
GigaScience
 

Single-cell transcriptome analysis illuminating the characteristics of species-specific
innate immune responses against viral infections

--Manuscript Draft--
 

Manuscript Number: GIGA-D-23-00007R1

Full Title: Single-cell transcriptome analysis illuminating the characteristics of species-specific
innate immune responses against viral infections

Article Type: Research

Funding Information: Japan Science and Technology
Corporation
(CREST JPMJCR20H4)

Professor Kei Sato

Abstract: Background
Bats harbor various viruses without severe symptoms and act as their natural
reservoirs. The tolerance of bats against viral infections is assumed to originate from
the uniqueness of their immune system. However, how immune responses vary
between primates and bats remains unclear. Here, we characterized differences in the
immune responses by peripheral blood mononuclear cells to various pathogenic stimuli
between primates (humans, chimpanzees, and macaques) and bats (Egyptian fruit
bats) using single-cell RNA sequencing.
 
Results
We show that the induction patterns of key cytosolic DNA/RNA sensors and antiviral
genes differed between primates and bats. A novel subset of monocytes induced by
pathogenic stimuli specifically in bats was identified. Furthermore, bats robustly
respond to DNA virus infection even though major DNA sensors are dampened in bats.
 
Conclusions
Overall, our data suggest that immune responses are substantially different between
primates and bats, presumably underlying the difference in viral pathogenicity among
the mammalian species tested.
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Reviewer #1: Hirofumi Aso and colleagues provide a manuscript entitled 'Single-cell
transcriptome analysis illuminating the characteristics of species specific innate
immune responses against viral infections'. The aim was to describe differences in
innate immune responses of peripheral blood mononuclear cells (PBMCs) from
different primates and bats against various pathogenic stimuli (different viruses and
LPS). A major conclusion from the study is that differences in the immune response
between primate and bat PBMCs are more pronounced than those between DNA,
RNA viruses or LPS, or between the cell types.

The topic is of interest as the immunological basis for how bats appear to be largely
disease resistant to some viruses that cause severe infections in humans is not well
understood. One notion by others has been that bats have a larger spectrum of
interferon (IFN) type I related genes, some of which are expressed constitutively even
in unstimulated tissue, and there, trigger the expression of IFN stimulated genes
(ISGs). Alongside, enhanced ISG levels may need to be compensated for in bats.
Accordingly, bats may exhibit reduced diversity of DNA sensing pathways, as well as
absence of a range of proinflammatory cytokines triggered in humans upon
encountering acute disease causing viruses.

The study here uses single-cell RNA sequencing (scRNA-seq) analysis, and transcript
clustering algorithms to explore the profile of different innate immune responses upon
viral infections of PBMCs from H sapiens, Chimpanzee, Rhesus macaque, and
Egyptian fruit bat. Most commonly referred to cell types were detected in all four
species, although naïve CD8+ T cells were not detected in bat PBMCs, which led the
authors to focus on B cells, naïve T cells, killer T/NK cells, monocytes, cDCs, and
pDCs. The study used three pathogenic stimuli, Herpex simplex virus 1 (HSV1),
Sendai virus (SeV), and lipopolysaccharide (LPS).

Specific comments

The text is well written, concise, and per se interesting, but I have a few questions for
clarification.
Thank you very much for your high evaluation. We have responded to the points you
raised and hope you recognize the improvements we have made.

1) Can the authors provide quality and purity control data for the virus inocula to
document virus homogeneity? E.g., neither the methods, nor the indicated ref 26
specify if or how HSV1 was purified. Same is true for SeV where the provided ref 34
does not indicate if virus was purified or not. If virus inocula were not purified then it
remains unclear to what extent the effects on the PBMCs described in the study here
were due to virus or some other component in the inoculum. Conditions using
inactivated inoculum might help to clarify this issue.
Thank you for pointing this out and we apologize for the lack of clarity in our
descriptions regarding this point. In this study, we did not purify either HSV-1 or SeV.
Thus, it is possible that something in the supernatant of virus-producing cells (including
viruses) could affect the innate immune responses in PBMCs. However, given that the
use of the supernatants without purification is a conventional virological method, any
unanticipated effects would be much smaller than the effects of viral infection. To make
it clear, we have added a description about this information in the revised manuscript in
Materials and Methods (Lines 509-510, 522-523).

Lines 509-510: “Briefly, Vero cells were infected with HSV-1 and the supernatant was
collected and used without purification.”

Lines 522-523: “Briefly, LLC-MK2 cells were infected with SeV and the supernatant
was collected and used without purification.”

2) What was the infection period? Was it the same for all viruses?
Samples were analyzed at one day post infection. This is a condition shared by all
viruses and stimuli, described in Lines 539-541 (Method: Infection and stimulation) in
the revised manuscript. To emphasize that they are the same conditions, minor

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



corrections have been made to the revised manuscript (Lines 129-133 and Lines 539-
541).

Lines 129-133: “To analyze immune responses to stimuli at single-cell resolution, we
performed scRNA-seq analysis of 16 types of PBMC samples: four mammalian
species (Hs, Pt, Mm, and Ra) versus four conditions (mock infection/stimulation, HSV-
1 infection, SeV infection, and LPS stimulation) using the 10x Genomics Chromium
platform at one day post infection.”

Lines 539-541: “At one day post infection, all types of infected/stimulated PBMCs were
centrifuged, resuspended in PBS, and used for bulk RT–qPCR and scRNA-seq (see
below).”

3) Upon stimuli application, there was a noteable expansion of B cells and a
compression of killer T / NK cells in the bat but not the human samples, as well as
compression of monocytes, the latter observed in all four species. Can the authors
comment on this observation?
Thank you for your valuable suggestion. According to the reviewer’s comment, we
have edited the main text in the revised manuscript as follows (Lines 168-175, 326-
328):

Lines 168-175: “The frequency of monocytes decreased after stimulation in all four
species, whereas the frequency of B cells and killer TNK cells changed differently
among the animal species and stimuli. Upon stimulation, there was generally a notable
increase in B cells and a decrease of killer TNK cells in the bat (and non-human
primates) samples, but not in the human samples. After SeV infection, the frequency of
B cells was decreased in all four species. On the other hand, after HSV-1 infection, the
frequency of B cells was decreased in only humans.”

Lines 326-328: “It is also noteworthy that changes in cell composition differed between
humans and bats (Fig. 1D).”

4) Lines 78-79: I do not think that TLR9 ought to be classified as a cytosolic DNA
sensor. Please clarify.
Thank you for pointing this out. It is true that this wording was incorrect. Therefore, we
fixed the issues in the manuscripts (Lines 80-82).

Lines 80-82: “Cytosolic Extrachromosomal DNAs, a PAMP for DNA viruses, are
recognized by cytosolic DNA sensors, such as (e.g., cGAS, AIM2, and IFI16), and
endosomal DNA sensors (e.g., TLR9)5,6,9 [5, 6, 9].”

5) Line 117: please clarify that the upregulation of proinflammatory cytokines, ISGs and
IFNB1 was measured at the level of transcripts not protein.
Thank you for pointing this out. According to the reviewer’s suggestion, we clarified that
the upregulation of those factors was measured at the level of mRNA transcripts (Lines
127-128).

Lines 127-128: "IFNB1 (Fig. S1A–C) at the level of mRNA transcripts.“

6) Line 244: DNA sensors. Authors report that bats responded well to DNA viruses,
although some of their DNA sensing pathways (e.g., STING downstream of cGAS,
AIM2 or IFI16) were attenuated compared to primates (H sapies, Chimpanzee,
Macaque). And they elute to the dsRNA PRR TLR3. But I am not sure if TLR3 is the
only PRR to compensate for attenuated DNA sensing pathways. The authors might
want to explicitly discuss if other RNA sensors, such as RIG-I-like receptors (RIG-I,
LGP2, MDA5) were upregulated similarly in bats as in primate cells upon inoculation
with HSV1.
Thank you for the important suggestions. As you have pointed out, it is possible that
PRRs other than TLR3 compensates for weak DNA sensing pathways for HSV-1. We
specially mentioned TLR3 in the original manuscript because the importance of human
TLR3 in the response to HSV-1 has been demonstrated (Sato, Kato et al., Nature
Immunology, 2018). However, we agree with your opinion that other possibilities
should also be mentioned and have added them in the revised manuscript (Lines 344-
354).
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Lines 344-354: “An alternative possibility is that the IFN response in response to HSV-
1 infection was triggered by sensing viral molecules other than DNAs: iIt is known that,
in humans and mice, dsRNA sensing by TLR3 plays an important role in responding to
HSV-1 infection26,31. Furthermore Additionally, the Egyptian fruit bat genome encodes
an intact TLR3 gene (NCBI Gene ID: 107510436), and bat immune cells express TLR3
(Fig. 3B). Furthermore, other RNA sensors, such as RIG-I, LGP2, and MDA5, were
upregulated in bat cells similarly as in primate cells upon HSV-1 infection (Fig. 3B).
These data suggest that in bats, bat TLR3 or other RNA sensors in bats may
compensate for the immune responses induced by weakened DNA sensing
pathwaysors, leading to IFN responses to HSV-1 infection.”

7) Is it known how much TLR3 protein is expressed in bat PBMCs under resting and
stimulated conditions? Same question for the DNA and RNA sensor proteins, e.g.,
cGAS, AIM2 or IFI16, RIG-I, LGP2, MDA5, or effector proteins, such as STING.
To our knowledge, there are no publications quantifying the expression of TLR3 or
other sensor genes in bats at the protein level. This is mainly due to the lack of
antibodies recognizing these proteins of bats.

8) Can authors clarify if cGAS is part of the attenuated DNA sensors in the bat samples
under study here? And it would be nice to see the attenuated response of DNA
sensing pathways in the bat samples, as suspected from the literature, including
STING downstream of cGAS, or AIM2 and IFI16.
Thank you for these suggestions. We address these two points as follows:

> Can authors clarify if cGAS is part of the attenuated DNA sensors in the bat samples
under study here?
In a previous study (Xie et al., Cell Host & Microbe, 2018), the cGAS signaling pathway
is reduced by a mutation in STING (not in cGAS), and this mutation is conserved in bat
species including Rousettus aegyptiacus, the bat species analyzed in this study.
Therefore, the cGAS signaling pathway should be reduced in the bat PBMC samples in
this study. Thus, to clarify this point, we modified the text in the revised manuscript
(Lines 335-337).

Lines 335-337: “It is known that two DNA sensing pathways mediated by cGAS-STING
pathway [16]16 and PYHIN proteins, including AIM2 and IFI16 [17]17, are dampened
in bats, including Egyptian fruit bats.”

> And it would be nice to see the attenuated response of DNA sensing pathways in the
bat samples, as suspected from the literature, including STING downstream of cGAS,
or AIM2 and IFI16.
We agree this is a good idea. Unfortunately, it is difficult to evaluate the activity of each
DNA sensing pathway using the limited number of bat samples in this study. Further
studies are required.

9) What are the expression levels of IFN-I and related genes in the bat cells among the
different stimuli?
Thank you very much for your constructive comments. We agree it is important to
examine the expression level of IFN-I itself when discussing innate immune responses.
Unfortunately, however, we could not obtain the expression level of IFN-α genes in bat
samples because IFN-α genes were not included in the gene annotations of Rousettus
aegyptiacus (both RefSeq and Bat1K). In addition, although we tried to measure the
expression level of IFN-α genes in bat samples using the custom gene annotation
including bat IFN-α genes, we failed to detect the expression of these genes (Figure
R1A–F). Therefore, we did not focus on the expression of IFN-I genes in this study.
Instead, we discussed the expression level of ISGs as a surrogate for the activity of
IFN-I pathway as shown in Fig. 3A. We added this explanation in Results in the revised
manuscript (Lines 261-268).

Lines 261-268: “To test this hypothesis, we analyzed the IFN response upon HSV-1 (a
DNA virus) infection. However, the expression levels of IFN-α genes were not
examined because they were not annotated in the transcript model for the Egyptian
fruit bat used in this study, and the expression of IFN-β genes were too low. Thus,
even though the expression levels of IFN-I is the primary factor to examine the activity

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



of the IFN response, we instead by analyzing analyzed the induced levels of
“coremamm ISGs”—a set of genes that are commonly induced by type I IFNs across
mammals that were defined in a previous study 25 [28].”

Note: Although HSV-1-infected bat sample showed high expression levels of IFNA3
and IFNB1 (Figure R1E), only one cell expressed most of IFNA3 and IFNB1 (Figure
R1F). Therefore, this cell was determined to be an outlier.

Figure R1. Difficulties in quantitative analysis of expression levels of IFN-α in bat
samples
(A) Schematic of the IFN-I loci near the KLHL9 locus, originated from Zhou et al.
[PMID: 26903655]. (B) Information extracted from the transcript model (gtf file) of
Rousettus aegyptiacus in the initial manuscript. (C) Results of blastn for IFN-α
sequences near the KLHL9 locus. Query: Rousettus aegyptiacus IFN-α (GenBank:
AB259762.1). Subject: mRouAeg1.p “NW_023416306.1:61702666-62433637”. Red
indicates the alignment patterns with high mapping scores. (D) Information extracted
from custom gene annotation used in E and F. (E, F) Results of mapping and counting
by CellRanger using custom gene annotation. (E) Sum of counts for each bat sample.
(F) Distribution of counts per cell for IFNA3 (top) and IFNB1 (bottom) in HSV-1-infected
bat sample.

10) Technical point: where can the raw scRNA-seq data be found?
As stated in Data and code availability, the raw scRNA-seq data is found in NCBI GEO
(GSE218199). To clarify this, we modified the text in the revised manuscript (Lines
837-838).

Lines 837-838: “The raw and processed Ssingle-cell RNA-seq data have been
deposited in the Gene Expression Omnibus (GEO) database (GSE218199) and are
publicly available.”
 
Reviewer #2: This paper gives a good introduction on bats as reservoirs of several viral
infections, which studies have shown is due to the uniqueness of their immune system.
They and others suggest that bats immune system is dampened exhibiting tolerance to
various viruses. This gives the study a good rationale as to why study the bats immune
system, compared to other mammals. They also give a good rationale as to why they
used single-cell sequencing, to allow the identification of various cell types and the
differences in these cell types. From their finding the main conclusions are that
differences in the host species are more impactful; than those among the different
stimuli.  They also suggest that bats initiate an innate immune response after infection
with DNA viruses through an alternative pathway. For example, the induction dynamics
of PRRs seems to be different in their dataset. They also suggest this could be due to
the presence of species-specific cellular subsets.

1. Interesting model system and a good comparison of bats with other mammals.
2. Good technique in using single-cell sequencing, with a clear rationale as to why it
was chosen. This advances knowledge on what was already known about bats
immune system, but the species-specific cellular subsets are new.
3. Interesting technique to go through the bulk transcriptomic data in four species and
four conditions. This allowed findings of the most important genes/pathways.
4. Good rationale / flow of experiments from one to another
5. I liked that they investigated stimuli from different pathogens , including DNA, RNA
virus and bacteria and still show that bats had a different immune system, in the
different stimuli.
Thank you for your appreciation on various points. Based on your comments, we have
made modifications to improve the manuscript.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Minor comments
1. Do they speculate this occurrence in is this just in Egyptian Fruit bats or all species
of bats?
Although we consider that the differences between Rousettus aegyptiacus and
primates observed in this study mainly originate from those between bats and
primates, we agreed that there should be differences among bat species. To clarify this
point, we added some descriptions to the Discussion (Limitations of the study) in the
revised manuscript (Lines 407-410).

Lines 407-410: “Moreover, because the results of this study rely on an analysis using a
single bat species, the Egyptian fruit bat, it is unclear whether the observed bat-specific
characteristics are conserved across bat species.”

2. Mentioned in the introduction why they used the egyptian fruit bats - which are a
model organism, but this could help people who are not in this field understand exactly
why use these bats. Advantages? Location? Proximity to the various viruses based on
the fact they are mostly found in endemic regions such as Africa etc.
Thank you for mentioning this important point. Indeed, the description of the reason for
using the Egyptian Fruit bats was insufficient. The first reason why we selected this bat
species is that they were available because they were captive bred. The second
reason is that they are a species known to be asymptomatically infected with human
pathogenic viruses, such as Marburg virus. We have stated this point in the
Introduction and Results in the revised manuscript (Lines 107-111 and Lines 119-122).

Lines 107-111: “Here, we used peripheral blood mononuclear cells (PBMCs) from four
mammalian species including the Egyptian fruit bats and three pathogenic stimuli and
conducted single-cell RNA sequencing (scRNA-seq) analysis to elucidate the
differences in innate immune responses against pathogenic stimuli.”

Lines 119-122: “In this study, the Egyptian fruit bat was used as a representative model
organism for bat species because this bat species is bred and available in captivity and
is known as natural host of human pathogenic viruses, such as Marburg virus [3].”

3. Can they include viral load in each species?
"Viral load" was not quantified, but the amount of RNA in the collected samples was
quantified by RT-qPCR (Fig. S1B–C).

4. It is not clear which scRNAseq tools were used for data analysis in identifying the
types of cells. Or did they use already established database based on markers?
Thank you for this comment. Details of the method can be found in the Cell Annotation
section of Methods. In short, this study uses Seurat and Azimuth to annotate each
cluster resulting from unsupervised clustering based on several pieces of information
(Fig. S2A–F). In Azimuth, we also use reference data created based on markers
(https://azimuth.hubmapconsortium.org). However, since it was written only in Methods
not written in Results, we have now added a description in Results in the revised
manuscript (Lines 143-145).

Lines 143-145: “We characterized the cellular composition of PBMCs from each
mammalian species by annotating the cell type of individual single cells using tools
available in Seurat [23, 24] and Azimuth [25] (See Methods).”
 
Anonymous Reviewer: I find after reading the MS that under my normal reviewer
conditions I would have no choice but to reject the manuscript.

The structure and design of the MS is ok normally however the actual data has
problems in that there is only n=1 sample. For each species (n=4) and each condition
(n=4) there are indeed n=16 lots of single cell data. This however means there isn't
even a single repeat. There is so much variation within bats, let alone between
treatments or between species that simply n=1 for any scientific experiment is not
acceptable.  Further there are 40,717 cells detected between 16 separate experiments
leaving a very low number of cells.

If you look at the raw data for fig S1D, you can see the cell number for bats is
incredibly low.
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Rousettus_aegyptiacusMockB1549
Rousettus_aegyptiacusMockNaiveT541
Rousettus_aegyptiacusMockKillerTNK1960
Rousettus_aegyptiacusMockMono1035
Rousettus_aegyptiacusMockcDC57
Rousettus_aegyptiacusMockpDC10
Rousettus_aegyptiacusHSV1B767
Rousettus_aegyptiacusHSV1NaiveT166
Rousettus_aegyptiacusHSV1KillerTNK347
Rousettus_aegyptiacusHSV1Mono71
Rousettus_aegyptiacusHSV1cDC3
Rousettus_aegyptiacusHSV1pDC2
Rousettus_aegyptiacusSeVB1160
Rousettus_aegyptiacusSeVNaiveT48
Rousettus_aegyptiacusSeVKillerTNK116
Rousettus_aegyptiacusSeVMono137

Gigascience prides itself on high-quality datasets but this set is way too minimal. I feel
the data quality is well below GigaScience's level. Its a real pity as the manuscript is
otherwise written and presented well - with a logical flow and decent structure for
analysing the data.
Regarding biological replicates:
We agree with the importance of biological replicates, but it is cost-prohibitive to
perform scRNA-seq for 16 samples with replicates. For clarity, we have now added the
fact that we did not have biological replicates in the Limitations of the study section
(Line 410).

Line 410: “Furthermore, we did not perform biological replicates of scRNA-seq in this
study.”

Regarding your point about low cell numbers:
The average cell numbers were about 2,500 cells/run after quality control (QC).
Technically, it is possible to obtain higher cell numbers (e.g. more than 10,000
cells/run) before QC, but the higher the value, the higher the percentage of cell
multiplets. That’s why in this study, we targeted a concentration preparation of 5,000
cells/run before QC. Furthermore, since this study used stimulation by viral infection
and cells from animals other than humans, it was expected that the value would be
lower than the theoretical value. Considering these factors, we believe that the average
of 2500 cells/run after QC, which is 1/2 of the target value before QC, is sufficiently
high. Based on these considerations and your feedback, we have now added
descriptions of conditions (cell concentration and number of target cells) to Methods in
the revised manuscript (Lines 557-558).

Lines 557-558: “Before loading, cell numbers and viability were confirmed. To acquire
5,000 cells recovery, 8,000 cells were loaded.”

There are problems with the methods aswell when the authors made certain decisions
without any explanation or discussion (or reference for similar) e.g. "Cells with
800–5,000 genes/cell or 1,200–25,000 counts/cell were extracted."  "Second, we
removed nontargeted cells in the present study." "Finally, regarding genes/cell and
counts/cell values, cells with >3 |Z score| were excluded.". This could then bias the
data (and indeed seems to whereby the majority of lower-count cells for SeV are
removed before and after QC - this obviously suggests Sev-infection reduces gene
transcription in cells but these cells are filtered out.
Thank you for pointing this out. The cell filtering pipeline and its threshold have been
set to ensure valid comparisons. As you mentioned, there was a group of cells with
significantly low genes/cell and counts/cell values in Bat SeV. One possible
interpretation of this could be that SeV infection may suppress the gene expression of
these cells. However, it is reasonable to exclude these cells in which lower number of
genes are detected from the analysis because it would be problematic to perform the
analysis if these cells are included in the downstream analysis. Thus, we added the
explanation why these cells were excluded in Results (Lines 133-139) and Methods
(Lines 637-649) in the revised manuscript. Next, the cell types excluded from the
analysis are erythrocytes, platelets, hematopoietic stem cells, and innate lymphoid

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



cells. For erythrocytes and platelets, we removed them because these cell types are
not members of PBMCs. Hematopoietic stem cells and innate lymphoid cells were
excluded because they are not major cell types when discussing innate immune
responses in PBMCs. We have also now added an explanation about this in Methods
in the revised manuscript (Lines 637-649).

Lines 133-139: “Next, quality control (QC) was performed to exclude both cells with
lower data quality and cells not targeted in this study (Fig. S1D–G) (See Methods).
Before QC, there was a group of cells with low genes-per-cell and counts-per-cell in
PBMCs of SeV-infected bats (Fig. S1D–E). Although one possible interpretation of this
could be that SeV infection may suppressed the gene expression in these cells, these
cells were excluded to ensure the integrity of the downstream quantitative analysis.”

Lines 637-649: “The thresholds were determined based on the distributions of
genes/cell and counts/cell before QC (Fig. S1D–E). Second, we removed nontargeted
cells in the present study. We annotated the cell type of individual cells using Azimuth
(v0.4.3) [25], a reference-based cell annotation prediction program
(https://azimuth.hubmapconsortium.org), and then, cells annotated as erythrocytes,
platelets, hematopoietic stem cells, or innate lymphoid cells, and platelets were
excluded as nontargeted cells in the present study. This is because erythrocytes and
platelets are probably residuals after experimental PBMC extraction, and
hematopoietic stem cells and innate lymphoid cells are not the major cell types in the
analysis of innate immune responses using PBMCs. In this step, the gene annotation
“genes shared with humans” (see Gene annotation and ortholog information) for each
animal species was used. Finally, regarding genes/cell and counts/cell values, cells
with >3 |Z score| were excluded as outliers.”

The very limited dataset then also has different methods for PBMC extraction applied
to different species (particularly whereby the anaesthesia used in chimpanzee is
known to affect profile of PBMCs). Yet these cells are all dumped together for
comparisons of human only or bat only genes.
As you pointed out, the method of obtaining PBMCs differs from animal to animal.
However, this is in accordance with the characteristics of the animals, so it is
unavoidable from an ethical point of view. Also, the main analysis is about the
differences between bats and mammals and does not mention chimpanzee-specific
characteristics. Furthermore, the results that chimpanzee cells showed similar
expression patterns to those of humans and different from those of macaques and bats
are consistent with the fact that chimpanzees are evolutionally close to humans. The
results also support the idea that anesthesia did not have a significant effect. In
conclusion, we believe that the method of PBMC acquisition in this study was
appropriate.

There are other minor problems whereby the count normalization (post-transformation)
is merged for all 4 species but after that differen settings (by species) a used in
FindClusters (the idea of normalization should overcome this and allow similar settings
to be used).
Because the hyperparameters of FindClusters are particularly sensitive to cell number,
we used the hyperparameters that were adjusted for the cell number in each animal in
this study.

They also perform statistics via FIshers exact test (despite n=1) for GO analysis in a
rather unusual and creative way for GO of X against all others (rather than mock vs
treatment) due to the lack of replicates.
In this study, we used an overlap-based (over-representation-based) GO enrichment
analysis, which tests whether the list of genes with a specific GO term are significantly
overlapped with the list of genes of interest using Fisher’s exact test. In our knowledge,
this is a widely used method of GO enrichment analysis as described in Zhao and
Rhee et al. (https://doi.org/10.1016/j.tig.2023.01.003). In Fig. 2E, GO term enrichment
analysis was performed to check which GO terms are enriched in each gene list
(ALL_high, Virus_high, TNK_low, etc.). In Fig. 4F and 4H, GO term enrichment analysis
was performed on the list of DEGs in RaC5 and RaC7. Given the nature of GO term
enrichment analysis, the issue of biological replicates is irrelevant because the number
of genes (not the number of samples) is considered by Fisher’s exact test in this
context.
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Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Yes
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Abstract 39 

 40 

Background 41 

Bats harbor various viruses without severe symptoms and act as their natural 42 

reservoirs. The tolerance of bats against viral infections is assumed to originate from 43 

the uniqueness of their immune system. However, how immune responses vary 44 

between primates and bats remains unclear. Here, we characterized differences in the 45 

immune responses by peripheral blood mononuclear cells to various pathogenic 46 

stimuli between primates (humans, chimpanzees, and macaques) and bats (Egyptian 47 

fruit bats) using single-cell RNA sequencing. 48 

 49 

Results 50 

We show that the induction patterns of key cytosolic DNA/RNA sensors and antiviral 51 

genes differed between primates and bats. A novel subset of monocytes induced by 52 

pathogenic stimuli specifically in bats was identified. Furthermore, bats robustly 53 

respond to DNA virus infection even though major DNA sensors are dampened in bats. 54 

 55 

Conclusions 56 

Overall, our data suggest that immune responses are substantially different between 57 

primates and bats, presumably underlying the difference in viral pathogenicity among 58 

the mammalian species tested. 59 

 60 

Keywords: innate immunity; mammal; virus infection; single-cell RNA-sequencing; 61 

tensor  62 



Background 63 

Although a virus can infect various animal species, the pathogenicity of the infection 64 

can differ among host species. For example, Old World monkeys, including rhesus 65 

macaques (Macaca mulatta), are naturally infected with Cercopithecine herpesvirus 1 66 

(also known as B virus) without any observable disorders, while humans (Homo 67 

sapiens) exhibit severe disorders after infection [1]. Bat species are naturally infected 68 

with a variety of viruses and behave as natural reservoirs of human pathogenic viruses 69 

[2]. For example, Marburg virus infection causes severe symptoms in humans but not 70 

in Egyptian fruit bats (Rousettus aegyptiacus), a putative natural host of this virus [3]. 71 

One possible factor that could define the differences in viral pathogenicity among host 72 

species is the difference in innate immune responses. For example, a previous study 73 

reported that Egyptian fruit bats lack the induction of proinflammatory cytokines, 74 

including CCL8, FAS, and IL6, which are related to disease severity in humans, upon 75 

Marburg virus infection, suggesting that the lack of cytokine induction is one of the 76 

reasons why Egyptian fruit bats exhibit asymptomatic infection with Marburg virus [4]. 77 

Pathogen sensing is the initial step in triggering innate immune signaling. In a 78 

broad range of animals, including vertebrates, pathogen-associated molecular 79 

patterns (PAMPs) are recognized by pattern recognition receptors (PRRs) to induce 80 

subsequent immune responses [5–8]. In humans and mice (Mus musculus), double-81 

stranded RNAs (dsRNAs), a PAMP for RNA viruses, are recognized by RNA sensors, 82 

such as RIG-I, MDA5, LGP2, TLR3, and TLR7/8 [5, 6]. Extrachromosomal DNAs, a 83 

PAMP for DNA viruses, are recognized by cytosolic DNA sensors (e.g., cGAS, AIM2, 84 

and IFI16) and endosomal DNA sensors (e.g., TLR9) [5, 6, 9]. Lipopolysaccharide 85 

(LPS), a PAMP for bacteria, is recognized by TLR4 [5, 6, 10]. Once PAMPs are 86 

recognized by PRRs, type I interferons (IFNs) are produced, leading to the induction 87 

of IFN-stimulated genes (ISGs), which include many antiviral genes [5, 6]. 88 

In contrast to the similarities in the immune system between humans and mice, 89 

the immune system of bats is assumed to be quite different from that of humans in 90 

various aspects [11–13]. Genome analysis of Egyptian fruit bats showed expansion 91 

and diversification of immune-related genes, including type I IFN genes [14]. 92 

Transcriptome analysis showed that type I IFNs in the Australian black flying fox 93 

(Pteropus alecto) are constitutively expressed in unstimulated tissues, leading to the 94 

constitutive expression of ISGs [15]. These observations suggest that immunity in bats 95 

may be stronger than that in other mammals. In contrast, some studies have proposed 96 



that immune responses in bats are dampened, resulting in bats exhibiting stronger 97 

tolerance to various viruses [12, 14, 16]. In particular, it is known that critical molecules 98 

involved in viral DNA sensing, such as cGAS, AIM2, and IFI16, are dampened or 99 

genetically lost in some bat species, including Egyptian fruit bats [16, 17]. These 100 

differences in innate immunity between humans and bats could be one of the reasons 101 

why viral pathogenicity differs between these two mammals. 102 

Previous works have highlighted the uniqueness of the bat immune system 103 

using genomic analysis [14, 15, 17], transcriptome analysis [4, 18–20], and molecular 104 

biological experiments that reconstituted a part of the bat immune system in cell 105 

culture systems [16, 21, 22]. However, it remains unclear how and to what extent the 106 

innate immune response to pathogenic stimuli varies among mammals. Particularly, it 107 

is unclear how different innate immune responses are elicited by viral infections in 108 

different cell types in each mammal. Here, we used peripheral blood mononuclear 109 

cells (PBMCs) from four mammalian species including the above-mentioned Egyptian 110 

fruit bats and three pathogenic stimuli and conducted single-cell RNA sequencing 111 

(scRNA-seq) analysis to elucidate the differences in innate immune responses against 112 

pathogenic stimuli. 113 

 114 

Results 115 

 116 

Experimental design 117 

To illuminate the differences in immune responses to infectious pathogens among 118 

mammalian species, we isolated PBMCs from four mammals including humans (Homo 119 

sapiens, Hs), chimpanzees (Pan troglodytes, Pt), rhesus macaques (Macaca mulatta, 120 

Mm), and Egyptian fruit bats (Rousettus aegyptiacus, Ra) (Fig. 1A). In this study, the 121 

Egyptian fruit bat was used as a representative model organism for bat species 122 

because this bat species is bred and available in captivity and is known to be a natural 123 

host of human pathogenic viruses, such as Marburg virus [3]. These PBMCs were 124 

inoculated with herpes simplex virus type 1 (HSV-1; a DNA virus), Sendai virus (SeV; 125 

an RNA virus), or lipopolysaccharide (LPS; a proxy for bacterial infection). We verified 126 

that these PBMCs could be infected with and/or respond to these viruses and LPS 127 

stimulation by quantifying viral RNAs and the upregulation of proinflammatory 128 

cytokines (e.g., IL1B and IL6), ISGs (e.g., EIF2AK2 and DDX58) and IFNB1 (Fig. 129 

S1A–C) at the level of mRNA transcripts. 130 



To analyze immune responses to stimuli at single-cell resolution, we performed 131 

scRNA-seq analysis of 16 types of PBMC samples: four mammalian species (Hs, Pt, 132 

Mm, and Ra) versus four conditions (mock infection/stimulation, HSV-1 infection, SeV 133 

infection, and LPS stimulation) using the 10x Genomics Chromium platform at one day 134 

post-infection. Next, quality control (QC) was performed to exclude both cells with 135 

lower data quality and cells not targeted in this study (Fig. S1D–G) (See Methods). 136 

Before QC, there was a group of cells with low genes-per-cell and counts-per-cell in 137 

PBMCs of SeV-infected bats (Fig. S1D–E). Although one possible interpretation of 138 

this could be that SeV infection may have suppressed the gene expression in these 139 

cells, these cells were excluded to ensure the integrity of the downstream quantitative 140 

analysis. After filtering low-quality cells, a total of 40,717 cells from the 16 samples 141 

were used in the following analysis. 142 

 143 

The cellular composition of PBMCs from primates and bats 144 

We characterized the cellular composition of PBMCs from each mammalian species 145 

by annotating the cell type of individual single cells using tools available in Seurat [23, 146 

24] and Azimuth [25] (See Methods). To establish a common classification system for 147 

the cells from the different mammalian species, we first identified cell types present in 148 

multiple species (Fig. 1B and 1C). As cell types detected in multiple species, naïve B 149 

cells, non-naïve B cells (including memory B cells and intermediate B cells), naïve 150 

CD4+ T cells, non-naïve CD4+ T cells (including central memory CD4+ T cells, effector 151 

memory CD4+ T cells, proliferating CD4+ T cells, and regulatory T cells), naïve CD8+ 152 

T cells, non-naïve CD8+ T cells (including central memory CD8+ T cells, effector 153 

memory CD8+ T cells, and proliferating CD8+ T cells), natural killer (NK) cells, 154 

mucosal-associated invariant T cells (MAITs), monocytes (Monos), conventional 155 

dendritic cells (cDCs), and plasmacytoid DCs (pDCs) were identified (Fig. 1C). Known 156 

marker genes for each cell type in humans were detected in the corresponding cell 157 

type in the unstimulated samples from the other animal species (Fig. S2G). Although 158 

most cell types were detected in all four species investigated, naïve CD8+ T cells and 159 

MAITs were undetectable in bat PBMCs, presumably because the cell numbers of 160 

these populations were relatively low in bats and/or the transcriptomic signatures of 161 

naïve CD4+ T cells and non-naïve CD8+ T cells were too similar in bats (hereafter we 162 

simply referred to Egyptian fruit bats as “bats”) (Fig. 1C). This result was consistent 163 

with a previous study, in which clear clusters of naïve CD8+ T cells and MAITs were 164 



not detected [26]. To establish a cellular classification system for the comparative 165 

transcriptome analysis, we defined six species-common cell types, namely, B cells, 166 

naïve T cells, killer TNK cells, Monos, cDCs, and pDCs, according to similarities in 167 

expression patterns (Fig. S2H). 168 

The ratio of the six cell types exhibited different changes upon exposure to the 169 

stimuli in the different species (Fig. 1D). The frequency of monocytes decreased after 170 

stimulation in all four species, whereas the frequency of B cells and killer TNK cells 171 

changed differently within and across the animal species. Upon stimulation, there was 172 

generally a notable increase in B cells and a decrease of killer TNK cells in the bat 173 

(and non-human primates) samples, but not in the human samples. 174 

 175 

Immune response differs largely among animal species 176 

To describe the differences in immune responses to various stimuli in specific cell 177 

types among animal species, we first calculated the average expression levels of 178 

appropriate genes in each condition (4 animal species × 4 stimuli × 6 cell types = 96 179 

conditions). Using this “pseudobulk” transcriptome dataset, we first investigated which 180 

axis (i.e., animal species, stimulus, and cell type) was the most impactful element in 181 

shaping the expression patterns of immune cells. Thereby, we calculated the fold-182 

change (FC) values of gene expression levels between unstimulated and 183 

corresponding stimulated conditions and performed principal component analysis 184 

(PCA) on the FC values. Hierarchical clustering analysis was subsequently performed 185 

according to principal components (PCs) 1–30. The transcriptome data branch 186 

according to the animal species and then branch according to the cell type followed 187 

finally by the stimulus (Fig. 1E). This suggests the difference in host species is the 188 

more impactful element in shaping the immune system, having a greater impact than 189 

the type of stimulus and cell type. In particular, bat PBMCs exhibited different 190 

transcriptomic patterns irrespective of the type of stimulus and cell type compared to 191 

the PBMCs from the other three species used. These results suggest that bats 192 

respond to pathogens in a different manner than primates. 193 

 194 

Extraction of species-specific immune responses 195 

We next characterized the differences in the immune responses to pathogenic stimuli 196 

among animal species. The FC values of our pseudobulk transcriptome dataset were 197 

represented by a four-mode tensor (4 animal species × 3 stimuli × 6 cell types × 7557 198 



orthologous genes). To characterize this extraordinary high-dimensionality 199 

transcriptome dataset, we utilized Tucker decomposition, a method of tensor 200 

decomposition (Fig. 2A). In this analysis, we excluded cDC and pDC data due to many 201 

missing values. Tucker decomposition generated a core tensor and four-factor 202 

matrices (A1–A4) related to the four axes (animal species, stimulus, cell type, and 203 

gene). For example, the factor matrix A1 (for host species) included three latent factors 204 

(L1_1, L1_2, and L1_3), which could be regarded to represent common, bat-specific, 205 

and macaque-specific expression patterns, respectively (Fig. 2B). 206 

To characterize species-specific immune responses, we developed a gene 207 

classification system according to the pattern of the species-associated latent factor 208 

in the tensor decomposition framework. First, we calculated the product of a core 209 

tensor and the three-factor matrices A2 (for stimulus), A3 (for cell type), and A4 (for 210 

gene) (Fig. 2C and Fig. S3A–B). Consequently, we obtained three cubic datasets 211 

with three axes—stimulus, cell type, and gene. These cubic data were related to L1_1 212 

(for the common factor), L1_2 (for the bat-specific factor), or L1_3 (for the macaque-213 

specific factor). Subsequently, we classified the genes into 10 categories according to 214 

their expression patterns in each cubic dataset (the results for the bat-specific (L1_2) 215 

and other factors (L1_1 and L1_3) are shown in Fig. 2D, Fig. S3G, and Fig. S3I, 216 

respectively). In the factor matrix A2 (for stimulus), the values for the latent factors 217 

related to HSV-1 and SeV were similar (Fig. S3A). Therefore, these two categories 218 

were integrated into the category “Virus” in the gene classification. Additionally, two 219 

cell type categories, NaiveT and KillerTNK, were integrated into the category “TNK” 220 

(Fig. S3B). The pattern for raw FC values supported that the gene classification by 221 

the tensor decomposition framework succeeded in extracting the characteristic 222 

patterns of gene expression alterations upon pathogenic stimuli (Fig. S3J–L). 223 

 224 

Differential dynamics of pathogen sensing and immune responses 225 

To highlight the uniqueness of immunity in bats compared to that in primates, we 226 

focused on the expression pattern represented by the bat-specific factor (L1_2) and 227 

performed Gene Ontology (GO) analysis on the 10 gene categories (Fig. 2E). In the 228 

gene category “ALL_high”, which included genes upregulated particularly in bats 229 

regardless of the stimulus and cell type, GO terms related to innate immune responses, 230 

such as IFN signaling, DDX58/IFIH1-mediated induction of IFN, RIG-I like receptors 231 



(RLRs) signaling pathways, and the antiviral mechanism by ISGs, were over-232 

represented. 233 

To dissect the “ALL_high” genes in the bat-specific factor, we further extracted 234 

the genes that belonged not only to the “ALL_high” category in the bat-specific factor 235 

but also to that in the common factor (L1_1). This fraction represented genes that were 236 

upregulated by stimuli in all species but whose induction levels were highest in bats. 237 

These genes included various PPRs, such as RIG-I-like receptors (RLRs) (RIG-I, 238 

LGP2, and MDA5) and cGAS, a DNA sensor, suggesting that these genes were 239 

upregulated to higher levels in bats than in the other species across the cell types and 240 

stimuli (Fig. 2F). There are two possible scenarios that could potentially explain these 241 

higher FC values observed in bats. One possibility is that expression levels of these 242 

genes after stimulation are higher than in primates. The second possibility is that basal 243 

expression levels of these genes in bats are lower than those in primates. Therefore, 244 

we calculated the relative expression levels of these genes in bats compared to 245 

humans and showed that the basal expression levels of these genes were lower in 246 

bats than in humans (Fig. 2G). These results suggest that the induction dynamics of 247 

these PRRs in bats are likely different from those in primates, possibly leading to the 248 

differences in the induction of immune responses. 249 

 250 

Robust immune responses to a DNA virus in bats 251 

As critical DNA sensors, such as cGAS, AIM2, IFI16, and TLR9, are dampened or 252 

genetically lost in bat species [16, 17, 27], it has been hypothesized that bats, including 253 

Egyptian fruit bats, cannot efficiently activate innate immune responses against DNA 254 

viruses. To test this hypothesis, we analyzed the IFN response upon HSV-1 (a DNA 255 

virus) infection. However, the expression levels of IFN-α genes were not examined 256 

because they were not annotated in the transcript model for the Egyptian fruit bat used 257 

in this study, and the expression of IFN-β genes were too low. Thus, even though the 258 

expression levels of IFN-I is the primary factor to examine the activity of the IFN 259 

response, we instead analyzed the induced levels of “coremamm ISGs”—a set of genes 260 

that are commonly induced by type I IFNs across mammals that were defined in a 261 

previous study [28]. Intriguingly, we found that the coremamm ISGs were upregulated 262 

upon HSV-1 infection in most cell types in bats (Fig. 3A). The induced levels were 263 

comparable to those induced by SeV (an RNA virus) infection and higher than those 264 

induced by LPS stimulation. Furthermore, the induced levels in bats were comparable 265 



to those in primates. This suggests that immune cells in bats can sense and respond 266 

to HSV-1 infection even though critical DNA sensors are dampened. 267 

To address the possibility that pathogen sensors other than DNA sensors 268 

contribute to the sensing of HSV-1 infection in bats, we examined the expression 269 

levels of various PRRs (Fig. 3B). The expression of some PRRs, including TLR3, a 270 

dsRNA sensor associated with HSV-1 sensing in humans and mice [29], was detected 271 

not only in primates but also in bats, suggesting the possibility that these PRRs 272 

compensate in the response to HSV-1 infection in bats (see Discussion). 273 

 274 

 275 

Identification of bat-specific subsets of monocytes 276 

Next, we investigated cellular subsets within the cell types that are characteristic in 277 

bats to explain the differences in immune responses among the species. We 278 

particularly searched for cellular subsets that specifically appeared after pathogenic 279 

stimulus exposure in each species according to the dimensionality reduction analysis 280 

of transcriptome data. In humans, chimpanzees, and macaques, no subset appeared 281 

in any cell type after stimulation (Fig. S4A). Similarly, such subsets were not identified 282 

in T/NK or B cells in bats. In contrast, we found that two subsets of bat monocytes 283 

(referred to as Clusters 5 and 7) specifically appeared after stimulation (Fig. 4A). To 284 

validate whether these subsets (Clusters 5 and 7) are unique in bats, we identified 285 

marker genes for these clusters and subsequently examined whether the marker 286 

genes were expressed in monocytes from the other animal species. The marker genes 287 

for Cluster 5 (referred to as C5 markers) were not highly expressed in any cluster of 288 

monocytes from primates (Fig. 4B). Furthermore, high expression levels of C5 289 

markers in bat monocytes were found only after stimulation. This suggested that 290 

Cluster 5 was not only bat-specific but also specifically induced by pathogenic stimuli. 291 

Unlike the C5 markers, the marker genes for Cluster 7 (C7 markers) were highly 292 

expressed not only in bat Cluster 7 but also in some monocytes in primates (Fig. 4C). 293 

Although cells with higher expression of C7 markers were induced upon stimulation in 294 

both bats and primates, these cells in primates did not form a separate cluster similar 295 

to Cluster 7 in bats (Fig. S4B). Furthermore, the proportions of Clusters 5 and 7 296 

differed depending on the stimulus: HSV-1-infected and LPS-stimulated samples 297 

showed the highest frequencies of Clusters 5 and 7, respectively (Fig. 4D). 298 



To characterize these two clusters, we identified differentially expressed genes 299 

(DEGs) in Clusters 5 and 7 compared to the other clusters of bat monocytes. 300 

According to GO analysis, Cluster 5 is characterized by lower expression of ISGs (Fig. 301 

4E, 4F). Additionally, Cluster 5 highly expresses known suppressors of the 302 

inflammatory response, such as DUSP1, DUSP5, and SOCS2 [30–32]. On the other 303 

hand, Cluster 7 can be characterized by a higher expression of various cytokines 304 

related to chemotaxis (Fig. 4G), including CXCL6, IL18BP, CXCL8, CCL2, CCL8, 305 

CCL13, CCL5, CXCL10, IL15, and IL4I1 (MSigDB [33]: GO:0060326) (Fig. 4G, 4H). 306 

Overall, we established that there are two unique subsets of bat monocytes with 307 

different characteristics (see Discussion).  308 



Discussion 309 

Differences in viral pathogenicity among host species are thought to be attributed to 310 

differences in immune responses against viral infections among the species [34]. 311 

However, it remains unclear how immune responses, particularly innate immunity 312 

against viral infections, differ among host species. In the present study, we performed 313 

scRNA-seq on 16 types of PBMC samples, derived from a combination of four host 314 

species and four infection conditions (Fig. 1A), and showed that the differences in the 315 

immune responses among the host species were more impactful than those among 316 

both the stimuli and the cell types (Fig. 1E). In particular, the transcriptomic changes 317 

resulting from pathogenic stimulation in bats differed from those in primates. It is also 318 

noteworthy that post-stimuli changes in the ratio of cell types differed between humans 319 

and bats (Fig. 1D). For further analysis, we established a bioinformatic pipeline to 320 

characterize species-specific immune responses from transcriptome profiles with 321 

extraordinarily high dimensions (4 animal species × 3 stimuli × 4 cell types × 7,557 322 

orthologous genes) (Fig. 2A). We illuminate differences in innate immune systems 323 

among mammalian species that partly explain the differences in viral pathogenicity 324 

among host species. 325 

 It is known that two DNA sensing pathways mediated by cGAS-STING pathway 326 

[16] and PYHIN proteins, including AIM2 and IFI16 [17], are dampened in bats, 327 

including Egyptian fruit bats. In addition, a previous study using a cell line derived from 328 

big brown bats (Eptesicus fuscus) suggested that the TLR9-mediated DNA sensing 329 

pathway is also weakened in bats [27]. Based on these observations, it was 330 

hypothesized that the ability to sense DNA virus infection is weakened in bats [12, 13]. 331 

However, we showed that bat PBMCs robustly induced IFN responses upon infection 332 

with the DNA virus HSV-1 (Fig. 3A). This suggests that bats can initiate an innate 333 

immune response after infection with DNA viruses (at least HSV-1) and that bats have 334 

another pathway to sense DNA viruses. An alternative possibility is that the IFN 335 

response in response to HSV-1 infection was triggered by sensing viral molecules 336 

other than DNAs. It is known that, in humans and mice, dsRNA sensing by TLR3 plays 337 

an important role in responding to HSV-1 infection [29, 35]. Additionally, the Egyptian 338 

fruit bat genome encodes an intact TLR3 gene (NCBI Gene ID: 107510436), and bat 339 

immune cells express TLR3 (Fig. 3B). Furthermore, other RNA sensors, such as RIG-340 

I, LGP2, and MDA5, were upregulated in bat cells similarly as in primate cells upon 341 

HSV-1 infection (Fig. 3B). These data suggest that TLR3 or other RNA sensors in bats 342 



may compensate for weakened DNA sensing pathways, leading to IFN responses to 343 

HSV-1 infection. 344 

 To characterize the bat-specific innate immune responses based on ultrahigh-345 

dimensionality transcriptome data (4 animal species × 4 stimuli × 6 cell types × 7,557 346 

orthologous genes), we established an analytical framework utilizing tensor 347 

deconvolution (Fig. 2A). This framework could i) extract a species-specific effect on 348 

gene expression changes, ii) compare the effects among the cell types and the stimuli, 349 

and iii) classify genes according to the differential pattern of a species-specific effect 350 

among the cell types and the stimuli. Using this framework, we found that the 351 

expression levels of key DNA and RNA sensors, including cGAS, RIG-I, MDA5, and 352 

LGP2, were highly induced in bats compared with primates, regardless of the cell type 353 

or stimulus (Fig. 2F). Furthermore, the basal expression levels of these PRRs in bats 354 

were lower than those in humans (Fig. 2G). On the other hand, after stimulation, the 355 

expression levels of these PRRs in bats were comparable to those in humans. These 356 

results suggest that the induction dynamics of these PRRs in bats are likely different 357 

from those in primates, leading to the differences in the induction of immune responses. 358 

Indeed, several antiviral ISGs, such as IFI6 and IFIT3, exhibited expression dynamics 359 

similar to those of these PRRs (Fig. 2F, 2G). These differences could be one of the 360 

reasons why immune responses differ between bats and primates. 361 

 Another factor that can explain the differences in immune responses among 362 

host species is the presence of species-specific cellular subsets. In bat monocytes, 363 

we identified two subsets that were specifically induced by stimuli (i.e., Clusters 5 and 364 

7) (Fig. 4A). Cluster 5 was a bat-specific subset induced preferentially by HSV-1 365 

infection (Fig. 4B, 4D). Interestingly, even though Cluster 5 was induced after 366 

stimulation, Cluster 5 exhibited lower expression of ISGs and higher expression of 367 

immunosuppressive genes (DUSP1, DUSP5, and SOCS2) [30–32] (Fig. 4E, 4F). This 368 

observation suggests that the immune responses in Cluster 5 are downregulated 369 

presumably by negative feedback signaling and that Cluster 5 may contribute to 370 

controlling excessive immune activation in bats. On the other hand, Cluster 7 was 371 

identified as a monocyte subset that was mainly induced by LPS stimulation (Fig. 4C, 372 

4D). Cluster 7 highly expressed several proinflammatory cytokines and chemokines 373 

(CXCL6, IL18BP, CXCL8, CCL2, CCL8, CCL13, CCL5, CXCL10, IL15, and IL4I1) (Fig. 374 

4G, 4H). Cluster 7 may contribute to the recruitment of leukocytes since these 375 

cytokines are associated with the chemotaxis of neutrophils (CCL8, CXCL6, and 376 



CXCL8), basophils (CXCL8, CCL2, CCL5, CCL8, and CCL13), eosinophils (CCL5, 377 

CCL8, and CCL13), monocytes (CCL5, CCL8, and CCL13), T cells (CCL5, CCL8, 378 

CCL13, CXCL8, and CXCL10), and NK cells (CCL5 and CCL8) in humans and mice 379 

[36, 37]. Based on the expression pattern of the marker genes for Cluster 7 (Fig. 4C, 380 

S4B), cellular subsets corresponding to Cluster 7 were also present in primate 381 

monocytes. However, these primate cells did not form a separate cluster in the 382 

dimensionality reduction analysis based on the transcriptome profile (Fig. 4A). These 383 

results suggest that the monocyte subset represented by Cluster 7 exhibits unique 384 

gene expression and thus may exert unique functions in bats. Although the specific 385 

functions of these monocyte subsets (Clusters 5 and 7) in immune responses in bats 386 

are still unclear, these unique subsets may contribute to bat-specific host immune 387 

responses. 388 

 389 

 390 

Limitations of the study 391 

In the present study, we elucidated differences in innate immune responses among 392 

host species from various aspects. However, we did not address differences in the 393 

outcomes of the innate immune responses, such as differences in viral pathogenicity. 394 

Another limitation is that the bioinformatic resources we used, such as gene annotation, 395 

gene ontology, and cellular annotation, have been developed in a human-centric way. 396 

Therefore, there is the possibility that immune responses induced by species-specific 397 

genes and cell types were overlooked. Moreover, because the results of this study rely 398 

on an analysis using a single bat species, the Egyptian fruit bat, it is unclear whether 399 

the observed bat-specific characteristics are conserved across bat species. 400 

Furthermore, we did not perform biological replicates of scRNA-seq in this study. 401 

Despite these limitations, we present valuable resources to illuminate differences in 402 

immune responses among host species, including Egyptian fruit bats, and clues to 403 

elucidate differences in viral pathogenicity among species. Further study to elucidate 404 

the functional consequences of these differences is needed to reveal the mechanisms 405 

by which bats can tolerate infections with various viruses. 406 

  407 



Figure legends 408 

 409 

Figure 1. scRNA-seq analysis of PBMCs from four animal species inoculated 410 

with pathogenic stimuli 411 

(A) Schematic of the experimental design. See also Fig. S1. 412 

(B) Uniform manifold approximation and projection (UMAP) plots representing the 413 

gene expression patterns of the cells from the four species. Each dot is colored 414 

according to the cell type. Gray dots indicate cells unassigned into any cell type. See 415 

also Fig. S2. 416 

(C) Comparison of identified cell types among the species. Dot: detected, question 417 

mark: undetected. The definitions of six species-common cell types are shown on the 418 

right side. See also Fig. S2H. 419 

(D) The cellular compositions of PBMC samples. The compositions according to the 420 

six common cell types are shown. 421 

(E) Hierarchical clustering analysis of 48 pseudobulk datapoints (4 animal species x 3 422 

stimuli x 4 cell types = 48 conditions) based on PC1-30 calculated from the fold-change 423 

values (respective stimulus versus unstimulated) for gene expression. 424 

 425 

Figure 2. Characterization of species-specific immune responses using a tensor 426 

decomposition framework 427 

(A) Tensor decomposition of the fold-change values for pseudobulk transcriptome data. 428 

(B) Heatmap representing a latent factor matrix relating to species. Columns indicate 429 

the animal species, and rows indicate the latent factors representing species-common 430 

(L1_1), bat-specific (L1_2), and macaque-specific (L1_3) factors. See also Fig. S3A–431 

B. 432 

(C) Classification of genes according to the differential patterns of the latent factors 433 

related to species. For each of the species-common (L1_1), bat-specific (L1_2), and 434 

macaque-specific (L1_3) factors, the product of the core tensor and three latent factor 435 

matrices related to stimulus, cell type, and gene was calculated (left), and the genes 436 

were classified into 11 categories according to the binary patterns for each calculated 437 

product (right). See also Fig. S3C–F. 438 

(D) Heatmap representing the values of the products calculated in Figure 2C. From 439 

the three products, the data related to the bat-specific factor (L1_2) are shown. Each 440 



row indicates the respective gene. The color keys shown on the right of the heatmap 441 

indicate gene categories. See also Fig. S3G–L. 442 

(E) GO terms enriched in each gene category relating to the bat-specific factor. GO 443 

terms with a false discovery rate (FDR) <= 0.1 and an odds ratio >= 1 are shown. 444 

(F) Heatmap representing the induction levels of ALL_high genes for the bat-specific 445 

factor. Additional classification according to the gene classification of the species-446 

common factors is shown to the right of the heatmap. Genes categorized as ALL_high 447 

in both the species-common factor and the bat-specific factor are shown on the right 448 

side. The colored circle indicates the functional category of the gene. 449 

(G) Heatmap representing the relative expression levels (bats versus humans) of the 450 

genes shown in Figure 2F. 451 

 452 

Figure 3. Robust immune responses to a DNA virus in bats 453 

(A) Boxplot of the expression levels of coremamm ISGs in every single cell. The Y-axis 454 

indicates the global expression level (GSVA score) of the coremamm ISGs. 455 

(B) Heatmap representing the mean expression levels of sensor genes. The mean 456 

values were calculated without using the information for the stimulus. 457 

 458 

Figure 4. Identification of bat-specific subsets of monocytes 459 

(A) UMAP plots representing the gene expression patterns of monocytes from the four 460 

species. The dots are colored according to the cell cluster defined for each animal 461 

species. See also Fig. S4A. 462 

(B, C) UMAP plots representing the average expression levels of marker genes for 463 

Cluster 5 [C5markers] (B) and Cluster 7 [C7markers] (C). See also Fig. S4B. 464 

(D) The cellular composition of bat monocytes. The composition is shown according 465 

to the cluster. The black frame indicates Clusters 5 and 7 in stimulated samples. 466 

(E) Heatmap representing the mean expression levels of differentially expressed 467 

genes (DEGs) in Cluster 5 of bat monocytes. 468 

(F) Summary of the GO terms enriched in DEGs in Cluster 5. GO terms enriched in 469 

up- and downregulated genes are shown in red and blue, respectively. 470 

(G) Heatmap representing the mean expression levels of differentially expressed 471 

genes (DEGs) in Cluster 7 of bat monocytes. 472 

(H) Summary of the GO terms enriched in DEGs in Cluster 7. GO terms enriched in 473 

up- and downregulated genes are shown in red and blue, respectively.  474 



Methods 475 

Cells 476 

Vero cells (obtained from the Laboratory of Bernard Roizman, University of Chicago, 477 

USA) 478 

LLC-MK2 cells (rhesus macaque kidney epithelial cells) (CCL-7, ATCC) 479 

 480 

PBMC collection 481 

Human peripheral blood was obtained from the arm vein. To obtain chimpanzee 482 

peripheral blood, a chimpanzee was anesthetized for a regular health examination. 483 

Anesthesia was induced with intramuscular administration of the combination of 0.012 484 

mg/kg medetomidine (Meiji Seika Pharma Co., Ltd. ), 0.12 mg/kg midazolam (Sand 485 

Co., Ltd. ), and 3.5 mg/kg ketamine (Fujita Pharm, Tokyo) and maintained with 486 

constant rate infusion (4-10 mg/kg/h) of propofol (1% Diprivan, Sand Co., Ltd. ). 487 

Peripheral blood was obtained from the femoral vein. To obtain rhesus macaque 488 

peripheral blood, a rhesus macaque was anesthetized. Anesthesia was induced with 489 

intramuscular administration of 8 mg/kg ketamine followed by deep anesthetization 490 

using an intravenous injection of sodium pentobarbital (30 mg/kg) (Kyoritsu Seiyaku). 491 

Peripheral blood was obtained by cardiac puncture before exsanguination and 492 

perfusion. Bat peripheral blood was obtained from the cephalic vein in the patagium. 493 

PBMCs were isolated from peripheral blood by density gradient centrifugation using 494 

Ficoll-Paque™ Plus (Cytiva, Cat# 17144003). 495 

 496 

HSV-1 preparation and titration 497 

HSV-1 (strain F; GenBank accession number: GU734771) [38] was prepared as 498 

previously described [29] and kindly provided by Dr. Yasushi Kawaguchi (The Institute 499 

of Medical Science, The University of Toyo, Japan). Briefly, Vero cells were infected 500 

with HSV-1 and the supernatant was collected and used without purification. To titrate 501 

viral infectivity, prepared virus was diluted 10-fold in Medium 199 (Thermo Fisher 502 

Scientific, Cat# 11825015) containing 1% fetal calf serum (FCS) (Nichirei Biosciences, 503 

Cat# 175012), and Vero cells were infected with dilutions of the virus at 37 °C. At one 504 

hour postinfection, the culture medium was replaced with Medium 199 containing 160 505 

μg/ml human γ-globulin (Sigma Aldrich, G4386-25G), and the cells were cultured at 506 

37 °C for 2–3 days. To calculate the viral titer [plaque forming unit (PFU)], the number 507 

of plaques per well was counted. 508 



 509 

SeV preparation and titration 510 

SeV (strain Cantrell, clone cCdi; GenBank accession number: AB855654) was 511 

prepared as previously described [39] and kindly provided by Dr. Takashi Irie 512 

(Hiroshima University, Japan). Briefly, LLC-MK2 cells were infected with SeV and the 513 

supernatant was collected and used without purification. To titrate viral infectivity, 514 

prepared virus was diluted 10-fold in Dulbecco’s modified Eagle’s medium (DMEM) 515 

(Sigma‒Aldrich, Cat# D6046-500ML) containing 10% FCS, and LLC-MK2 cells were 516 

infected with dilutions of the virus at 37 °C. At one hour postinfection, the cells were 517 

washed with PBS and cultured with DMEM containing 10% FCS at 37 °C. At one day 518 

postinfection, the infected cells were fixed with acetone (Nacalai Tesque, Cat# 21914-519 

03)/methanol (Nacalai Tesque, Cat# 00310-95). To calculate the viral titer [cell 520 

infectious unit (CIU)], the fixed cells were stained with a rabbit anti-SeV polyclonal 521 

antibody [40] as the primary antibody and an Alexa 488-conjugated goat anti-rabbit IgG 522 

antibody (Thermo Fisher Scientific, Cat# A-11008) as the secondary antibody, and the 523 

number of fluorescent foci per well was counted. 524 

 525 

Infection and stimulation 526 

One million PBMCs were maintained in 500 μl RPMI 1640 medium (Sigma‒Aldrich, 527 

Cat# R8758-500ML) and infected with HSV-1 or SeV at a multiplicity of infection of 528 

0.1. To mimic microbial infection, LPS (Sigma‒Aldrich, Cat# L5024-10MG) was added 529 

at a final concentration of 200 ng/ml. At one day post infection, all types of 530 

infected/stimulated PBMCs were centrifuged, resuspended in PBS, and used for bulk 531 

RT–qPCR and scRNA-seq (see below). 532 

 533 

RT–qPCR 534 

RT–qPCR was performed as previously described [41]. Briefly, cellular RNA was 535 

extracted using the QIAamp RNA Blood Mini Kit (Qiagen, Cat# 52304) and then 536 

treated with an RNase-free DNase set (Qiagen, Cat# 79254). cDNA was synthesized 537 

using SuperScript III reverse transcriptase (Thermo Fisher Scientific, Cat# 18080044) 538 

and random primers (Thermo Fisher Scientific, Cat# 48190011). RT–qPCR was 539 

performed using Power SYBR Green PCR Master Mix (Thermo Fisher Scientific, Cat# 540 

4367659) and the primers listed in Table S1. For RT–qPCR, the CFX Connect Real-541 

Time PCR Detection System (Bio-Rad) was used. 542 



 543 

Sequencing of scRNA-seq libraries 544 

scRNA-seq libraries were constructed using the Chromium Next GEM Single Cell 3’ 545 

Kit according to the manufacturer's instructions (10x Genomics). Briefly, cells, gel 546 

beads, and oil were loaded onto the Chromium platform to generate single-cell gel 547 

beads-in-emulsion (GEMs). Before loading, cell numbers and viability were confirmed. 548 

To acquire 5,000 cells recovery, 8,000 cells were loaded. Barcoded cDNAs were 549 

pooled for amplification, and adaptors and indices for sequencing were added. The 550 

evaluation was conducted using a BioAnalyzer (Agilent Technologies). The libraries 551 

were sequenced with paired-end reads using the Illumina NovaSeq6000 platform 552 

(RRID:SCR_016387) . 553 

 554 

Genome sequence dataset 555 

Genome sequences of the animal species including humans (GRCh38.p13, RefSeq 556 

accession: GCF_000001405.39), chimpanzees (Clint_PTRv2, RefSeq accession: 557 

GCF_002880755.1), rhesus macaques (Mmul_10, RefSeq accession: 558 

GCF_003339765.1), and Egyptian fruit bats (mRouAeg1.p, RefSeq accession: 559 

GCF_014176215.1) were obtained from NCBI RefSeq [42]. From the genome 560 

sequences, ALT contig sequences were excluded. The genome sequences of viruses 561 

including HSV-1 (strain: F, accession: GU734771.1) and SeV (strain: Cantell clone 562 

cCdi, accession: AB855654.1) were also obtained from NCBI RefSeq. A custom 563 

reference genome sequence for each animal species was generated by adding the 564 

genome sequences of HSV-1 and SeV to the genome sequence of the animal species. 565 

 566 

Gene annotation and ortholog information 567 

Gene annotations of humans (GRCh38.p13, Release 109.20200228), chimpanzees 568 

(Clint_PTRv2, Release 105), rhesus macaques (Mmul_10, Release 103), and 569 

Egyptian fruit bats (mRouAeg1.p, Release 101) were obtained from NCBI RefSeq. 570 

From the gene annotations, only the records for protein_coding, 571 

transcribed_pseudogene, lncRNA, pseudogene, antisense_RNA, 572 

ncRNA_pseudogene, V_segment, V_segment_pseudogene, C_region, 573 

C_region_pseudogene, J_segment, J_segment_pseudogene, and D_segment were 574 

extracted according to the CellRanger tutorial [43]. In addition, to quantify viral RNA 575 

abundance, the records for viruses were added. The whole viral genome was treated 576 



as a single exon, and a total of four lines (the positive and negative strands of HSV-1 577 

and SeV) were added. 578 

A list of orthologous genes between humans and the other animal species 579 

(chimpanzees, rhesus macaques, and Egyptian fruit bats) was obtained from NCBI on 580 

July 26th, 2021 [44]. From the file, the records for orthologs between humans 581 

(taxonomy ID: 9606) and chimpanzees (taxonomy ID: 9598), rhesus macaques 582 

(taxonomy ID: 9544), or Egyptian fruit bats (taxonomy ID: 9407) were extracted. 583 

 The ortholog list from NCBI lacked information on some critical immune-related 584 

genes of Egyptian fruit bats, such as CD4 and IRF1. Therefore, we retrieved 585 

information from the Bat1K gene annotation [45, 46] downloaded from UCSC genome 586 

browser [47]: First, we made a custom gene annotation for Egyptian fruit bats by 587 

adding information from the Bat1K gene annotation to the RefSeq gene annotation. 588 

Second, we extracted exons in the Bat1K gene annotation that overlapped with exons 589 

in the RefSeq gene annotation by using the bedtools intersect command with the wao 590 

option (v2.30.0) [48]. In this step, the exons in the Bat1K gene annotation that did not 591 

overlap with the exons in the RefSeq gene annotation were also extracted and added 592 

to custom gene annotations as additional genes. Next, the exons that contained 593 

overlaps and had the same gene name (the same symbol or known to be an ortholog) 594 

were added to custom gene annotations as an alternative splicing variant of the gene. 595 

Then, the remaining overlapping exons were processed by determining which 596 

information (RefSeq or Bat1K) should be used preferentially. The criteria were as 597 

follows: i) genes whose symbols are not prefixed with “LOC” were given priority, ii) 598 

genes whose symbols are included in the human gene list were given priority, and iii) 599 

information from RefSeq was given priority otherwise. According to these criteria, the 600 

annotation with the higher priority (RefSeq or Bat1K) was selected and used in the 601 

custom gene annotation. 602 

 As a result of the integration of gene annotations, the number of orthologous 603 

genes in the custom gene annotation of bats increased from 16374 to 16903. 604 

Importantly, immune-related genes that were not defined in the RefSeq gene 605 

annotation, such as TLR1, IRF1, and CD4, were added to the custom gene annotation. 606 

Considering the orthologous relationships, we prepared three types of gene 607 

sets for each animal species: i) “all genes”, including all genes in the animal species; 608 

ii) “genes shared with humans”, including genes with orthologs in humans; and iii) 609 

“common genes”, genes shared among the four analyzed animal species. Unless 610 



otherwise noted, “all genes” were used up to cell annotation, and “common genes” 611 

were used after cell annotation. 612 

 613 

Processing scRNA-seq data for generating count matrices 614 

Gene expression count matrices for scRNA-Seq data were generated using 615 

CellRanger (RRID:SCR_023221) (v6.0.1) (10x Genomics) [49, 50]. First, we built a 616 

custom reference for each animal species from the custom reference genome 617 

sequence and custom gene annotation using the “cellranger mkref” command. 618 

Subsequently, we generated unique molecular identifier (UMI)-based count matrices 619 

from the raw scRNA-seq data and custom references using the “cellranger count” 620 

command with default settings. 621 

 622 

Quality control (QC) of scRNA-seq data 623 

First, we removed cells with abnormal genes per cell (genes/cell) and counts per cell 624 

(counts/cell) values using the Seurat package (RRID:SCR_016341) (v4.0.4) [23, 24]: 625 

Cells with 800–5,000 genes/cell or 1,200–25,000 counts/cell were extracted. The 626 

thresholds were determined based on the distributions of genes/cell and counts/cell 627 

before QC (Fig. S1D–E). Second, we annotated the cell type of individual cells using 628 

Azimuth (v0.4.3) [25], a reference-based cell annotation prediction program, and then, 629 

cells annotated as erythrocytes, platelets, hematopoietic stem cells, or innate lymphoid 630 

cells were excluded as nontargeted cells in the present study. This is because 631 

erythrocytes and platelets are probably residuals after experimental PBMC extraction, 632 

and hematopoietic stem cells and innate lymphoid cells are not the major cell types in 633 

the analysis of innate immune responses using PBMCs. In this step, the gene 634 

annotation “genes shared with humans” (see Gene annotation and ortholog 635 

information) for each animal species was used. Finally, regarding genes/cell and 636 

counts/cell values, cells with >3 |Z score| were excluded as outliers. 637 

 638 

Data integration, visualization, and cell clustering 639 

Data integration, visualization, and cell clustering for each animal species were 640 

performed using the Seurat package. In these processes, the expression levels of 641 

HSV-1 and SeV were not used. 642 

Data integration is a method merging the gene expression count matrices 643 

obtained from different experimental conditions while removing batch effects. We 644 



integrated the count matrices from the four different conditions for each animal species. 645 

In the data integration, SCTransform (RRID:SCR_022146) (a modeling framework for 646 

the normalization and variance stabilization of molecular count data from scRNA-seq 647 

data) was performed using the SCTransform function for each count matrix. Next, to 648 

extract 2000 genes with higher variance and thus greater information for integration, 649 

the four count matrices were processed using the SelectIntegrationFeatures function. 650 

Next, we used the PrepSCTIntegration function to transform normalized counts into 651 

counts per 10,000 counts in the cell (CP10k). After that, we used the 652 

FindIntegrationAnchors function with the setting Mock as a reference to find 653 

“Integration anchors”. Finally, we integrated the four normalized count matrices using 654 

the IntegrateData function with the option ‘normalization.method=”SCT”’. 655 

For visualization, we first performed principal component analysis (PCA) using 656 

the RunPCA function. Then, UMAP (RRID:SCR_018217) [51] was performed with the 657 

RunUMAP function. In this step, principal components (PC) 1-50 were used, and the 658 

parameter “n.neighbors” was set individually for each animal species (Hs: 20, Pt: 20, 659 

Mm: 50, and Ra: 40). 660 

To define cell clusters in each animal species, we performed graph-based 661 

unsupervised clustering (Fig. S2A). First, the FindNeighbors function was used, and 662 

then, the FindClusters function was used. In these steps, the parameter ‘k.param’ for 663 

FindNeghbors was set individually for each animal species (Hs: 12, Pt: 10, Mm: 10, 664 

and Ra: 20). The parameter ‘resolution’ for FindClusters was also set individually for 665 

each animal species (Hs: 2.0, Pt: 2.2, Mm: 1.7, Ra: 1.2). 666 

 667 

Cell annotation 668 

Regarding each cluster identified by graph-based unsupervised clustering in the 669 

section “Data integration, visualization, and cell clustering” (Fig. S2A), 11 cell 670 

types were manually annotated according to i) the predicted cell type by Azimuth (Fig. 671 

S2B), ii) the distances between each cluster (Fig. S2C), and iii) the correspondence 672 

of clusters between animal species (Fig. S2D–F). First, reference-based cell type 673 

prediction was performed using Azimuth for the mock data from each animal species 674 

(Fig. S2B). In this step, the gene annotation “genes shared with humans” (see Gene 675 

annotation and ortholog information) for each animal species was used. We 676 

checked the enrichment of each predicted cell type in each cluster by Azimuth. Second, 677 

we checked the similarities between clusters by hierarchical clustering (Fig. S2C) 678 



using the mean values of PCs 1-50 among the individual cells (see Data integration, 679 

visualization, and cell clustering) in each cluster. Notably, PCA was performed 680 

using the expression levels of “all genes” (see Gene annotation and ortholog 681 

information). The Euclidian distance was used for clustering by Ward’s method. Third, 682 

to check the correspondence between clusters in each animal species, we performed 683 

data integration, clustering, and visualization for mock data from all four animal 684 

species (Fig. S2D–F). In the integration, the mock data from humans were used as 685 

reference data. In this step, the gene annotation “common genes” (see Gene 686 

annotation and ortholog information) was used. 687 

 After categorizing cells into 11 cell types, the 11 cell types were coarse-grained 688 

into 6 cell types based on the results of hierarchical clustering analysis (see 689 

Hierarchical clustering). The six cell types were used in the subsequent analysis. 690 

 691 

 692 

Hierarchical clustering 693 

To examine the similarities in expression patterns among the conditions (4 animal 694 

species × 4 stimuli × 6 cell types = 96 conditions), hierarchical clustering analysis was 695 

performed. In this analysis, the 5,000 genes with the highest median absolute 696 

deviation (mad) values were used (Fig. S2H). First, the average expression levels of 697 

the respective genes in each condition were calculated. Next, PCA was performed 698 

using the average expression profiles. Third, using PCs 1-30, the distance matrix for 699 

the 96 conditions was generated using 1−Pearson’s correlation coefficient. Finally, 700 

hierarchical clustering by Ward’s method was performed using the distance matrix. 701 

To determine which factor (e.g., animal species, stimulus, or cell type) was the 702 

most impactful on the gene expression in immune cells, hierarchical clustering was 703 

performed using induction patterns upon stimulation (Fig. 1E). Unlike for the results 704 

shown in Fig. S2H, FC values were used to perform PCA. This analysis used 7557 705 

genes, the union of the top 6000 genes related to total expression levels in the 706 

expression profiles of each animal species. The FC expression values (stimulated vs. 707 

unstimulated conditions) of those genes were calculated for each cell type in each 708 

animal species. To avoid generating infinite FC values, the data for genes with zero 709 

expression in mock data were set at the minimum nonzero expression level in the 710 

mock data. Finally, hierarchical clustering was performed using the method described 711 

above. 712 



 713 

Tensor decomposition 714 

To extract species-specific/common induction patterns upon stimulation from 715 

transcriptome data with complex structures (4 animal species × 3 stimuli × 4 cell types 716 

× 7557 orthologous genes), we used tensor decomposition (Fig. 2A). As the input data 717 

for tensor decomposition, the FC values of 7557 genes, the union of the top 6000 718 

genes related to total expression levels in the expression profiles of each animal, were 719 

used. The calculation method for FC values is described in the section “Hierarchical 720 

clustering”. The standardized FC values for each condition were represented as a 4-721 

mode tensor (animal species × stimulus × cell type × orthologous gene). To 722 

perform Tucker decomposition (TD), a method of tensor decomposition, we used 723 

TensorLy (v0.6.0) [52]. We performed TD via higher-order orthogonal iteration (HOI) 724 

with the parameter ‘init=”svd”’. In HOI, the size of the core tensor (ranks) was set as 725 

[animal species: 3, stimulus: 2, cell type: 3, gene: 15]. The number of iterations was 726 

set as 100. 727 

 728 

Gene classification using the tensor decomposition results 729 

A schematic of the gene classification using tensor decomposition is shown in Fig. 2C 730 

and Fig. S3C–F. Briefly, we selected the candidate gene categories that had patterns 731 

of values (high, mid, or low) (Fig. S3C) that matched the ideal pattern (Fig. S3D) and 732 

then selected the gene category with the best “similarity score” (Fig. S3E) from the 733 

candidates as the gene category for that gene (Fig. S3F). 734 

Initially, the product of the core tensor and the three factor-matrices, A2 (for 735 

stimulus), A3 (for cell type), and A4 (for gene), was calculated to obtain three cubic 736 

data with three axes, stimulus, cell type, and gene, using the ttl function of rTensor 737 

(v1.4.8) [53]. Each cubic data point indicated information related to species-common, 738 

bat-specific, and macaque-specific factors (Fig. 2B). Next, since the values of latent 739 

factors related to HSV-1 and SeV were similar (Fig. S3A), these two categories were 740 

integrated into the category “Virus” by calculating mean values. Additionally, since the 741 

values of latent factors related to NaiveT and KillerTNK were similar (Fig. S3B), these 742 

two categories of cell types were integrated into the category “TNK” by calculating 743 

mean values. Thus, hereafter, the category of stimuli included virus and LPS, and the 744 

category of cell types included B cells, TNK cells and Monos. 745 



Then, in each cubic data, genes were classified into 11 categories (Fig. 2C) 746 

through the following three steps. Briefly, from the candidate gene categories that had 747 

patterns of values (high, mid, or low) (Fig. S3C) that matched the ideal pattern (Fig. 748 

S3D), the gene category with the lowest “similarity score” (Fig. S3E) was selected as 749 

the gene category for that gene (Fig. S3F). 750 

In the first step (Fig. S3C), the values in each cubic data were normalized, and 751 

the genes were classified into three classes (high, mid, and low) according to the 752 

ranking of values in each condition (stimulus × cell type). First, six column vectors in 753 

the TD results for the 6 conditions (2 stimuli × 3 cell types) were normalized by dividing 754 

them by the 90th percentile for the individual vectors. After the division step, to 755 

suppress the effect of abnormally high or low values, data with > 1 or < -1 were 756 

assigned as 1 and -1, respectively. Next, the genes were categorized into three 757 

classes based on the rule that if the rank of a value was greater than the 80th 758 

percentile or smaller than the 20th percentile, it was categorized as “high” or “low”, 759 

respectively; otherwise, it was categorized as “mid”. 760 

In the second step (Fig. S3E), a “similarity score” was calculated to represent 761 

the similarity between the genewise pattern of the TD results and the “ideal patterns” 762 

for each gene category. The “ideal patterns” were defined as vectors composed of 1, 763 

0, and -1 for 16 gene categories (Virus_high, LPS_low, Virus_low, LPS_high, B_high, 764 

TNKM_low, B_low, TNKM_high, TNK_high, BM_low, TNK_low, BM_high, M_high, 765 

BTNK_low, M_low, and BTNK_high) (Fig. S3D). The “similarity score” was defined as 766 

the sum of the residual squares between the two vectors, the genewise vector of 767 

normalized values from the TD results (Fig. S3C) and the “ideal patterns” (Fig. S3D). 768 

According to the definition, the “similarity scores” for every combination of genes and 769 

gene categories were calculated. After calculating all similarity scores, to obtain the 770 

threshold for checking if a gene should be recognized as a gene in that category, the 771 

20th percentile of the similarity score in the vector for each gene category was 772 

calculated. 773 

In the third step (Fig. S3F), the gene category for each gene was determined. 774 

First, the candidate gene categories for each gene were filtered according to the 775 

pattern assigned in the first step (Fig. S3C). If the pattern (high/mid/low) of all 6 776 

conditions was high or low, the gene was categorized as ALL_high or ALL_low, 777 

respectively. If the pattern of a gene matched the “ideal pattern” of a gene category, 778 

the gene category was added as a candidate gene category for the gene. For example, 779 



if the pattern of gene A was (Virus_B: high, Virus_TNK: high, Virus_M: high, LPS_B: 780 

high, LPS_TNK: low, LPS_M: mid), the candidate gene category for gene A was 781 

“Virus_high” and “B_high” because all virus-infected data were assigned as “high” and 782 

all B-cell data were assigned as “high” (Fig. S3D). Second, the gene category with the 783 

lowest “similarity score” among the candidate gene categories was selected as the 784 

tentative gene category. In this selection, if the “similarity score” was higher than the 785 

threshold of the gene category (Fig. S3E), the gene was categorized as “Others” (See 786 

gene B in Fig. S3F) because the pattern for the gene was recognized as being too 787 

different from the “ideal pattern”. If no candidate gene category was available, the gene 788 

was also classified as “Others” (See gene C in Fig. S3F). Finally, the final gene 789 

category was determined by integrating similar gene categories (Fig. S3F). For 790 

instance, the categories Virus_high and LPS_low were integrated into the category 791 

Virus_high because both categories indicated that virus-infected data were higher than 792 

LPS-stimulated data (See gene D in Fig. S3F). As a result of the gene classification 793 

process, genes were categorized into one of 11 categories (Fig. 2C, S3D). 794 

 795 

GO term enrichment analysis 796 

Gene Ontology (GO) analysis was performed with Fisher’s exact test. This analysis 797 

used the GO canonical pathways and GO biological processes defined by MSigDB 798 

(RRID:SCR_022870) (v7.3) [30]. Adjusted P values were calculated using the 799 

Benjamini‒Hochberg (BH) method. 800 

 801 

Calculation of gene set variation analysis (GSVA) scores 802 

The gene set-wise expression scores used in Figs. 3A, 4B, 4C, and S4B were 803 

calculated using GSVA (RRID:SCR_021058) (v1.38.2) [54, 55] with the algorithm 804 

“ssgsea”. 805 

 806 

Identification of differentially expressed genes (DEGs) and marker genes 807 

In bat monocytes, DEGs were identified in Cluster 5 or Cluster 7 compared to the other 808 

clusters using the FindMarkers function of Seurat packages. A gene that met the 809 

following three criteria was considered a DEG: 1) the false discovery rate (FDR) 810 

calculated using the BH method was less than 0.05, 2) the average log2FC was 811 

greater than 1 or less than -1, and 3) the proportion of expressing cells was greater 812 

than 0.2. 813 



 The marker genes of Cluster 5 and Cluster 7 of bat monocytes (RaC5marker 814 

and RaC7marker, respectively) were defined as upregulated DEGs in Cluster 5 (Fig. 815 

4E) and Cluster 7 (Fig. 4G), respectively.  816 
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Project name: scRNA-seq_PBMC_Animals_Aso_et_al 818 

Project homepage: https://github.com/TheSatoLab/scRNA-819 

seq_PBMC_Animals_Aso_et_al [56] 820 

Operating system: Linux 821 

Programming languages: bash, R, Python 822 

License: CC0-1.0 823 

 824 

Data availability 825 

The raw and processed single-cell RNA-seq data have been deposited in the Gene 826 

Expression Omnibus (GEO) database (GSE218199) and are publicly available. 827 

Original data to describe figures in this paper have been deposited at Mendeley [57] 828 

and are publicly available. All additional supporting data are available in the 829 

GigaScience database [59]. 830 

 831 

Declarations 832 

List of abbreviations 833 

cDCs: conventional dendritic cells; CIU: cell infectious unit; CP10k: counts per 10,000 834 

counts in the cell; DEGs: differentially expressed genes; DMEM: Dulbecco’s modified 835 

Eagle’s medium; dsRNAs: double-stranded RNAs; FC: fold-change; FCS fetal calf 836 

serum; FDR: false discovery rate; GEMs: gel beads-in-emulsion; GEO: Gene 837 

Expression Omnibus; GSVA gene set variation analysis; GO: Gene Ontology; HOI: 838 

higher-order orthogonal iteration; Hs: Homo sapiens; HSV-1: herpes simplex virus 839 

type 1; IFNs: interferons; ISGs: IFN-stimulated genes; LPS: Lipopolysaccharide; mad: 840 

median absolute deviation; MAITs: mucosal-associated invariant T cells; Mm: Macaca 841 

mulatta; Monos: monocytes; NK: natural killer; PAMPs: pathogen-associated 842 

molecular patterns; PBMCs: peripheral blood mononuclear cells; PCs: principal 843 

components; PCA: principal component analysis; pDCs: plasmacytoid dendritic cells; 844 

PFU plaque forming unit; PRRs: pattern recognition receptors; Pt: Pan troglodytes; 845 

Ra: Rousettus aegyptiacus; RLRs: RIG-I-like receptors; scRNA-seq: single-cell RNA 846 



sequencing; SeV: Sendai virus; TD: Tucker decomposition; UMAP: uniform manifold 847 

approximation and projection; UMI: unique molecular identifier; QC: quality control 848 

 849 

Ethics statement 850 

All protocols involving specimens from animals were performed in accordance with the 851 

Science Council of Japan’s Guidelines for the Proper Conduct of Animal Experiments. 852 

The protocols were approved by the Institutional Animal Care and Use Committee of 853 

Kyoto University (approval IDs: 2017-B-5, 2019-C-9, 2019-162, 2019-177, and 2020-854 

C-5). All protocols involving specimens from humans recruited at Kyoto University 855 

were reviewed and approved by the Institutional Review Boards of Kyoto University 856 

(approval ID: G1089). All protocols for the use of human specimens were reviewed 857 

and approved by the Institutional Review Boards of The Institute of Medical Science, 858 

The University of Tokyo (approval ID: 2019-55) and Kyoto University (approval ID: 859 

G1089). 860 

 861 

Consent for publication 862 

All human subjects provided written informed consent. 863 

 864 

Competing interests 865 

The authors declare no competing interests. 866 

 867 

Funding 868 

This study was supported in part by AMED SCARDA Japan Initiative for World-leading 869 

Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to K.S.), 870 

AMED SCARDA Program on R&D of new generation vaccine including new modality 871 

application (JP223fa727002, to K.S.); AMED Research Program on Emerging and Re-872 

emerging Infectious Diseases (JP22fk0108146, to Y.Kashima and K.S.; 873 

JP21fk0108494 to K.S.; 21fk0108425, to K.S.; 21fk0108432, to K.S.); AMED 874 

Research Program on HIV/AIDS (JP22fk0410039, to K.S.); JST PRESTO 875 

(JPMJPR22R1, to J.I.); AMED Moonshot Research and Development Program 876 

(JP21zf0127005, to H.O.); JST CREST (JPMJCR20H4, to K.S.); JSPS KAKENHI 877 

Grant-in-Aid for Early-Career Scientists (20K15767, to J.I.; 19K20394, to H.O.); JSPS 878 

Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to 879 

K.S.); JSPS Research Fellow DC1 (20J23299, to H.A.). 880 

 881 

Author’s contributions 882 



H.A. mainly performed bioinformatics analysis. J.I. and H.O. supervised the 883 

bioinformatics analysis. Y.Kashima mainly performed the experiments. Y.S., 884 

Y.Koyanagi, and K.S. supervised the experiments. K.S. and Y.Koyanagi provided 885 

reagents. K.S. conceived and designed the experiments. H.A. and J.I. wrote the initial 886 

manuscript. All authors reviewed and edited the manuscript. 887 

 888 

Acknowledgements 889 

We would like to thank Naoko Misawa, Akiko Oide, Mai Suganami, and Kazumi Abe 890 

(The University of Tokyo), for technical support, Hiroo Imai (Kyoto University) for 891 

providing primate PBMCs, Ayuko Morita (Kyoto City Institute of Health and 892 

Environmental Sciences) for providing bat PBMCs, Yasushi Kawaguchi (The 893 

University of Tokyo) for providing HSV-1, Takashi Irie (Hiroshima University) for 894 

providing SeV, and Human Genome Center (the Institute of Medical Science, the 895 

University of Tokyo) for providing the super-computing resource SHIROKANE 896 

(http://sc.hgc.jp/shirokane.html). This work was supported by the Cooperative 897 

Research Program of the Primate Research Institute, Kyoto University (2019-c9). 898 

 899 

 900 

Author’s information 901 

H.A.’s current affiliation: Department of AI Systems Medicine, M&D Data Science 902 

Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan 903 

 904 

Additional Files 905 

 906 

Figure S1. Validation of viral infectivity and the innate immune response (related 907 

to Figure 1) 908 

(A) Heatmap of the induction levels of genes related to the IFN response and 909 

inflammation. The rows indicate genes, and the columns indicate combinations of 910 

species, stimulus, and dose. The color represents the log2 Fold Change of ddCt upon 911 

stimulation measured by qRT‒PCR. “rep. 1” and “rep. 2” indicate biological replicates. 912 

(B-C) Heatmap of the expression levels of viral genes (B: HSV-1; C: SeV) measured 913 

by qRT‒PCR. The rows indicate viral genes, and the columns indicate combinations 914 

of species and doses. “rep. 1” and “rep. 2” indicate biological replicates. The color 915 

represents the ddCt values based on the expression levels of GAPDH. 916 



(D-G) Violin plots of (D) the numbers of detected genes per cell before QC, (E) 917 

numbers of counted reads per cell before QC, (F) numbers of detected genes per cell 918 

after QC, and (G) numbers of counted reads per cell after QC. 919 

 920 

Figure S2. Heterogeneous expression patterns in the four animal species 921 

(related to Figure 1) 922 

(A-B) UMAP plots representing the gene expression patterns of PBMCs from the four 923 

species. Each dot is colored according to the results of unsupervised clustering (A) 924 

and reference-based label transfer (B). 925 

(C) Heatmaps showing pairwise Euclid distances representing the gene expression 926 

differences among clusters. The distances were calculated using PCs 1-50 of the gene 927 

expression data. 928 

(D-E) UMAP plots representing the gene expression patterns of PBMCs from the mock 929 

samples for the four species. Each dot is colored according to the results of 930 

unsupervised clustering using the integrated data for the four mock samples (D) or the 931 

four samples from each animal shown in Figure S2A (E). 932 

(F) Heatmaps showing pairwise Euclid distances representing the gene expression 933 

differences among clusters shown in Figure S2D. The distances were calculated 934 

using PCs 1-30 of the gene expression data. 935 

(G) Dot plots representing the expression patterns of marker genes for each cell type 936 

defined by Azimuth [58] 937 

(H) Hierarchical clustering analysis of 48 pseudobulked FC gene expression 938 

datapoints (4 animal species x 4 stimuli x 11 cell types = 176 conditions). 939 

 940 

Figure S3. Classification of genes according to species-specific expression 941 

patterns (related to Figure 2) 942 

(A) Heatmap representing a latent factor matrix related to stimuli. The columns indicate 943 

stimuli, and the rows indicate latent factors representing stimulus-common (L2_1) and 944 

virus vs. LPS (L2_2) factors. 945 

(B) Heatmap representing a latent factor matrix related to cell types. The columns 946 

indicate cell types, and the rows indicate latent factors representing cell type-common 947 

(L3_1), monocyte-specific (L3_2), and B-cell-specific (L1_3) factors. 948 

(C) Summary of the normalization of values and patterning according to the ranking of 949 

the values. First, six column vectors (2 stimuli × 3 cell types) in the TD results were 950 



normalized by dividing them by the 90th percentile of the individual vectors. Then, data 951 

with > 1 or < -1 were assigned as 1 and -1, respectively. Next, the genes were 952 

categorized into three classes (high, mid, and low) based on the rule that if the rank of 953 

a value was greater than the 80th percentile or smaller than the 20th percentile, it was 954 

categorized as “high” or “low”, respectively; otherwise, it was categorized as “mid”. 955 

(D) Summary of the ideal patterns for each gene category used in the gene 956 

classification in Figure 2C. 957 

(E) Summary of the calculation of the similarity score and establishment of the 958 

threshold for the gene classification in Fig. S3F. The sum of the residual squares 959 

between two vectors, the genewise vector of normalized values from the TD results 960 

(Fig. S3C) and the “ideal patterns” (Fig. S3D) were calculated. Then, the threshold 961 

used in Fig. S3F was obtained by calculating the 20th percentile of the similarity score 962 

for the vector for each gene category. 963 

(F) Summary of gene classification. By comparing patterns from the TD results (Fig. 964 

S3C) and the ideal patterns (Fig. S3D), candidate gene categories were selected. 965 

Next, the gene category with the lowest “similarity score” among the candidate gene 966 

categories was selected as the tentative gene category. In this selection, if the 967 

“similarity score” was higher than the threshold of the gene category (Fig. S3E), the 968 

gene was categorized as “Others” (gene B). If no candidate gene category was 969 

available, the gene was also classified as “Others” (gene C). Finally, the final gene 970 

category was determined by integrating similar gene categories (genes A and D). 971 

(G-I) Heatmap representing the values of the products calculated in Figure 2C. The 972 

data relating to (G) the species-common factor (L1_1), (H) the bat-specific factor 973 

(L1_2), and (I) the macaque-specific factor (L1_3) are shown. Each row indicates the 974 

respective gene. The color keys shown on the right of the heatmap indicate gene 975 

categories. 976 

(J-L) Heatmap representing the FC values in the input tensor. The orders of the rows 977 

are the same as in (J) Figure S3G, (K) Figure S3H, and (L) Figure S3I. Each row 978 

indicates the respective gene. The color keys shown on the right of the heatmap 979 

indicate gene categories. 980 

 981 

Figure S4. Identification of species-specific cell types (related to Figure 4) 982 



(A) UMAP plots representing the expression patterns of every single cell. 983 

Dimensionality reduction was performed for each combination of the four species and 984 

three cell types. 985 

(B) UMAP plots representing the average expression levels of marker genes for 986 

Cluster 7 [C7markers]. 987 

 988 

Table. S1. Primers used for RT‒qPCR (related to the Methods) 989 

The sequences of the primers used for RT‒qPCR are listed. 990 

  991 
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infections", by Aso et al., for the consideration of publication in GigaScience. 

 

According to the comments raised by the two referees, we modified the manuscript. We hope 

that the editor will find our study important, and consider it suitable for publication in GigaScience. 
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