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Abstract (150/250 words) 35 

 36 

Background 37 

Bats harbor various viruses without severe symptoms and act as their natural 38 

reservoirs. The tolerance of bats against viral infections is assumed to originate from 39 

the uniqueness of their immune system. However, how immune responses vary 40 

between primates and bats remains unclear. Here, we characterized differences in the 41 

immune responses by peripheral blood mononuclear cells to various pathogenic 42 

stimuli between primates (humans, chimpanzees, and macaques) and bats (Egyptian 43 

fruit bats) using single-cell RNA sequencing. 44 

 45 

Results 46 

We show that the induction patterns of key cytosolic DNA/RNA sensors and antiviral 47 

genes differed between primates and bats. A novel subset of monocytes induced by 48 

pathogenic stimuli specifically in bats was identified. Furthermore, bats robustly 49 

respond to DNA virus infection even though major DNA sensors are dampened in bats. 50 

 51 

Conclusions 52 

Overall, our data suggest that immune responses are substantially different between 53 

primates and bats, presumably underlying the difference in viral pathogenicity among 54 

the mammalian species tested.  55 



Introduction 56 

Although a virus can infect various animal species, the pathogenicity of the infection 57 

can differ among host species. For example, Old World monkeys, including rhesus 58 

macaques (Macaca mulatta), are naturally infected with Cercopithecine herpesvirus 1 59 

(also known as B virus) without any observable disorders, while humans (Homo 60 

sapiens) exhibit severe disorders after infection1. Bat species are naturally infected 61 

with a variety of viruses and behave as natural reservoirs of human pathogenic 62 

viruses2. For example, Marburg virus infection causes severe symptoms in humans 63 

but not in Egyptian fruit bats (Rousettus aegyptiacus), a putative natural host of this 64 

virus3. One possible factor that could define the differences in viral pathogenicity 65 

among host species is the difference in innate immune responses. For example, a 66 

previous study reported that Egyptian fruit bats lack the induction of proinflammatory 67 

cytokines, including CCL8, FAS, and IL6, which are related to disease severity in 68 

humans, upon Marburg virus infection, suggesting that the lack of cytokine induction 69 

is one of the reasons why Egyptian fruit bats exhibit asymptomatic infection with 70 

Marburg virus4. 71 

Pathogen sensing is the initial step in triggering innate immune signaling. In a 72 

broad range of animals, including vertebrates, pathogen-associated molecular 73 

patterns (PAMPs) are recognized by pattern recognition receptors (PRRs) to induce 74 

subsequent immune responses5-8. In humans and mice (Mus musculus), double-75 

stranded RNAs (dsRNAs), a PAMP for RNA viruses, are recognized by RNA sensors, 76 

such as RIG-I, MDA5, LGP2, TLR3, and TLR7/85,6. Cytosolic DNAs, a PAMP for DNA 77 

viruses, are recognized by DNA sensors, such as cGAS, AIM2, IFI16, and TLR95,6,9. 78 

Lipopolysaccharide (LPS), a PAMP for bacteria, is recognized by TLR45,6,10. Once 79 

PAMPs are recognized by PRRs, type I interferons (IFNs) are produced, leading to 80 

the induction of IFN-stimulated genes (ISGs), which include many antiviral genes5,6. 81 

In contrast to the similarities in the immune system between humans and mice, 82 

the immune system of bats is assumed to be quite different from that of humans in 83 

various aspects11-13. Genome analysis of Egyptian fruit bats showed expansion and 84 

diversification of immune-related genes, including type I IFN genes14. Transcriptome 85 

analysis showed that type I IFNs in the Australian black flying fox (Pteropus alecto) 86 

are constitutively expressed in unstimulated tissues, leading to the constitutive 87 

expression of ISGs15. These observations suggest that immunity in bats may be 88 

stronger than that in other mammals. In contrast, some studies have proposed that 89 



immune responses in bats are dampened, resulting in bats exhibiting stronger 90 

tolerance to various viruses12,14,16. In particular, it is known that critical molecules 91 

involved in viral DNA sensing, such as cGAS, AIM2, and IFI16, are dampened or 92 

genetically lost in some bat species, including Egyptian fruit bats16,17. These 93 

differences in innate immunity between humans and bats could be one of the reasons 94 

why viral pathogenicity differs between these two mammals. 95 

Previous works have highlighted the uniqueness of the bat immune system 96 

using genomic analysis14,15,17, transcriptome analysis4,18-20, and molecular biological 97 

experiments that reconstituted a part of the bat immune system in cell culture 98 

systems16,21,22. However, it remains unclear how and to what extent the innate immune 99 

response to pathogenic stimuli varies among mammals. Particularly, it is unclear how 100 

different innate immune responses are elicited by viral infections in different cell types 101 

in each mammal. Here, we used peripheral blood mononuclear cells (PBMCs) from 102 

four mammalian species and three pathogenic stimuli and conducted single-cell RNA 103 

sequencing (scRNA-seq) analysis to elucidate the differences in innate immune 104 

responses against pathogenic stimuli. 105 

 106 

Results 107 

 108 

Experimental design 109 

To illuminate the differences in immune responses to infectious pathogens among 110 

mammalian species, we isolated PBMCs from four mammals including humans (Homo 111 

sapiens, Hs), chimpanzees (Pan troglodytes, Pt), rhesus macaques (Macaca mulatta, 112 

Mm), and Egyptian fruit bats (Rousettus aegyptiacus, Ra) (Fig. 1A). These PBMCs 113 

were inoculated with herpes simplex virus type 1 (HSV-1; a DNA virus), Sendai virus 114 

(SeV; an RNA virus), or lipopolysaccharide (LPS; a proxy for bacterial infection). We 115 

verified that these PBMCs could be infected with and/or respond to these viruses and 116 

LPS stimulation by quantifying viral RNAs and the upregulation of proinflammatory 117 

cytokines (e.g., IL1B and IL6), ISGs (e.g., EIF2AK2 and DDX58) and IFNB1 (Fig. 118 

S1A–C). 119 

To analyze immune responses to stimuli at single-cell resolution, we performed 120 

scRNA-seq analysis of 16 types of PBMC samples: four mammalian species (Hs, Pt, 121 

Mm, and Ra) versus four conditions (mock infection/stimulation, HSV-1 infection, SeV 122 

infection, and LPS stimulation) using the 10x Genomics Chromium platform. After 123 



filtering low-quality cells, a total of 40,717 cells from the 16 samples were used in the 124 

following analysis. 125 

 126 

The cellular composition of PBMCs from primates and bats 127 

We characterized the cellular composition of PBMCs from each mammalian species 128 

by annotating the cell type of individual single cells. To establish a common 129 

classification system for the cells from the different mammalian species, we first 130 

identified cell types present in multiple species (Fig. 1B and 1C). As cell types 131 

detected in multiple species, naïve B cells, non-naïve B cells (including memory B cells 132 

and intermediate B cells), naïve CD4+ T cells, non-naïve CD4+ T cells (including 133 

central memory CD4+ T cells, effector memory CD4+ T cells, proliferating CD4+ T 134 

cells, and regulatory T cells), naïve CD8+ T cells, non-naïve CD8+ T cells (including 135 

central memory CD8+ T cells, effector memory CD8+ T cells, and proliferating CD8+ 136 

T cells), natural killer (NK) cells, mucosal-associated invariant T cells (MAITs), 137 

monocytes (Monos), conventional dendritic cells (cDCs), and plasmacytoid DCs 138 

(pDCs) were identified (Fig. 1C). Known marker genes for each cell type in humans 139 

were detected in the corresponding cell type in the unstimulated samples from the 140 

other animal species (Fig. S2G). Although most cell types were detected in all four 141 

species investigated, naïve CD8+ T cells and MAITs were undetectable in bat PBMCs, 142 

presumably because the cell numbers of these populations were relatively low in bats 143 

and/or the transcriptomic signatures of naïve CD4+ T cells and non-naïve CD8+ T 144 

cells were too similar in bats (hereafter we simply referred to Egyptian fruit bats as 145 

“bats”) (Fig. 1C). This result was consistent with a previous study, in which clear 146 

clusters of naïve CD8+ T cells and MAITs were not detected23. To establish a cellular 147 

classification system for the comparative transcriptome analysis, we defined six 148 

species-common cell types, namely, B cells, naïve T cells, killer TNK cells, Monos, 149 

cDCs, and pDCs, according to similarities in expression patterns (Fig. S2H). 150 

The composition of the six cell types exhibited different changes upon exposure 151 

to the stimuli in the different species (Fig. 1D). The frequency of monocytes decreased 152 

after stimulation in all four species, whereas the frequency of B cells changed 153 

differently among the animal species and stimuli. After SeV infection, the frequency of 154 

B cells was decreased in all four species. On the other hand, after HSV-1 infection, 155 

the frequency of B cells was decreased in only humans. 156 

 157 



The differences in the immune response are large among animal species 158 

To describe the differences in immune responses to various stimuli in specific cell 159 

types among animal species, we first calculated the average expression levels of 160 

appropriate genes in each condition (4 animal species × 4 stimuli × 6 cell types = 96 161 

conditions). Using this “pseudobulk” transcriptome dataset, we first investigated which 162 

axis (i.e., animal species, stimulus, and cell type) was the most impactful element in 163 

shaping the expression patterns of immune cells. Thereby, we calculated the fold-164 

change (FC) values of gene expression levels between unstimulated and 165 

corresponding stimulated conditions and performed principal component analysis 166 

(PCA) on the FC values. Subsequently, hierarchical clustering analysis was performed 167 

according to principal components (PCs) 1-30. The transcriptome data were first 168 

branched according to the animal species and then branched according to the cell 169 

type followed by the stimulus (Fig. 1E). This suggested that the difference in host 170 

species was the more impactful element in shaping the immune system, having a 171 

greater impact than the type of stimulus and cell type. In particular, our dataset showed 172 

that bat PBMCs exhibited different transcriptomic patterns irrespective of the type of 173 

stimulus and cell type compared to the PBMCs from the other three species used. Our 174 

results suggest that bats respond to pathogens in a different manner than primates. 175 

 176 

Extraction of species-specific immune responses 177 

We next characterized the differences in the immune responses to pathogenic stimuli 178 

among animal species. The FC values of our pseudobulk transcriptome dataset were 179 

represented by a four-mode tensor (4 animal species × 3 stimuli × 6 cell types × 7557 180 

orthologous genes). To characterize this extraordinary high-dimensionality 181 

transcriptome dataset, we utilized Tucker decomposition, a method of tensor 182 

decomposition (Fig. 2A). In this analysis, we excluded cDC and pDC data due to many 183 

missing values. Tucker decomposition generated a core tensor and four-factor 184 

matrices (A1–A4) related to the four axes (animal species, stimulus, cell type, and 185 

gene). For example, the factor matrix A1 (for host species) included three latent factors 186 

(L1_1, L1_2, and L1_3), which could be regarded to represent common, bat-specific, 187 

and macaque-specific expression patterns, respectively (Fig. 2B). 188 

To characterize species-specific immune responses, we developed a gene 189 

classification system according to the pattern of the species-associated latent factor 190 

in the tensor decomposition framework. First, we calculated the product of a core 191 



tensor and the three-factor matrices A2 (for stimulus), A3 (for cell type), and A4 (for 192 

gene) (Fig. 2C and Fig. S3A–B). Consequently, we obtained three cubic datasets 193 

with three axes, stimulus, cell type, and gene. These cubic data were related to L1_1 194 

(for the common factor), L1_2 (for the bat-specific factor), or L1_3 (for the macaque-195 

specific factor). Subsequently, we classified the genes into 10 categories according to 196 

their expression patterns in each cubic dataset (the results for the bat-specific (L1_2) 197 

and other factors (L1_1 and L1_3) are shown in Fig. 2D, Fig. S3G, and Fig. S3I, 198 

respectively). In the factor matrix A2 (for stimulus), the values for the latent factors 199 

related to HSV-1 and SeV were similar (Fig. S3A). Therefore, these two categories 200 

were integrated into the category “Virus” in the gene classification. Additionally, two 201 

cell type categories, NaiveT and KillerTNK, were integrated into the category “TNK” 202 

(Fig. S3B). The pattern for raw FC values supported that the gene classification by 203 

the tensor decomposition framework succeeded in extracting the characteristic 204 

patterns of gene expression alterations upon pathogenic stimuli (Fig. S3J–L). 205 

 206 

Differential dynamics of pathogen sensing and immune responses 207 

To highlight the uniqueness of immunity in bats compared to that in primates, we 208 

focused on the expression pattern represented by the bat-specific factor (L1_2) and 209 

performed Gene Ontology (GO) analysis on the 10 gene categories (Fig. 2E). In the 210 

gene category “ALL_high”, which included genes upregulated particularly in bats 211 

regardless of the stimulus and cell type, GO terms related to innate immune responses, 212 

such as IFN signaling, DDX58/IFIH1-mediated induction of IFN, RIG-I like receptors 213 

(RLRs) signaling pathways, and the antiviral mechanism by ISGs, were enriched. 214 

To dissect the “ALL_high” genes in the bat-specific factor, we further extracted 215 

the genes that belonged not only to the “ALL_high” category in the bat-specific factor 216 

but also to that in the common factor (L1_1). This fraction represented genes that were 217 

upregulated by stimuli in all species but whose induction levels were highest in bats. 218 

These genes included various PPRs, such as RIG-I-like receptors (RLRs) (RIG-I, 219 

LGP2, and MDA5) and cGAS, a DNA sensor, suggesting that these genes were 220 

upregulated to higher levels in bats than in the other species across the cell types and 221 

stimuli (Fig. 2F). These higher FC values in bats could be explained by two possibilities. 222 

First, the expression levels of these genes after stimulation were higher in bats than 223 

in primates. Second, the basal expression levels of these genes in bats were lower 224 

than those in primates. Therefore, we calculated the relative expression levels of these 225 



genes in bats compared to humans and showed that the basal expression levels of 226 

these genes were lower in bats than in humans (Fig. 2G). These results suggest that 227 

the induction dynamics of these PRRs in bats are likely different from those in primates, 228 

possibly leading to the differences in the induction of immune responses. 229 

 230 

Robust immune responses to a DNA virus in bats 231 

As critical DNA sensors, such as cGAS, AIM2, IFI16, and TLR9, are dampened or 232 

genetically lost in bat species16,17,24, it has been hypothesized that bats, including 233 

Egyptian fruit bats, cannot efficiently activate innate immune responses against DNA 234 

viruses. To test this hypothesis, we analyzed the IFN response upon HSV-1 (a DNA 235 

virus) infection by analyzing the induced levels of “coremamm ISGs”, a set of genes that 236 

are commonly induced by type I IFNs across mammals that were defined in a previous 237 

study 25. Intriguingly, we found that the coremamm ISGs were upregulated upon HSV-1 238 

infection in most cell types in bats (Fig. 3A). The induced levels were comparable to 239 

those induced by SeV (an RNA virus) infection and higher than those induced by LPS 240 

stimulation. Furthermore, the induced levels in bats were comparable to those in 241 

primates. This suggests that immune cells in bats can sense and respond to HSV-1 242 

infection even though critical DNA sensors are dampened. 243 

To address the possibility that pathogen sensors other than DNA sensors 244 

contribute to the sensing of HSV-1 infection in bats, we examined the expression 245 

levels of various PRRs (Fig. 3B). The expression of some PRRs, including TLR3, a 246 

dsRNA sensor associated with HSV-1 sensing in humans and mice26, was detected 247 

not only in primates but also in bats, suggesting the possibility that these PRRs 248 

compensate in the response to HSV-1 infection in bats (see Discussion). 249 

 250 

 251 

Identification of bat-specific subsets of monocytes 252 

Next, we investigated cellular subsets within the cell types that are characteristic in 253 

bats to explain the differences in immune responses among the species. We 254 

particularly searched for cellular subsets that specifically appeared after pathogenic 255 

stimulus exposure in each species according to the dimensionality reduction analysis 256 

of transcriptome data. In humans, chimpanzees, and macaques, no subset appeared 257 

in any cell type after stimulation (Fig. S4A). Similarly, such subsets were not identified 258 

in T/NK or B cells in bats. In contrast, we found that two subsets of bat monocytes 259 



(referred to as Clusters 5 and 7) specifically appeared after stimulation (Fig. 4A). To 260 

validate whether these subsets (Clusters 5 and 7) are unique in bats, we identified 261 

marker genes for these clusters and subsequently examined whether the marker 262 

genes were expressed in monocytes from the other animal species. The marker genes 263 

for Cluster 5 (referred to as C5 markers) were not highly expressed in any cluster of 264 

monocytes from primates (Fig. 4B). Furthermore, high expression levels of C5 265 

markers in bat monocytes were found only after stimulation. This suggested that 266 

Cluster 5 was not only bat-specific but also specifically induced by pathogenic stimuli. 267 

Unlike the C5 markers, the marker genes for Cluster 7 (C7 markers) were highly 268 

expressed not only in bat Cluster 7 but also in some monocytes in primates (Fig. 4C). 269 

Although cells with higher expression of C7 markers were induced upon stimulation in 270 

both bats and primates, these cells in primates did not form a separate cluster similar 271 

to Cluster 7 in bats (Fig. S4B). Furthermore, the proportions of Clusters 5 and 7 272 

differed depending on the stimulus: HSV-1-infected and LPS-stimulated samples 273 

showed the highest frequencies of Clusters 5 and 7, respectively (Fig. 4D). 274 

To characterize these two clusters, we identified differentially expressed genes 275 

(DEGs) in Clusters 5 and 7 compared to the other clusters of bat monocytes. 276 

According to GO analysis, Cluster 5 was characterized by lower expression of ISGs 277 

(Fig. 4E, 4F). Additionally, Cluster 5 highly expressed known suppressors of the 278 

inflammatory response, such as DUSP1, DUSP5, and SOCS227-29. On the other hand, 279 

Cluster 7 could be characterized by a higher expression of various cytokines related 280 

to chemotaxis (Fig. 4G), including CXCL6, IL18BP, CXCL8, CCL2, CCL8, CCL13, 281 

CCL5, CXCL10, IL15, and IL4I1 (https://www.gsea-282 

msigdb.org/gsea/msigdb/human/geneset/GOBP_CELL_CHEMOTAXIS.html) (Fig. 283 

4G, 4H). Overall, we established that there are two unique subsets of bat monocytes 284 

with different characteristics (see Discussion).  285 



Discussion 286 

Differences in viral pathogenicity among host species are thought to be attributed to 287 

differences in immune responses against viral infections among the species30. 288 

However, it remains unclear how immune responses, particularly innate immunity 289 

against viral infections, differ among host species. In the present study, we performed 290 

scRNA-seq on 16 types of PBMC samples, derived from a combination of four host 291 

species and four infection conditions (Fig. 1A), and showed that the differences in the 292 

immune responses among the host species were more impactful than those among 293 

both the stimuli and the cell types (Fig. 1E). In particular, the transcriptomic changes 294 

after pathogenic stimulation in bats differed from those in primates. Furthermore, we 295 

established a bioinformatic pipeline to characterize species-specific immune 296 

responses from transcriptome profiles with extraordinarily high dimensions (4 animal 297 

species × 3 stimuli × 4 cell types × 7,557 orthologous genes) (Fig. 2A). Our study 298 

provides fundamental data to identify differences in innate immune systems among 299 

mammalian species that partly explain the differences in viral pathogenicity among 300 

host species. 301 

 It is known that two DNA sensing pathways mediated by STING16 and PYHIN 302 

proteins, including AIM2 and IFI1617, are dampened in bats, including Egyptian fruit 303 

bats. In addition, a previous study using a cell line derived from big brown bats 304 

(Eptesicus fuscus) suggested that the TLR9-mediated DNA sensing pathway is also 305 

weakened in bats24. Based on these observations, it was hypothesized that the ability 306 

to sense DNA virus infection is weakened in bats12,13. However, we showed that bat 307 

PBMCs robustly induced IFN responses upon infection with the DNA virus HSV-1 (Fig. 308 

3A). This suggests that bats can initiate an innate immune response after infection 309 

with DNA viruses (at least HSV-1) and that bats have another pathway to sense DNA 310 

viruses. An alternative possibility is that the IFN response in response to HSV-1 311 

infection was triggered by sensing viral molecules other than DNAs: it is known that, 312 

in humans and mice, dsRNA sensing by TLR3 plays an important role in responding 313 

to HSV-1 infection26,31. Furthermore, the Egyptian fruit bat genome encodes an intact 314 

TLR3 gene (NCBI Gene ID: 107510436), and bat immune cells express TLR3 (Fig. 315 

3B). These data suggest that in bats, bat TLR3 may compensate for the immune 316 

responses induced by DNA sensors, leading to IFN responses to HSV-1 infection. 317 

 To characterize the bat-specific innate immune responses based on ultrahigh-318 

dimensionality transcriptome data (4 animal species × 4 stimuli × 6 cell types × 7,557 319 



orthologous genes), we established an analytical framework utilizing tensor 320 

deconvolution (Fig. 2A). This framework could i) extract a species-specific effect on 321 

gene expression changes, ii) compare the effects among the cell types and the stimuli, 322 

and iii) classify genes according to the differential pattern of a species-specific effect 323 

among the cell types and the stimuli. Using this framework, we found that the 324 

expression levels of key DNA and RNA sensors, including cGAS, RIG-I, MDA5, and 325 

LGP2, were highly induced in bats compared with primates, regardless of the cell type 326 

or stimulus (Fig. 2F). Furthermore, the basal expression levels of these PRRs in bats 327 

were lower than those in humans (Fig. 2G). On the other hand, after stimulation, the 328 

expression levels of these PRRs in bats were comparable to those in humans. These 329 

results suggest that the induction dynamics of these PRRs in bats are likely different 330 

from those in primates, leading to the differences in the induction of immune responses. 331 

Indeed, several antiviral ISGs, such as IFI6 and IFIT3, exhibited expression dynamics 332 

similar to those of these PRRs (Fig. 2F, 2G). These differences could be one of the 333 

reasons why immune responses differ between bats and primates. 334 

 Another factor that can explain the differences in immune responses among 335 

host species is the presence of species-specific cellular subsets. In bat monocytes, 336 

we identified two subsets that were specifically induced by stimuli (i.e., Clusters 5 and 337 

7) (Fig. 4A). Cluster 5 was a bat-specific subset induced preferentially by HSV-1 338 

infection (Fig. 4B, 4D). Interestingly, even though Cluster 5 was induced after 339 

stimulation, Cluster 5 exhibited lower expression of ISGs and higher expression of 340 

immunosuppressive genes (DUSP1, DUSP5, and SOCS2)27-29 (Fig. 4E, 4F). This 341 

observation suggests that the immune responses in Cluster 5 are downregulated 342 

presumably by negative feedback signaling and that Cluster 5 may contribute to 343 

controlling excessive immune activation in bats. On the other hand, Cluster 7 was 344 

identified as a monocyte subset that was mainly induced by LPS stimulation (Fig. 4C, 345 

4D). Cluster 7 highly expressed several proinflammatory cytokines and chemokines 346 

(CXCL6, IL18BP, CXCL8, CCL2, CCL8, CCL13, CCL5, CXCL10, IL15, and IL4I1) (Fig. 347 

4G, 4H). Cluster 7 may contribute to the recruitment of leukocytes since these 348 

cytokines are associated with the chemotaxis of neutrophils (CCL8, CXCL6, and 349 

CXCL8), basophils (CXCL8, CCL2, CCL5, CCL8, and CCL13), eosinophils (CCL5, 350 

CCL8, and CCL13), monocytes (CCL5, CCL8, and CCL13), T cells (CCL5, CCL8, 351 

CCL13, CXCL8, and CXCL10), and NK cells (CCL5 and CCL8) in humans and mice32 352 

(https://docs.abcam.com/pdf/immunology/chemokines_poster.pdf). Based on the 353 

https://docs.abcam.com/pdf/immunology/chemokines_poster.pdf


expression pattern of the marker genes for Cluster 7 (Fig. 4C, S4B), cellular subsets 354 

corresponding to Cluster 7 were also present in primate monocytes. However, these 355 

primate cells did not form a separate cluster in the dimensionality reduction analysis 356 

based on the transcriptome profile (Fig. 4A). These results suggest that the monocyte 357 

subset represented by Cluster 7 exhibits unique gene expression and thus may exert 358 

unique functions in bats. Although the specific functions of these monocyte subsets 359 

(Clusters 5 and 7) in immune responses in bats are still unclear, these unique subsets 360 

may contribute to bat-specific host immune responses. 361 

 362 

 363 

Limitations of the study 364 

In the present study, we elucidated differences in innate immune responses among 365 

host species from various aspects. However, we did not address differences in the 366 

outcomes of the innate immune responses, such as differences in viral pathogenicity. 367 

Another limitation is that the bioinformatic resources we used, such as gene annotation, 368 

gene ontology, and cellular annotation, have been developed in a human-centric way. 369 

Therefore, there is the possibility that immune responses induced by species-specific 370 

genes and cell types were overlooked. Despite these limitations, we present valuable 371 

resources to illuminate differences in immune responses among host species, 372 

including Egyptian fruit bats, and clues to elucidate differences in viral pathogenicity 373 

among species. Further study to elucidate the functional consequences of these 374 

differences is needed to reveal the mechanisms by which bats can tolerate infections 375 

with various viruses. 376 

  377 
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Figure legends 432 

 433 

Figure 1. scRNA-seq analysis of PBMCs from four animal species inoculated 434 

with pathogenic stimuli 435 

(A) Schematic of the experimental design. See also Fig. S1. 436 

(B) Uniform manifold approximation and projection (UMAP) plots representing the 437 

gene expression patterns of the cells from the four species. Each dot is colored 438 

according to the cell type. Gray dots indicate cells unassigned into any cell type. See 439 

also Fig. S2. 440 

(C) Comparison of identified cell types among the species. Dot: detected, question 441 

mark: undetected. The definitions of six species-common cell types are shown on the 442 

right side. See also Fig. S2H. 443 

(D) The cellular compositions of PBMC samples. The compositions according to the 444 

six common cell types are shown. 445 

(E) Hierarchical clustering analysis of 48 pseudobulk datapoints (4 animal species x 3 446 

stimuli x 4 cell types = 48 conditions) based on PC1-30 calculated from the fold-change 447 

values (respective stimulus versus unstimulated) for gene expression. 448 

 449 

Figure 2. Characterization of species-specific immune responses using a tensor 450 

decomposition framework 451 

(A) Tensor decomposition of the fold-change values for pseudobulk transcriptome data. 452 

(B) Heatmap representing a latent factor matrix relating to species. Columns indicate 453 

the animal species, and rows indicate the latent factors representing species-common 454 

(L1_1), bat-specific (L1_2), and macaque-specific (L1_3) factors. See also Fig. S3A–455 

B. 456 

(C) Classification of genes according to the differential patterns of the latent factors 457 

related to species. For each of the species-common (L1_1), bat-specific (L1_2), and 458 

macaque-specific (L1_3) factors, the product of the core tensor and three latent factor 459 

matrices related to stimulus, cell type, and gene was calculated (left), and the genes 460 

were classified into 11 categories according to the binary patterns for each calculated 461 

product (right). See also Fig. S3C–F. 462 

(D) Heatmap representing the values of the products calculated in Figure 2C. From 463 

the three products, the data related to the bat-specific factor (L1_2) are shown. Each 464 



row indicates the respective gene. The color keys shown on the right of the heatmap 465 

indicate gene categories. See also Fig. S3G–L. 466 

(E) GO terms enriched in each gene category relating to the bat-specific factor. GO 467 

terms with a false discovery rate (FDR) <= 0.1 and an odds ratio >= 1 are shown. 468 

(F) Heatmap representing the induction levels of ALL_high genes for the bat-specific 469 

factor. Additional classification according to the gene classification of the species-470 

common factors is shown to the right of the heatmap. Genes categorized as ALL_high 471 

in both the species-common factor and the bat-specific factor are shown on the right 472 

side. The colored circle indicates the functional category of the gene. 473 

(G) Heatmap representing the relative expression levels (bats versus humans) of the 474 

genes shown in Figure 2F. 475 

 476 

Figure 3. Robust immune responses to a DNA virus in bats 477 

(A) Boxplot of the expression levels of coremamm ISGs in every single cell. The Y-axis 478 

indicates the global expression level (GSVA score) of the coremamm ISGs. 479 

(B) Heatmap representing the mean expression levels of sensor genes. The mean 480 

values were calculated without using the information for the stimulus. 481 

 482 

Figure 4. Identification of bat-specific subsets of monocytes 483 

(A) UMAP plots representing the gene expression patterns of monocytes from the four 484 

species. The dots are colored according to the cell cluster defined for each animal 485 

species. See also Fig. S4A. 486 

(B, C) UMAP plots representing the average expression levels of marker genes for 487 

Cluster 5 [C5markers] (B) and Cluster 7 [C7markers] (C). See also Fig. S4B. 488 

(D) The cellular composition of bat monocytes. The composition is shown according 489 

to the cluster. The black frame indicates Clusters 5 and 7 in stimulated samples. 490 

(E) Heatmap representing the mean expression levels of differentially expressed 491 

genes (DEGs) in Cluster 5 of bat monocytes. 492 

(F) Summary of the GO terms enriched in DEGs in Cluster 5. GO terms enriched in 493 

up- and downregulated genes are shown in red and blue, respectively. 494 

(G) Heatmap representing the mean expression levels of differentially expressed 495 

genes (DEGs) in Cluster 7 of bat monocytes. 496 

(H) Summary of the GO terms enriched in DEGs in Cluster 7. GO terms enriched in 497 

up- and downregulated genes are shown in red and blue, respectively.  498 



Data and code availability 499 

Single-cell RNA-seq data have been deposited in the GEO database (GSE218199) 500 

and are publicly available. Original data to describe figures in this paper have been 501 

deposited at Mendeley (DOI: 10.17632/kg3dfkyjv5.1) and are publicly available. All 502 

original code has been deposited at GitHub (https://github.com/TheSatoLab/scRNA-503 

seq_PBMC_Animals_Aso_et_al) and is publicly available. 504 

 505 

 506 

Ethics Statement 507 

All protocols involving specimens from animals were performed in accordance with the 508 

Science Council of Japan’s Guidelines for the Proper Conduct of Animal Experiments. 509 

The protocols were approved by the Institutional Animal Care and Use Committee of 510 

Kyoto University (approval IDs: 2017-B-5, 2019-C-9, 2019-162, 2019-177, and 2020-511 

C-5). All protocols involving specimens from humans recruited at Kyoto University 512 

were reviewed and approved by the Institutional Review Boards of Kyoto University 513 

(approval ID: G1089). All human subjects provided written informed consent. All 514 

protocols for the use of human specimens were reviewed and approved by the 515 

Institutional Review Boards of The Institute of Medical Science, The University of 516 

Tokyo (approval ID: 2019-55) and Kyoto University (approval ID: G1089). 517 

 518 

Methods 519 

Cells 520 

Vero cells (obtained from the Laboratory of Bernard Roizman, University of Chicago, 521 

USA) 522 

LLC-MK2 cells (rhesus macaque kidney epithelial cells) (CCL-7, ATCC) 523 

 524 

PBMC collection 525 

Human peripheral blood was obtained from the arm vein. To obtain chimpanzee 526 

peripheral blood, a chimpanzee was anesthetized for a regular health examination. 527 

Anesthesia was induced with intramuscular administration of the combination of 0.012 528 

mg/kg medetomidine (Meiji Seika Pharma Co., Ltd. ), 0.12 mg/kg midazolam (Sand 529 

Co., Ltd. ), and 3.5 mg/kg ketamine (Fujita Pharm, Tokyo) and maintained with 530 

constant rate infusion (4-10 mg/kg/h) of propofol (1% Diprivan, Sand Co., Ltd. ). 531 

Peripheral blood was obtained from the femoral vein. To obtain rhesus macaque 532 

https://github.com/TheSatoLab/scRNA-seq_PBMC_Animals_Aso_et_al
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peripheral blood, a rhesus macaque was anesthetized. Anesthesia was induced with 533 

intramuscular administration of 8 mg/kg ketamine followed by deep anesthetization 534 

using an intravenous injection of sodium pentobarbital (30 mg/kg) (Kyoritsu Seiyaku). 535 

Peripheral blood was obtained by cardiac puncture before exsanguination and 536 

perfusion. Bat peripheral blood was obtained from the cephalic vein in the patagium. 537 

PBMCs were isolated from peripheral blood by density gradient centrifugation using 538 

Ficoll-Paque™ Plus (Cytiva, Cat# 17144003). 539 

 540 

HSV-1 preparation and titration 541 

HSV-1 (strain F; GenBank accession number: GU734771)33 was prepared as 542 

previously described26 and kindly provided by Dr. Yasushi Kawaguchi (The Institute of 543 

Medical Science, The University of Toyo, Japan). To titrate viral infectivity, prepared 544 

virus was diluted 10-fold in Medium 199 (Thermo Fisher Scientific, Cat# 11825015) 545 

containing 1% fetal calf serum (FCS) (Nichirei Biosciences, Cat# 175012), and Vero 546 

cells were infected with dilutions of the virus at 37 °C. At one hour postinfection, the 547 

culture medium was replaced with Medium 199 containing 160 μg/ml human γ-globulin 548 

(Sigma Aldrich, G4386-25G), and the cells were cultured at 37 °C for 2–3 days. To 549 

calculate the viral titer [plaque forming unit (PFU)], the number of plaques per well was 550 

counted. 551 

 552 

SeV preparation and titration 553 

SeV (strain Cantrell, clone cCdi; GenBank accession number: AB855654) was 554 

prepared as previously described34 and kindly provided by Dr. Takashi Irie (Hiroshima 555 

University, Japan). To titrate viral infectivity, prepared virus was diluted 10-fold in 556 

Dulbecco’s modified Eagle’s medium (DMEM) (Sigma‒Aldrich, Cat# D6046-500ML) 557 

containing 10% FCS, and LLC-MK2 cells were infected with dilutions of the virus at 558 

37 °C. At one hour postinfection, the cells were washed with PBS and cultured with 559 

DMEM containing 10% FCS at 37 °C. At one day postinfection, the infected cells were 560 

fixed with acetone (Nacalai Tesque, Cat# 21914-03)/methanol (Nacalai Tesque, Cat# 561 

00310-95). To calculate the viral titer [cell infectious unit (CIU)], the fixed cells were 562 

stained with a rabbit anti-SeV polyclonal antibody35 as the primary antibody and an Alexa 563 

488-conjugated goat anti-rabbit IgG antibody (Thermo Fisher Scientific, Cat# A-11008) as 564 

the secondary antibody, and the number of fluorescent foci per well was counted. 565 

 566 



Infection and stimulation 567 

One million PBMCs were maintained in 500 μl RPMI 1640 medium (Sigma‒Aldrich, 568 

Cat# R8758-500ML) and infected with HSV-1 or SeV at a multiplicity of infection of 569 

0.1. To mimic microbial infection, LPS (Sigma‒Aldrich, Cat# L5024-10MG) was added 570 

at a final concentration of 200 ng/ml. At one day post infection, infected/stimulated 571 

PBMCs were centrifuged, resuspended in PBS, and used for bulk RT–qPCR and 572 

scRNA-seq (see below). 573 

 574 

RT–qPCR 575 

RT–qPCR was performed as previously described36. Briefly, cellular RNA was 576 

extracted using the QIAamp RNA Blood Mini Kit (Qiagen, Cat# 52304) and then 577 

treated with an RNase-free DNase set (Qiagen, Cat# 79254). cDNA was synthesized 578 

using SuperScript III reverse transcriptase (Thermo Fisher Scientific, Cat# 18080044) 579 

and random primers (Thermo Fisher Scientific, Cat# 48190011). RT–qPCR was 580 

performed using Power SYBR Green PCR Master Mix (Thermo Fisher Scientific, Cat# 581 

4367659) and the primers listed in Table S1. For RT–qPCR, the CFX Connect Real-582 

Time PCR Detection System (Bio-Rad) was used. 583 

 584 

Sequencing of scRNA-seq libraries 585 

scRNA-seq libraries were constructed using the Chromium Next GEM Single Cell 3’ 586 

Kit according to the manufacturer's instructions (10x Genomics). Briefly, cells, gel 587 

beads, and oil were loaded onto the Chromium platform to generate single-cell gel 588 

beads-in-emulsion (GEMs). Barcoded cDNAs were pooled for amplification, and 589 

adaptors and indices for sequencing were added. The evaluation was conducted using 590 

a BioAnalyzer (Agilent Technologies). The libraries were sequenced with paired-end 591 

reads using the NovaSeq6000 platform (Illumina). 592 

 593 

Genome sequence dataset 594 

Genome sequences of the animal species including humans (GRCh38.p13, RefSeq 595 

accession: GCF_000001405.39), chimpanzees (Clint_PTRv2, RefSeq accession: 596 

GCF_002880755.1), rhesus macaques (Mmul_10, RefSeq accession: 597 

GCF_003339765.1), and Egyptian fruit bats (mRouAeg1.p, RefSeq accession: 598 

GCF_014176215.1) were obtained from NCBI RefSeq 599 

(www.ncbi.nlm.nih.gov/genome). From the genome sequences, ALT contig 600 

http://www.ncbi.nlm.nih.gov/genome


sequences were excluded. The genome sequences of viruses including HSV-1 (strain: 601 

F, accession: GU734771.1) and SeV (strain: Cantell clone cCdi, accession: 602 

AB855654.1) were also obtained from NCBI RefSeq. A custom reference genome 603 

sequence for each animal species was generated by adding the genome sequences 604 

of HSV-1 and SeV to the genome sequence of the animal species. 605 

 606 

Gene annotation and ortholog information 607 

Gene annotations of humans (GRCh38.p13, Release 109.20200228), chimpanzees 608 

(Clint_PTRv2, Release 105), rhesus macaques (Mmul_10, Release 103), and 609 

Egyptian fruit bats (mRouAeg1.p, Release 101) were obtained from NCBI RefSeq. 610 

From the gene annotations, only the records for protein_coding, 611 

transcribed_pseudogene, lncRNA, pseudogene, antisense_RNA, 612 

ncRNA_pseudogene, V_segment, V_segment_pseudogene, C_region, 613 

C_region_pseudogene, J_segment, J_segment_pseudogene, and D_segment were 614 

extracted according to the CellRanger tutorial 615 

(https://support.10xgenomics.com/single-cell-gene-616 

expression/software/pipelines/latest/using/tutorial_mr). In addition, to quantify viral 617 

RNA abundance, the records for viruses were added. The whole viral genome was 618 

treated as a single exon, and a total of four lines (the positive and negative strands of 619 

HSV-1 and SeV) were added. 620 

A list of orthologous genes between humans and the other animal species 621 

(chimpanzees, rhesus macaques, and Egyptian fruit bats) was obtained from NCBI on 622 

July 26th, 2021 (https://ftp.ncbi.nih.gov/gene/DATA/gene_orthologs.gz). From the file, 623 

the records for orthologs between humans (taxonomy ID: 9606) and chimpanzees 624 

(taxonomy ID: 9598), rhesus macaques (taxonomy ID: 9544), or Egyptian fruit bats 625 

(taxonomy ID: 9407) were extracted. 626 

 The ortholog list from NCBI lacked information on some critical immune-related 627 

genes of Egyptian fruit bats, such as CD4 and IRF1. Therefore, we retrieved 628 

information from the Bat1K gene annotation37 (https://bat1k.com): First, we made a 629 

custom gene annotation for Egyptian fruit bats by adding information from the Bat1K 630 

gene annotation to the RefSeq gene annotation. Second, we extracted exons in the 631 

Bat1K gene annotation that overlapped with exons in the RefSeq gene annotation by 632 

using the bedtools intersect command with the wao option (v2.30.0)38. In this step, the 633 

exons in the Bat1K gene annotation that did not overlap with the exons in the RefSeq 634 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/tutorial_mr
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gene annotation were also extracted and added to custom gene annotations as 635 

additional genes. Next, the exons that contained overlaps and had the same gene 636 

name (the same symbol or known to be an ortholog) were added to custom gene 637 

annotations as an alternative splicing variant of the gene. Then, the remaining 638 

overlapping exons were processed by determining which information (RefSeq or 639 

Bat1K) should be used preferentially. The criteria were as follows: i) genes whose 640 

symbols are not prefixed with “LOC” were given priority, ii) genes whose symbols are 641 

included in the human gene list were given priority, and iii) information from RefSeq 642 

was given priority otherwise. According to these criteria, the annotation with the higher 643 

priority (RefSeq or Bat1K) was selected and used in the custom gene annotation. 644 

 As a result of the integration of gene annotations, the number of orthologous 645 

genes in the custom gene annotation of bats increased from 16374 to 16903. 646 

Importantly, immune-related genes that were not defined in the RefSeq gene 647 

annotation, such as TLR1, IRF1, and CD4, were added to the custom gene annotation. 648 

Considering the orthologous relationships, we prepared three types of gene 649 

sets for each animal species: i) “all genes”, including all genes in the animal species; 650 

ii) “genes shared with humans”, including genes with orthologs in humans; and iii) 651 

“common genes”, genes shared among the four analyzed animal species. Unless 652 

otherwise noted, “all genes” were used up to cell annotation, and “common genes” 653 

were used after cell annotation. 654 

 655 

Processing scRNA-seq data for generating count matrices 656 

Gene expression count matrices for scRNA-Seq data were generated using 657 

CellRanger (v6.0.1) (10x Genomics). First, we built a custom reference for each animal 658 

species from the custom reference genome sequence and custom gene annotation 659 

using the “cellranger mkref” command. Subsequently, we generated unique molecular 660 

identifier (UMI)-based count matrices from the raw scRNA-seq data and custom 661 

references using the “cellranger count” command with default settings. 662 

 663 

Quality control (QC) of scRNA-seq data 664 

First, we removed cells with abnormal genes per cell (genes/cell) and counts per cell 665 

(counts/cell) values using the Seurat package (v4.0.4)39: Cells with 800–5,000 666 

genes/cell or 1,200–25,000 counts/cell were extracted. Second, we removed 667 

nontargeted cells in the present study. We annotated the cell type of individual cells 668 



using Azimuth (v0.4.3), a reference-based cell annotation prediction program 669 

(https://azimuth.hubmapconsortium.org), and cells annotated as erythrocytes, 670 

hematopoietic stem cells, innate lymphoid cells, and platelets were excluded. In this 671 

step, the gene annotation “genes shared with humans” (see Gene annotation and 672 

ortholog information) for each animal species was used. Finally, regarding 673 

genes/cell and counts/cell values, cells with >3 |Z score| were excluded. 674 

 675 

Data integration, visualization, and cell clustering 676 

Data integration, visualization, and cell clustering for each animal species were 677 

performed using the Seurat package. In these processes, the expression levels of 678 

HSV-1 and SeV were not used. 679 

Data integration is a method merging the gene expression count matrices 680 

obtained from different experimental conditions while removing batch effects. We 681 

integrated the count matrices from the four different conditions for each animal species. 682 

In the data integration, SCTransform (a modeling framework for the normalization and 683 

variance stabilization of molecular count data from scRNA-seq data) was performed 684 

using the SCTransform function for each count matrix. Next, to extract 2000 genes 685 

with higher variance and thus greater information for integration, the four count 686 

matrices were processed using the SelectIntegrationFeatures function. Next, we used 687 

the PrepSCTIntegration function to transform normalized counts into counts per 688 

10,000 counts in the cell (CP10k). After that, we used the FindIntegrationAnchors 689 

function with the setting Mock as a reference to find “Integration anchors”. Finally, we 690 

integrated the four normalized count matrices using the IntegrateData function with 691 

the option ‘normalization.method=”SCT”’. 692 

For visualization, we first performed principal component analysis (PCA) using 693 

the RunPCA function. Then, UMAP40 was performed with the RunUMAP function. In 694 

this step, principal components (PC) 1-50 were used, and the parameter “n.neighbors” 695 

was set individually for each animal species (Hs: 20, Pt: 20, Mm: 50, and Ra: 40). 696 

To define cell clusters in each animal species, we performed graph-based 697 

unsupervised clustering (Fig. S2A). First, the FindNeighbors function was used, and 698 

then, the FindClusters function was used. In these steps, the parameter ‘k.param’ for 699 

FindNeghbors was set individually for each animal species (Hs: 12, Pt: 10, Mm: 10, 700 

and Ra: 20). The parameter ‘resolution’ for FindClusters was also set individually for 701 

each animal species (Hs: 2.0, Pt: 2.2, Mm: 1.7, Ra: 1.2). 702 

https://azimuth.hubmapconsortium.org/


 703 

Cell annotation 704 

Regarding each cluster identified by graph-based unsupervised clustering in the 705 

section “Data integration, visualization, and cell clustering” (Fig. S2A), 11 cell 706 

types were manually annotated according to i) the predicted cell type by Azimuth (Fig. 707 

S2B), ii) the distances between each cluster (Fig. S2C), and iii) the correspondence 708 

of clusters between animal species (Fig. S2D–F). First, reference-based cell type 709 

prediction was performed using Azimuth for the mock data from each animal species 710 

(Fig. S2B). In this step, the gene annotation “genes shared with humans” (see Gene 711 

annotation and ortholog information) for each animal species was used. We 712 

checked the enrichment of each predicted cell type in each cluster by Azimuth. Second, 713 

we checked the similarities between clusters by hierarchical clustering (Fig. S2C) 714 

using the mean values of PCs 1-50 among the individual cells (see Data integration, 715 

visualization, and cell clustering) in each cluster. Notably, PCA was performed 716 

using the expression levels of “all genes” (see Gene annotation and ortholog 717 

information). The Euclidian distance was used for clustering by Ward’s method. Third, 718 

to check the correspondence between clusters in each animal species, we performed 719 

data integration, clustering, and visualization for mock data from all four animal 720 

species (Fig. S2D–F). In the integration, the mock data from humans were used as 721 

reference data. In this step, the gene annotation “common genes” (see Gene 722 

annotation and ortholog information) was used. 723 

 After categorizing cells into 11 cell types, the 11 cell types were coarse-grained 724 

into 6 cell types based on the results of hierarchical clustering analysis (see 725 

Hierarchical clustering). The six cell types were used in the subsequent analysis. 726 

 727 

 728 

Hierarchical clustering 729 

To examine the similarities in expression patterns among the conditions (4 animal 730 

species × 4 stimuli × 6 cell types = 96 conditions), hierarchical clustering analysis was 731 

performed. In this analysis, the 5,000 genes with the highest median absolute 732 

deviation (mad) values were used (Fig. S2H). First, the average expression levels of 733 

the respective genes in each condition were calculated. Next, PCA was performed 734 

using the average expression profiles. Third, using PCs 1-30, the distance matrix for 735 



the 96 conditions was generated using 1−Pearson’s correlation coefficient. Finally, 736 

hierarchical clustering by Ward’s method was performed using the distance matrix. 737 

To determine which factor (e.g., animal species, stimulus, or cell type) was the 738 

most impactful on the gene expression in immune cells, hierarchical clustering was 739 

performed using induction patterns upon stimulation (Fig. 1E). Unlike for the results 740 

shown in Fig. S2H, FC values were used to perform PCA. This analysis used 7557 741 

genes, the union of the top 6000 genes related to total expression levels in the 742 

expression profiles of each animal species. The FC expression values (stimulated vs. 743 

unstimulated conditions) of those genes were calculated for each cell type in each 744 

animal species. To avoid generating infinite FC values, the data for genes with zero 745 

expression in mock data were set at the minimum nonzero expression level in the 746 

mock data. Finally, hierarchical clustering was performed using the method described 747 

above. 748 

 749 

Tensor decomposition 750 

To extract species-specific/common induction patterns upon stimulation from 751 

transcriptome data with complex structures (4 animal species × 3 stimuli × 4 cell types 752 

× 7557 orthologous genes), we used tensor decomposition (Fig. 2A). As the input data 753 

for tensor decomposition, the FC values of 7557 genes, the union of the top 6000 754 

genes related to total expression levels in the expression profiles of each animal, were 755 

used. The calculation method for FC values is described in the section “Hierarchical 756 

clustering”. The standardized FC values for each condition were represented as a 4-757 

mode tensor (animal species × stimulus × cell type × orthologous gene). To 758 

perform Tucker decomposition (TD), a method of tensor decomposition, we used 759 

TensorLy (v0.6.0) (http://tensorly.org/stable/index.html). We performed TD via higher-760 

order orthogonal iteration (HOI) with the parameter ‘init=”svd”’. In HOI, the size of the 761 

core tensor (ranks) was set as [animal species: 3, stimulus: 2, cell type: 3, gene: 15]. 762 

The number of iterations was set as 100. 763 

 764 

Gene classification using the tensor decomposition results 765 

A schematic of the gene classification using tensor decomposition is shown in Fig. 2C 766 

and Fig. S3C–F. Briefly, we selected the candidate gene categories that had patterns 767 

of values (high, mid, or low) (Fig. S3C) that matched the ideal pattern (Fig. S3D) and 768 

http://tensorly.org/stable/index.html


then selected the gene category with the best “similarity score” (Fig. S3E) from the 769 

candidates as the gene category for that gene (Fig. S3F). 770 

Initially, the product of the core tensor and the three factor-matrices, A2 (for 771 

stimulus), A3 (for cell type), and A4 (for gene), was calculated to obtain three cubic 772 

data with three axes, stimulus, cell type, and gene, using the ttl function of rTensor 773 

(v1.4.8) (https://github.com/rikenbit/rTensor). Each cubic data point indicated 774 

information related to species-common, bat-specific, and macaque-specific factors 775 

(Fig. 2B). Next, since the values of latent factors related to HSV-1 and SeV were 776 

similar (Fig. S3A), these two categories were integrated into the category “Virus” by 777 

calculating mean values. Additionally, since the values of latent factors related to 778 

NaiveT and KillerTNK were similar (Fig. S3B), these two categories of cell types were 779 

integrated into the category “TNK” by calculating mean values. Thus, hereafter, the 780 

category of stimuli included virus and LPS, and the category of cell types included B 781 

cells, TNK cells and Monos. 782 

Then, in each cubic data, genes were classified into 11 categories (Fig. 2C) 783 

through the following three steps. Briefly, from the candidate gene categories that had 784 

patterns of values (high, mid, or low) (Fig. S3C) that matched the ideal pattern (Fig. 785 

S3D), the gene category with the lowest “similarity score” (Fig. S3E) was selected as 786 

the gene category for that gene (Fig. S3F). 787 

In the first step (Fig. S3C), the values in each cubic data were normalized, and 788 

the genes were classified into three classes (high, mid, and low) according to the 789 

ranking of values in each condition (stimulus × cell type). First, six column vectors in 790 

the TD results for the 6 conditions (2 stimuli × 3 cell types) were normalized by dividing 791 

them by the 90th percentile for the individual vectors. After the division step, to 792 

suppress the effect of abnormally high or low values, data with > 1 or < -1 were 793 

assigned as 1 and -1, respectively. Next, the genes were categorized into three 794 

classes based on the rule that if the rank of a value was greater than the 80th 795 

percentile or smaller than the 20th percentile, it was categorized as “high” or “low”, 796 

respectively; otherwise, it was categorized as “mid”. 797 

In the second step (Fig. S3E), a “similarity score” was calculated to represent 798 

the similarity between the genewise pattern of the TD results and the “ideal patterns” 799 

for each gene category. The “ideal patterns” were defined as vectors composed of 1, 800 

0, and -1 for 16 gene categories (Virus_high, LPS_low, Virus_low, LPS_high, B_high, 801 

TNKM_low, B_low, TNKM_high, TNK_high, BM_low, TNK_low, BM_high, M_high, 802 



BTNK_low, M_low, and BTNK_high) (Fig. S3D). The “similarity score” was defined as 803 

the sum of the residual squares between the two vectors, the genewise vector of 804 

normalized values from the TD results (Fig. S3C) and the “ideal patterns” (Fig. S3D). 805 

According to the definition, the “similarity scores” for every combination of genes and 806 

gene categories were calculated. After calculating all similarity scores, to obtain the 807 

threshold for checking if a gene should be recognized as a gene in that category, the 808 

20th percentile of the similarity score in the vector for each gene category was 809 

calculated. 810 

In the third step (Fig. S3F), the gene category for each gene was determined. 811 

First, the candidate gene categories for each gene were filtered according to the 812 

pattern assigned in the first step (Fig. S3C). If the pattern (high/mid/low) of all 6 813 

conditions was high or low, the gene was categorized as ALL_high or ALL_low, 814 

respectively. If the pattern of a gene matched the “ideal pattern” of a gene category, 815 

the gene category was added as a candidate gene category for the gene. For example, 816 

if the pattern of gene A was (Virus_B: high, Virus_TNK: high, Virus_M: high, LPS_B: 817 

high, LPS_TNK: low, LPS_M: mid), the candidate gene category for gene A was 818 

“Virus_high” and “B_high” because all virus-infected data were assigned as “high” and 819 

all B-cell data were assigned as “high” (Fig. S3D). Second, the gene category with the 820 

lowest “similarity score” among the candidate gene categories was selected as the 821 

tentative gene category. In this selection, if the “similarity score” was higher than the 822 

threshold of the gene category (Fig. S3E), the gene was categorized as “Others” (See 823 

gene B in Fig. S3F) because the pattern for the gene was recognized as being too 824 

different from the “ideal pattern”. If no candidate gene category was available, the gene 825 

was also classified as “Others” (See gene C in Fig. S3F). Finally, the final gene 826 

category was determined by integrating similar gene categories (Fig. S3F). For 827 

instance, the categories Virus_high and LPS_low were integrated into the category 828 

Virus_high because both categories indicated that virus-infected data were higher than 829 

LPS-stimulated data (See gene D in Fig. S3F). As a result of the gene classification 830 

process, genes were categorized into one of 11 categories (Fig. 2C, S3D). 831 

 832 

GO term enrichment analysis 833 

Gene Ontology (GO) analysis was performed with Fisher’s exact test. This analysis 834 

used the GO canonical pathways and GO biological processes defined by MSigDB 835 



(v7.3) (https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). Adjusted P values 836 

were calculated using the Benjamini‒Hochberg (BH) method. 837 

 838 

Calculation of gene set variation analysis (GSVA) scores 839 

The gene set-wise expression scores used in Figs. 3A, 4B, 4C, and S4B were 840 

calculated using GSVA (v1.38.2)41 with the algorithm “ssgsea”. 841 

 842 

Identification of differentially expressed genes (DEGs) and marker genes 843 

In bat monocytes, DEGs were identified in Cluster 5 or Cluster 7 compared to the other 844 

clusters using the FindMarkers function of Seurat packages. A gene that met the 845 

following three criteria was considered a DEG: 1) the false discovery rate (FDR) 846 

calculated using the BH method was less than 0.05, 2) the average log2FC was 847 

greater than 1 or less than -1, and 3) the proportion of expressing cells was greater 848 

than 0.2. 849 

 The marker genes of Cluster 5 and Cluster 7 of bat monocytes (RaC5marker 850 

and RaC7marker, respectively) were defined as upregulated DEGs in Cluster 5 (Fig. 851 

4E) and Cluster 7 (Fig. 4G), respectively. 852 

 853 

 854 

[Supplemental Information] 855 

 856 

Figure S1. Validation of viral infectivity and the innate immune response (related 857 

to Figure 1) 858 

(A) Heatmap of the induction levels of genes related to the IFN response and 859 

inflammation. The rows indicate genes, and the columns indicate combinations of 860 

species, stimulus, and dose. The color represents the log2 Fold Change of ddCt upon 861 

stimulation measured by qRT‒PCR. “rep. 1” and “rep. 2” indicate biological replicates. 862 

(B-C) Heatmap of the expression levels of viral genes (B: HSV-1; C: SeV) measured 863 

by qRT‒PCR. The rows indicate viral genes, and the columns indicate combinations 864 

of species and doses. “rep. 1” and “rep. 2” indicate biological replicates. The color 865 

represents the ddCt values based on the expression levels of GAPDH. 866 

(D-G) Violin plots of (D) the numbers of detected genes per cell before QC, (E) 867 

numbers of counted reads per cell before QC, (F) numbers of detected genes per cell 868 

after QC, and (G) numbers of counted reads per cell after QC. 869 

https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp


 870 

Figure S2. Heterogeneous expression patterns in the four animal species 871 

(related to Figure 1) 872 

(A-B) UMAP plots representing the gene expression patterns of PBMCs from the four 873 

species. Each dot is colored according to the results of unsupervised clustering (A) 874 

and reference-based label transfer (B). 875 

(C) Heatmaps showing pairwise Euclid distances representing the gene expression 876 

differences among clusters. The distances were calculated using PCs 1-50 of the gene 877 

expression data. 878 

(D-E) UMAP plots representing the gene expression patterns of PBMCs from the mock 879 

samples for the four species. Each dot is colored according to the results of 880 

unsupervised clustering using the integrated data for the four mock samples (D) or the 881 

four samples from each animal shown in Figure S2A (E). 882 

(F) Heatmaps showing pairwise Euclid distances representing the gene expression 883 

differences among clusters shown in Figure S2D. The distances were calculated 884 

using PCs 1-30 of the gene expression data. 885 

(G) Dot plots representing the expression patterns of marker genes for each cell type 886 

defined by Azimuth 887 

(azimuth.hubmapconsortium.org/references/#Human%20-%20PBMC) 888 

(H) Hierarchical clustering analysis of 48 pseudobulked FC gene expression 889 

datapoints (4 animal species x 4 stimuli x 11 cell types = 176 conditions). 890 

 891 

Figure S3. Classification of genes according to species-specific expression 892 

patterns (related to Figure 2) 893 

(A) Heatmap representing a latent factor matrix related to stimuli. The columns indicate 894 

stimuli, and the rows indicate latent factors representing stimulus-common (L2_1) and 895 

virus vs. LPS (L2_2) factors. 896 

(B) Heatmap representing a latent factor matrix related to cell types. The columns 897 

indicate cell types, and the rows indicate latent factors representing cell type-common 898 

(L3_1), monocyte-specific (L3_2), and B-cell-specific (L1_3) factors. 899 

(C) Summary of the normalization of values and patterning according to the ranking of 900 

the values. First, six column vectors (2 stimuli × 3 cell types) in the TD results were 901 

normalized by dividing them by the 90th percentile of the individual vectors. Then, data 902 

with > 1 or < -1 were assigned as 1 and -1, respectively. Next, the genes were 903 



categorized into three classes (high, mid, and low) based on the rule that if the rank of 904 

a value was greater than the 80th percentile or smaller than the 20th percentile, it was 905 

categorized as “high” or “low”, respectively; otherwise, it was categorized as “mid”. 906 

(D) Summary of the ideal patterns for each gene category used in the gene 907 

classification in Figure 2C. 908 

(E) Summary of the calculation of the similarity score and establishment of the 909 

threshold for the gene classification in Fig. S3F. The sum of the residual squares 910 

between two vectors, the genewise vector of normalized values from the TD results 911 

(Fig. S3C) and the “ideal patterns” (Fig. S3D) were calculated. Then, the threshold 912 

used in Fig. S3F was obtained by calculating the 20th percentile of the similarity score 913 

for the vector for each gene category. 914 

(F) Summary of gene classification. By comparing patterns from the TD results (Fig. 915 

S3C) and the ideal patterns (Fig. S3D), candidate gene categories were selected. 916 

Next, the gene category with the lowest “similarity score” among the candidate gene 917 

categories was selected as the tentative gene category. In this selection, if the 918 

“similarity score” was higher than the threshold of the gene category (Fig. S3E), the 919 

gene was categorized as “Others” (gene B). If no candidate gene category was 920 

available, the gene was also classified as “Others” (gene C). Finally, the final gene 921 

category was determined by integrating similar gene categories (genes A and D). 922 

(G-I) Heatmap representing the values of the products calculated in Figure 2C. The 923 

data relating to (G) the species-common factor (L1_1), (H) the bat-specific factor 924 

(L1_2), and (I) the macaque-specific factor (L1_3) are shown. Each row indicates the 925 

respective gene. The color keys shown on the right of the heatmap indicate gene 926 

categories. 927 

(J-L) Heatmap representing the FC values in the input tensor. The orders of the rows 928 

are the same as in (J) Figure S3G, (K) Figure S3H, and (L) Figure S3I. Each row 929 

indicates the respective gene. The color keys shown on the right of the heatmap 930 

indicate gene categories. 931 

 932 

Figure S4. Identification of species-specific cell types (related to Figure 4) 933 

(A) UMAP plots representing the expression patterns of every single cell. 934 

Dimensionality reduction was performed for each combination of the four species and 935 

three cell types. 936 



(B) UMAP plots representing the average expression levels of marker genes for 937 

Cluster 7 [C7markers]. 938 

 939 

Table. S1. Primers used for RT‒qPCR (related to the Methods) 940 

The sequences of the primers used for RT‒qPCR are listed. 941 

 942 
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Dear Editors, GigaScience 

 

Please find enclosed our manuscript entitled "Single-cell transcriptome analysis illuminating the 

characteristics of species-specific innate immune responses against viral infections", by Aso et al., 

for the consideration of publication in GigaScience. 

 

As a background of this study - it is well known that bats harbor various viruses without 

severe symptoms and act as their natural reservoirs. The tolerance of bats against viral infections is 

assumed to originate from the uniqueness of their immune system. However, how immune responses 

vary between primates and bats remains unclear. To characterize differences in the immune responses 

among different mammals, we obtained peripheral blood mononuclear cells from three primates (humans, 

chimpanzees, and macaques) and a bat species (Egyptian fruit bat) and added various pathogenic stimuli. 

Then, we conducted single-cell RNA sequencing analysis. We show that the induction patterns of key 

cytosolic DNA/RNA sensors and antiviral genes differed between primates and bats, rather than the 

difference of pathogenic stimuli. Notably, a novel subset of monocytes induced by pathogenic stimuli 

specifically in bats was identified. Furthermore, bats robustly responded to DNA virus infection even 

though major DNA sensors are dampened in bats. Overall, our data suggest that immune responses are 

substantially different between primates and bats, presumably underlying the difference in viral 

pathogenicity among the mammalian species tested. 

 

The potential reviewers are listed in the next page. We hope the editor considers that our study is 

significant and suitable for the publication in GigaScience. 
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