be provided as

strings, i.e., wrapped by quotes ("value"). Simpleaf workflow

will traverse the resulting workflow manifest to find and parse

the valid fields that record either a simpleaf or an external

shell command. To provide the greatest flexibility, the only

requirement simpleaf workflow sets is that the command record

fields must follow a specific format.

1. A command record field must contain a Step and a Program

Name sub-field, where the Step field represents which step,

using an integer, this command constitutes in the workflow.

The Program Name field represents a valid program in the

user’s execution environment. For example, the correct

Program Name for simpleaf index is "simpleaf index" and

for simpleaf quant is "simpleaf quant". For an external

command such as awk, if its binary is in the user’s PATH

environmental variable, it can just be "awk"; if not, it

must contain a valid path to its binary, for example,

"/usr/bin/awk".

2. If a field records a simpleaf command, i.e., it has a

valid Step and Program Name field, the name of the rest

of its sub-fields must be valid simpleaf flags (for example,

options like --fasta, or -f for short, for simpleaf index and

--unfiltered-pl, or -u for short for simpleaf quant). Those

option names (sub-field names), together with their values,

if any, will be used to call the corresponding simpleaf

program. Sub-fields that are not named by a valid simpleaf

flag will trigger an error.

3. If a field records an external shell command, it must contain

a Step and a Program Name sub-field as described above. In

contrast to simpleaf command records, all arguments of an

external shell command must be provided in an array, in

order, with the name “Arguments”. Simpleaf workflow will

parse the entries in the array to build the actual command.

For example, to tell simpleaf workflow to invoke the shell

command $ ls -l -h . at step 7, one needs to use the

following JSON record:

{

"Step": 7,

"Program Name": "ls",

"Arguments": ["-l", "-h", "."]

}

After converting the workflow template into a simpleaf

workflow manifest, simpleaf workflow will parse the commands

in the workflow according to the following flags and put them

into an execution queue. If none of the flags are set, simpleaf

workflow will parse and invoke all commands recorded in the

manifest except those that have a Active field, and this field is

set as false.

• If setting the --no-execution flag, simpleaf workflow will

parse the provided configuration file, write the log files, and

return without any invocation.

• If setting the --start-at flag with a step number, simpleaf

workflow ignore all previous steps and begin the invocation

from that specific step (or the next active step if that specific

step is inactive).

• If setting the --resume flag, simpleaf workflow will find

the log file from a previous simpleaf workflow run in the

provided output folder to decide which step to begin with.

• If setting the --skip-step flag with a set of comma-

separated step numbers, simpleaf workflow will ignore the

commands represented by those skipped step numbers

during invocation.

Many useful and frequently used functions have been

provided as a simpleaf workflow utility library. The

documentation can be found at https://simpleaf.readthedocs.

io/en/latest/workflow-utility-library.html.

A.8 simpleaf workflow refresh

This command pulls the latest protocol estuary from its GitHub

repository (https://github.com/COMBINE-lab/protocol-estuary).

We recommend updating the registry every time before pulling

a workflow.

A.9 simpleaf workflow list

This command prints the lists of all workflows in the registry.

We recommend invoking simpleaf workflow refresh every time

before simpleaf workflow list to obtain the latest workflow

template list. The simpleaf workflow templates currently

published in the protocol estuary are listed in table 2.

Appendix B Example of streaming parser
invocation

Internally, simpleaf will first check if the given geometry

specification has a fixed barcode length and position. If it

does, read files will be directly passed to the underlying

mapper, designed to take fixed geometry reads. If not,

simpleaf will pass the geometry specification to its sequence

geometry parser (https://github.com/COMBINE-lab/seq_geom_

parser) and call its sequence geometry transformer (https:

//github.com/COMBINE-lab/seq_geom_xform) to “normalize” the

reads to a fixed geometry format and stream the transformed

reads directly to the mapper, without writing intermediate

files. For example, the simplified geometry description for

the geometry originally specified in Appendix section A.5

Table 2. Current published simpleaf workflow templates. The list can also be obtained by invoking simpleaf workflow list command from

the command line.

Name Target Data Type

10x-chromium-3p-v2 10X Chromium v2

10x-chromium-3p-v3 10X Chromium v3

10x-feature-barcode-antibody 10X feature barcode experiment with antibody capture

10x-feature-barcode-crispr 10X feature barcode experiment with CRISPR

10x-feature-barcode-antibody+crispr 10X feature barcode experiment with antibody capture and CRISPR

cite-seq-ADT 10xv2 CITE-seq with ADT using 10X Chromium v2

cite-seq-ADT 10xv3 CITE-seq with ADT using 10X Chromium v3

cite-seq-ADT+HTO 10xv2 CITE-seq with both ADT and HTO using 10X Chromium v2

cite-seq-ADT+HTO 10xv3 CITE-seq with both ADT and HTO using 10X Chromium v3

https://simpleaf.readthedocs.io/en/latest/workflow-utility-library.html
https://simpleaf.readthedocs.io/en/latest/workflow-utility-library.html
https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/seq_geom_parser
https://github.com/COMBINE-lab/seq_geom_parser
https://github.com/COMBINE-lab/seq_geom_xform
https://github.com/COMBINE-lab/seq_geom_xform


8 He et al.

is 1{b[11]u[8]b[10]}2{r:}. The length of the first barcode

changes from 9 or 10 nucleotides to 11 because the sequence

geometry transformer augments the first barcode segment with

an A if the original barcode is of length 10 or with AC if it is of

length 9. By doing so, the first barcode of all reads will be of the

same length, and the augmented barcodes of hairpin barcodes

of different lengths will not overlap, as all hairpin barcodes of

length 9 now end with C and all of the length 10 ends with A

(this scheme can be naturally generalized to different segment

width ranges).

Appendix C Example of simpleaf workflow
invocation

As discussed in section A.7, simpleaf workflow is designed to

generate and invoke single-cell analysis workflows according

to a workflow template (Jsonnet program). Simpleaf uses the

Jrsonnet (https://github.com/CertainLach/jrsonnet) library

for parsing the underlying Jsonnet program.

In the protocol estuary GitHub repository (https://

github.com/COMBINE-lab/protocol-estuary), we have published

a workflow for processing CITE-seq data (Stoeckius et al.,

2017). Once one has obtained the workflow template by

calling simpleaf workflow get with the argument --name

cite-seq 10xv2 as discussed in Appendix section A.6 and has

instantiated it by filling in all required fields, i.e., the file

path to the needed files, they can call simpleaf workflow

run and provide the instantiated template to the --template

argument. simpleaf workflow will parse the template as a

workflow manifest using Jrsonnet and recursively find and parse

all valid command records in the workflow manifest.

Without the help of simpleaf workflow, one needs to develop

and invoke 12 distinct commands in the shell, including

preprocessing, to obtain all the desired results of this specific

workflow. Using simpleaf workflow, one only needs to fill the

path to the files of sequencing reads and reference sets in

the configuration file, and pass it to simpleaf workflow run

via the --template argument. Then, simpleaf workflow will

automatically generate a data analysis pipeline for that specific

dataset and invoke all required commands for analyzing the

data.

https://github.com/CertainLach/jrsonnet
https://github.com/COMBINE-lab/protocol-estuary
https://github.com/COMBINE-lab/protocol-estuary

	Introduction
	Software Description
	Parsing protocols with a complex fragment geometry
	Generalized and sharable workflow construction for complex single-cell workflows

	Discussion
	Competing interests
	Funding
	simpleaf subcommands
	simpleaf set-paths
	simpleaf inspect
	simpleaf index
	simpleaf quant
	simpleaf add-chemistry
	simpleaf workflow get
	simpleaf workflow run
	simpleaf workflow refresh
	simpleaf workflow list

	Example of streaming parser invocation
	Example of simpleaf workflow invocation



