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Abstract 

Background 

Kataegis refers to the occurrence of regional genomic hypermutation in cancer and is a phenomenon that has 

been observed in a wide range of malignancies. A kataegis locus constitutes a genomic region with a high 

mutation rate, i.e., a higher frequency of closely interspersed somatic variants than the overall mutational 

background. It has been shown that kataegis is of biological significance and possibly clinically relevant. 

Therefore, an accurate and robust workflow for kataegis detection is paramount. 

 

Findings 

Here we present Katdetectr, an open-source R/Bioconductor-based package for the robust yet flexible and fast 

detection of kataegis loci in genomic data. In addition, Katdetectr houses functionalities to characterize and 

visualize kataegis and provides results in a standardized format useful for subsequent analysis. In brief, 

Katdetectr imports industry-standard formats (MAF, VCF, and VRanges), determines the intermutation 

distance of the genomic variants and performs unsupervised changepoint analysis utilizing the Pruned Exact 

Linear Time search algorithm followed by kataegis calling according to user-defined parameters. 

 

We used synthetic data and an a priori labeled pan-cancer dataset of Whole Genome Sequenced malignancies 

for the performance evaluation of Katdetectr and five publicly available kataegis detection packages. Our 

performance evaluation shows that Katdetectr is robust regarding tumor mutational burden (TMB) and shows 

the fastest mean computation time. Additionally, Katdetectr reveals the highest accuracy (0.99, 0.99) and 

normalized Matthews Correlation Coefficient (0.98, 0.92) of all evaluated tools for both datasets. 

 

Conclusions 

Katdetectr is a robust workflow for the detection, characterization, and visualization of kataegis and is 

available on Bioconductor:  https://doi.org/doi:10.18129/B9.bioc.katdetectr 

 

Keywords: Kataegis, R-package, Bioconductor, Changepoint analysis, Cancer. 

 

https://doi.org/doi:10.18129/B9.bioc.katdetectr
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Introduction 

Large-scale next-generation sequencing of malignancies has revealed that a myriad of mutational mechanisms 

and mutational rates are at play, even within the genome of one tumor cell. It has been shown that cancer 

genomes can contain regions with high mutation rates, which causes mutations to cluster, i.e., the somatic 

mutations are found in proximity to one another. This phenomenon was termed kataegis, and its respective 

genomic location was termed a kataegis locus  [1-5]. 

 

Since the discovery of kataegis, different computational detection tools using genomic variant data have been 

developed and are publicly available, including; MafTools [6], ClusteredMutations [7], kataegis [8], SeqKat [9] 

and, SigProfilerClusters [10]. These packages employ distinct statistical methods for kataegis detection and 

differ in their ease of use and computational feasibility.  

 

Here, we introduce Katdetectr, an R-based Bioconductor package that contains a suite for the detection, 

characterization, and visualization of kataegis. Additionally, we have evaluated and compared the performance 

of Katdetectr to five commonly used and publicly available kataegis detection packages. 

 

Results 

The principle of Katdetectr is to assess the variation in the mutation rate of a cancer genome. To achieve this, 

Katdetectr starts by importing and preprocessing industry-standard variant calling formats (VCF, MAF, 

VRanges) (Figure 1A). Next, the Intermutation Distance (IMD) is determined, which denotes the distance 

between variants in base-pairs (Figure 1B, see Methods). Unsupervised changepoint analysis is performed, 

using the IMD as input, which results in detected changepoints. The changepoints, which denote the points at 

which the distribution of the IMD changes, are used to segment the genomic sequence. Finally, segments are 

annotated and labeled as a putative kataegis locus if a segment fits the user-defined settings: the mean IMD of 

the segment ≤ IMDcutoff and the number of variants in the segment ≥ minSizeKataegis. The IMD, 

segmentation, and detected kataegis loci can be visualized by Katdetectr in a rainfall plot (Figure 1C). 
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Figure 1, Overview of the Katdetectr workflow, Intermutation distance, and rainfall plots. A) General workflow of Katdetectr from data 

import to data visualization represented by arrows. B) The intermutation distance (IMD) is determined for all genomic variants in each 

chromosome, and rainfall plots are used to visualize the IMDs. Single Nucleotide Variant (SNV), Multi Nucleotide Variant (MNV). C) Rainfall 

plot of WGS breast cancers sample PD7049a as interrogated by Katdetectr with IMDcutoff = 1000 and minSizeKataegis = 6 [1]. Y-axis: IMD, 

x-axis: variant ID ordered on genomic location, light blue rectangles: kataegis loci with genomic variants within kataegis loci shown in bold. 

The color depicts the mutational type.  The vertical lines represent detected changepoints, while black horizontal solid lines show the 

mean IMD of each segment.  

 

Katdetectr search algorithm selection 

To optimize Katdetectr for kataegis detection, we generated a synthetic dataset to test four changepoint 

search algorithms, namely; Pruned Exact Linear Time (PELT) [11], Binary Segmentation (BinSeg) [12], Segment 

Neighbourhoods (SegNeigh) [13], and At Most One Change (AMOC). The synthetic dataset contains 1024 

samples with a varying number of kataegis loci and Tumor Mutational Burden (TMB) (see Methods). All 

variants in this dataset were binary labeled for kataegis, as a variant either lies within a kataegis locus (TRUE) 

or not (FALSE). This dataset was considered ground truth and was used for computing performance metrics. 

We analyzed the synthetic dataset separately for each search algorithm showing that the PELT algorithm 

outperformed the alternatives (Supplementary table 1, supplementary figure 1, 2). Therefore, we set PELT as 

the default search algorithm in Katdetectr.  

 

Performance evaluation 

We utilized the synthetic dataset to evaluate the performances of Katdetectr and five publicly available 

kataegis detection packages: MafTools, ClusteredMutations, Kataegis, SeqKat, and, SigProfilerClusters (Table 1, 

supplementary table 1). Katdetectr revealed the highest overall accuracy (0.99), normalized Matthews 

Correlation Coefficient (nMCC: 0.98), and F1 score (0.97), whereas ClusteredMutations showed the highest 

True Positive Rate (TPR: 0.99) and Kataegis showed the highest True Negative Rate (TNR: 0.99). Most packages 

showed a high nMCC for samples with a TMB ranging from 0.1 - 50. However, the performance of all packages 

dropped for samples with a TMB ≥ 100 (Figure 2A). More specifically, for Katdetectr and Kataegis, this is due to 

an increase in false negatives. For SeqKat, MafTools, ClusteredMutations, and SigProfilerClusters, this 
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performance drop is due to an increase in false positives in samples with a TMB of 100 and 500 

(Supplementary figure 1). 

 

Next to the synthetic dataset, we evaluated the performance of the kataegis detection packages on a dataset 

containing 507 a priori labeled Whole Genome Sequenced (WGS) samples from Alexandrov et al. (see 

Methods) [1]. Katdetectr revealed the highest overall accuracy (0.99), nMCC (0.92), and F1 score (0.83), 

whereas ClusteredMutations showed the highest TPR (0.99) and SigProfilerClusters showed the highest TNR 

(0.99) (Table 1, Supplementary figure 1). Katdetectr, ClusteredMutations, and MafTools showed a high nMCC 

(>0.92) on the samples with a low or middle TMB. However, the performance of all packages drops for samples 

with a TMB >10 (figure 2A). This is due to an increase in false negatives by Kataegis and SeqKat and false 

positives by Katdetectr, MafTools, ClusteredMutations, and SigProfilerClusters. 

 

Summary and performance of kataegis detection packages. 

 

Table 1. Summary information of all evaluated kataegis detection packages and their respective performance metrics regarding kataegis 

classification on 1024 synthetic samples and 507 a priori labeled Whole Genome Sequenced (WGS) samples. Accuracy, normalized 

Matthews Correlation Coefficient (nMCC), F1 score, True Positive Rate (TPR) and True Negative Rate (TNR), Pruned Exact Linear Time 

(PELT), Piecewise Constant Fit (PCF), Intermutation Distance (IMD). 

 

We visualized the concordance regarding per sample kataegis classification and kataegis locus between 

Katdetectr, SigProfilerClusters, ClusteredMutations, MafTools, and the original authors of the WGS dataset: 

Alexandrov et al., 2013 (Figure 2B). In total, 451 kataegis loci were detected in 127 WGS samples by all the 

packages and the original publication. Interestingly, Katdetectr, SigProfilerClusters, ClusteredMutations, and 

MafTools concordantly detected 102 previously unannotated kataegis loci within the original publication. 

 

The runtimes of all packages were recorded to give insight into the computational feasibility of these packages. 

Katdetectr showed the lowest mean runtime on both the synthetic and the WGS datasets (figure 2C). 
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Figure 2. Performance evaluation of kataegis detection tools. A) The normalized Matthews Correlation Coefficient (nMCC) per package 

and Tumor Mutational Burden (TMB) class is depicted by individual data points connected with a dashed line (colored per package). B) 

Venn diagrams showing the concordance between Katdetectr, SigProfilerClusters, MafTools, ClusteredMutations, and Alexandrov et al. 

regarding kataegis classification per sample (i.e., does a sample contain one or more kataegis loci) and per kataegis loci (i.e., does a 

detected kataegis locus overlap with a kataegis locus detected by another package). C) Boxplots with individual data points represent the 

per sample runtimes of kataegis detection packages on the synthetic and Whole Genome Sequence datasets. Boxplots were sorted in 

ascending order based on mean runtime (depicted in the text below the boxplot). Y-axis is log10-scaled. Boxplots depict the Inter Quartile 

Range, with the median as a black horizontal line.  

 

Katdetectr examples with different TMBs 

We highlight four samples from the datasets that illustrate how Katdetectr accurately detects kataegis loci 

regardless of the TMB of the respective sample (Figure 3). The synthetic sample 124625_1_50_100 (TMB: 500) 

harbors one kataegis locus, containing 57 variants, which is detected by Katdetectr (Figure 3A). This kataegis 

locus is also detected by SeqKat, MafTools, ClusteredMutations, and SigProfilerClusters, in addition to 

numerous false positives. The package Kataegis did not detect any kataegis loci in this synthetic sample.  

 

In lung adenocarcinoma sample LUAD-E01014 (TMB: 7.6), Katdetectr detected 37 kataegis loci containing 449 

variants (Figure 3B).  MafTools, ClusteredMutations, and SeqKat detected similar kataegis loci in this sample, 

whereas Kataegis and SigProfilerClusters did not detect any kataegis loci in this sample. In breast cancer 

sample PD7207a (TMB: 0.8), two kataegis loci were detected by Katdetectr MafTools, ClusteredMutations, and 

SigProfilerClusters (Figure 3C). Kataegis and SeqKat did not detect any kataegis loci in this sample. Lastly, in the 

breast cancer sample PD4086a (TMB: 0.6), one kataegis locus was detected by all packages except for Kataegis 

(Figure 3D). 

 

Figure 3. Rainfall plots constructed by Katdetectr and confusion matrices, accuracy, and nMCC for four samples. A) Synthetic sample 

124625_1_50_100 with Tumor Mutational Burden (TMB): 500, B) Lung adenocarcinoma Whole Genome Sequenced (WGS) sample LUAD-

E01014 with TMB: 7.6. C) Breast cancer WGS sample PD7207a with TMB: 2.5. D) Breast cancer WGS sample PD4086a with TMB: 0.62. The 

WGS samples were collected and labeled for kataegis by Alexandrov et al.; their results were used as ground truth to construct the 

confusion matrices and performance metrics [1]. Rainfall plot: Y-axis: IMD, x-axis: variant ID ordered on genomic location, light blue 

rectangles: kataegis loci with genomic variants within kataegis loci shown in bold. The color depicts the mutational type.  The vertical lines 
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represent detected changepoints, while black horizontal solid lines show the mean IMD of each segment. Confusion matrix: True Positive 

(TP), False Positive (FP), True Negative (TN), False Negative (FN), Accuracy, and normalized Matthews Correlation Coefficient (nMCC).  

 

Discussion 

Here, we described Katdetectr, an R/Bioconductor package for the detection, characterization, and 

visualization of kataegis in genomic variant data by utilizing unsupervised changepoint analysis.  

 

First, we tested four search algorithms for changepoint analysis, which revealed that the PELT [11] algorithm 

outperformed the BinSeg [12], SegNeigh [13], and AMOC algorithms both in terms of prediction accuracy and 

computational feasibility. The BinSeg algorithm performed reasonably well, however, it underfitted the data, 

which resulted in many false negatives. The SegNeigh algorithm performed well on samples with a TMB < 5; 

however, this algorithm is computationally expensive, as it scales exponentially with the size of the data, and 

cannot reasonably be used for the analysis of samples with a TMB > 10.  Unsurprisingly, the AMOC (at most 

one change) algorithm cannot detect kataegis as a kataegis locus is generally defined by two changepoints. 

 

Besides testing search algorithms, we benchmarked Katdetectr using PELT and five publicly available kataegis 

detection packages which were recently published and used for supporting kataegis research [2, 5, 14, 15]. 

Since no consensus benchmark was available, we aimed to get insight into the performance of these tools. The 

complexity of kataegis detection is to separate genomic regions of higher-than-expected mutational density 

from the background of somatic mutations. Therefore, we argued that generating a synthetic dataset 

containing samples of varying TMB (0.1-500), would provide a good measure for algorithmic solvability of the 

kataegis detection problem. Benchmarking on this synthetic dataset revealed that the accuracy of kataegis 

detection for all evaluated packages drops when the TMB increases.  Performance evaluation per TMB-binned 

class revealed that Katdetectr is on par with alternative packages for samples with low or middle TMB. 

However, in contrast to alternative packages, Katdetectr remained robust when analyzing samples with a high 

TMB. Additionally, the computation times of Katdetectr are feasible for samples with a TMB ranging from 0.1 

to 500 as PELT scales linearly with the size of the data [11]. This shows that kataegis detection using Katdetectr 

is feasible on reasonably modern computer hardware. 
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The presented performance evaluation depends on the truth labels provided by the datasets. Both the 

synthetic and the WGS dataset have their limitations. We constructed the synthetic dataset by modeling 

mutations on a genome as a Bernoulli process, which is a common approach for modeling events that occur in 

a sequence. However, we did not incorporate prior biological knowledge in the synthetic dataset generation. 

Both SeqKat and SigProfilerClusters incorporate biological assumptions regarding kataegis, e.g., mutation 

context, which possibly negatively influenced their performance regarding the synthetic dataset. Additionally, 

the distance between events generated by a Bernoulli process is a geometric random variable. For a large n, 

which is the case for a human genome, a geometric random variable approximates an exponential random 

variable. Since we constrain Katdetectr to only fit exponential distributions it is unsurprising that Katdetectr 

performs well on the synthetic dataset. Nevertheless, MafTools, ClusteredMutations, SeqKat, and 

SigProfilerClusters are less robust when analyzing the synthetic samples with a TMB of 100 and 500 as they 

classify many false positives kataegis loci. 

 

In addition to the synthetic dataset, we used the a priori labeled pan-cancer WGS dataset from the 

groundbreaking work of Alexandrov et al. to evaluate the kataegis detection tools [1]. However, the field of 

kataegis has grown and evolved since the publication of this dataset. Therefore, we want to emphasize that 

this dataset should not be considered an unequivocal truth, and the performance metrics should not be taken 

at face value. The annotation of this dataset likely contains several false positives and false negatives; as 

highlighted by the concordant discovery of 102 additional kataegis foci by several packages. Nevertheless, as 

no alternative ground-truth has been established to determine the accuracy of kataegis detection, we believe 

that the current benchmarking results give insight into the behavior of the evaluated packages regarding 

kataegis classification in samples with varying TMB.  

 

Our benchmarking showed that, for the WGS dataset, Katdetectr, MafTools, ClusteredMutations, and, 

SigProfilerClusters have a high concordance in classifying a whole sample as kataegis positive or negative. 

However, when concerning distinct kataegis loci, we observed more differences. ClusteredMutations reported 

the overall largest number of loci (n = 2,360), indicating it has the highest sensitivity. Conversely, kataegis (n = 

8) and SeqKat (n = 528) reported the overall smallest number of loci which we deem too small based on visual 
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inspection. The third smallest number of kataegis loci is reported by SigProfilerClusters (n = 764), indicating it 

has the highest specificity. Katdetectr appears to balance sensitivity and specificity as it only detects kataegis 

loci detected by one or more alternative packages (n = 1,050). 

 

Kataegis is the most commonly used term for local hypermutations and has historically been defined as a 

cluster of at least six variants, of which the mean IMD is less or equal to 1000 base pairs [1, 16]. However, this 

definition has been altered recently, making the formal definition of kataegis ambiguous [2, 4, 5, 14]. For 

instance, another type of clustered mutations is called Omikli, which refers to clusters smaller than kataegis, 

generally containing three or four variants [17]. Although different types of clustered variants can be detected 

using Katdetectr by supplying the correct parameters, we only evaluated Katdetectr for the detection of 

kataegis. 

 

We made Katdetectr publicly available on the Bioconductor platform, which requires peer-reviewed open-

source software and high standards regarding development, documentation, and unit testing. Furthermore, 

Bioconductor ensures reliability and operability on common operating systems (Windows, macOS, and Linux). 

We designed Katdetectr to fit well in the Bioconductor ecosystem by incorporating common Bioconductor 

object classes. This allows Katdetectr to be used reciprocally with the plethora of statistical software packages 

available in Bioconductor for preprocessing and subsequent analysis. Lastly, we implemented Katdetectr 

flexibly, allowing Katdetectr to be used in an ad hoc manner for quick assessment of clustered variants and 

extensive research of the mutation rates across a tumor genome. 

 

Conclusion 

Katdetectr is a free, open-source R package available on Bioconductor that contains a suite for the detection, 

characterization, and visualization of kataegis. Katdetectr employs the PELT search algorithm for unsupervised 

changepoint analysis, resulting in robust and fast kataegis detection. Additionally, Katdetectr has been 

implemented in a flexible manner which allows Katdetectr to expand in the field of kataegis. Katdetectr is 

available on Bioconductor: https://doi.org/doi:10.18129/B9.bioc.katdetectr and on GitHub: 

https://github.com/ErasmusMC-CCBC/katdetectr. 

https://doi.org/doi:10.18129/B9.bioc.katdetectr
https://github.com/ErasmusMC-CCBC/katdetectr
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Methods 

Implementation Katdetectr 

Katdetectr (v1.1.3, git commit 8cf59018956b6d724f3b66d03b343011ad24e554) was developed in the R 

statistical programming language (v4.2.0) [18]. Katdetectr imports genomic variants through generic, 

standardized file formats for variant calling: MAF, VCF, or Bioconductor-standard VRanges objects. Within 

Katdetectr, the imported variants are pre-processed such that, per chromosome, all variants are sorted in 

ascending order based on their genomic position. Overlapping variants are merged into a single record. 

Following, per 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗, the intermutation distance (𝐼𝑀𝐷𝑖,𝑗) of each 𝑣ariant𝑖,𝑗  and its closest upstream 

𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖 − 1,𝑗  is calculated according to; 

 

𝐼𝑀𝐷𝑖,𝑗  = {
 𝑖 =  1      𝑠𝑖,𝑗                         

𝑖 >  1      𝑠𝑖,𝑗 − 𝑠𝑖 −1,𝑗       
  𝑖 =  {1, 2, . . . , 𝑘𝑗} 

With 𝑖 as the variant number, j as the chromosome number, s as the genomic location of the first base-pair of 

a 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖,𝑗 and 𝑘𝑗  as the total number of variants in 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗  (Figure 1B). Additionally, for each 

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗  one pseudo IMD, 𝐼𝑀𝐷𝑝,𝑗 ,  is added such that; 

𝑛𝑗 =   𝐼𝑀𝐷𝑝,𝑗  +  ∑ 𝐼𝑀𝐷𝑖,𝑗

𝑘𝑗

𝑖 = 1
 

 

With 𝑛𝑗  as the total number of base-pairs in 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗. 

Katdetectr aims to identify genomic regions characterized by specific mutation rates. An unsupervised 

technique called changepoint analysis is performed per chromosome on the IMDs to assess the variability in 
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mutation rate across each chromosome. Changepoint analysis refers to the process of detecting points in a 

sequence of observations where the statistical properties of the sequence significantly change. Subsequently, 

the detected changepoints are used to segment the input sequence into segments. For a detailed description 

of the changepoint analysis, see the work of Killick, Fearnhead, and Eckley [11]  

We implemented the commonly used R changepoint package (v2.2.3) in Katdetectr for the unsupervised 

segmentation of IMDs, as detailed by [11, 20, 21]. We set the following parameters settings; method: Pruned 

Exact Linear Time (PELT), minimal segment length: 2, test statistic: Exponential, and penalty: Bayesian 

Information Criterion (BIC), as default settings in Katdetectr. 

 

After changepoint analysis, each segment is annotated with its respective genomic start and end positions, its 

mean IMD, and the total number of included variants. Since we use an exponential distribution as the test 

statistic in changepoint analysis, each segment has a corresponding rate parameter of the fitted exponential 

distribution. Whereas each segment is annotated with its corresponding mutation rate, the mutation rate of 

an entire sample can be expressed as the weighted arithmetic mean of the mutation rate of the segments; 

 

𝜆𝑡 =   
𝑘𝑡

𝑛𝑡

 =  ∑  
𝜆𝑠 𝑛𝑠

𝑛𝑡

𝑚

𝑠 = 1
 

 

With 𝜆𝑡 as the mutation rate of the entire sample, 𝑘𝑡 as the total number of variants present in the sample, 𝑛𝑡 

as the total number of base pairs in the genome, 𝑚 as the total number of segments in the sample, and 𝜆𝑠 and 

𝑛𝑠 as the mutation rate and the number of base-pairs in 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 

 

To call a segment a putative kataegis locus, it has to adhere to two user-defined parameters: the maximum 

mean IMD of the segment (IMDcutoff) and the minimum number of included variants (minSizeKataegis). These 

parameters can be provided as static integer values or as a custom R function determining the IMD cutoff for 

each segment. For example, the following function for annotation of kataegis events, as was used by the 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, can be easily implemented in Katdetectr [4]: 
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𝐼𝑀𝐷𝑐𝑢𝑡𝑜𝑓𝑓𝑠  ≤  

−𝑙𝑜𝑔 (1 − √
0.01

𝐿𝑠

𝑘𝑠−1

)

𝜆𝑚𝑒𝑑

 

 

𝑤𝑖𝑡ℎ; ⌈𝐼𝑀𝐷𝑐𝑢𝑡𝑜𝑓𝑓⌉  =  1000  

Equation 1 

 

 

With 𝐼𝑀𝐷𝑐𝑢𝑡𝑜𝑓𝑓𝑠   as the IMD cut-off value, 𝑘𝑠 as the number of mutations and 𝐿𝑠 as the length of 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 

in base-pairs. For this function the rate of the whole sample is modeled assuming an exponential distribution 

with; 

 

𝜆𝑚𝑒𝑑  =  
𝑙𝑜𝑔(2)

𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑀𝐷)
 

Equation 2 

Henceforth, all segments satisfying these user-specified parameters are considered putative kataegis loci and 

stored appropriately. Two or more adjacent kataegis loci are merged and stored as a single record. 

 

The output of Katdetectr consists of an S4 object of class “KatDetect” which stores all relevant information 

regarding kataegis detection and characterization. A KatDetect object contains four slots: 1) the putative 

kataegis loci (Granges), 2) the detected segments (Granges), 3) the inputted genomic variants with annotation 

(Vranges), and 4) the parameters settings (List). These data objects can be accessed using accessor functions. 

 

In addition, we implemented three methods for the KatDetect class, summary, show, and rainfallPlot. In 

concordance with R standards, the summary function prints a synopsis of the performed analysis, including the 

number of detected kataegis loci; and the number of variants inside a kataegis loci. The show function displays 

information regarding the S4 class and the synopsis.  
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The method rainfallPlot is a function for generating rainfall plots. These rainfall plots display the genomic 

ordered IMDs (from all genomic variants) within a sample and highlight putative kataegis loci and associated 

genomic variants. This function has additional arguments: showSequence, which allow the user to display 

specific chromosomes, and showSegmentation, for displaying the changepoints and the mean IMD of all 

segments. 

 

For additional examples and more hands-on technical instructions, we refer to the accompanying vignette 

(Supplemental vignette) or the online Bioconductor repository 

(https://bioconductor.org/packages/release/bioc/vignettes/katdetectr/inst/doc/General_overview.html). 

 

Performance evaluation 

As multiple packages for kataegis detection are publicly available, we compared Katdetectr against MafTools 

(v2.13.0), ClusteredMutations (v1.0.1), kataegis (v0.99.2), SeqKat (v0.0.8) and, SigProfilerClusters (v1.0.11) [6-

10]. For benchmarking, we used an in-house generated synthetic dataset and an a priori labeled pan-cancer 

dataset of whole genome sequenced malignancies. 

 

We used the following definition of kataegis as postulated by Alexandrov and colleagues: a kataegis locus is 1) 

a continuous segment harboring ≥6 variants and 2) the captured IMDs within the segment have a mean IMD of 

≤1000 bp [1]. To quantify and compare performances, the task of kataegis detection was reduced to a binary 

classification problem. The task of the kataegis detection packages was to correctly label each variant for 

kataegis, i.e., whether or not a genomic variant lies within a kataegis locus.  

 

Performance metrics 

Only a small fraction of all observed variants is located within kataegis loci, this results in a large class 

imbalance which renders the interpretation of performance metrics, such as accuracy, F1, TPR, and TNR, 

counterintuitive and possibly unrepresentative (Equation 3). Therefore, the normalized Matthews Correlation 

Coefficient (nMCC) was used as the primary metric for performance evaluation. The nMCC considers 

performance proportionally to both the size of positive and negative elements in a dataset [21].  

https://bioconductor.org/packages/release/bioc/vignettes/katdetectr/inst/doc/General_overview.html
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
 

 

𝑀𝐶𝐶 =  
𝑇𝑃 ∙ 𝑇𝑁 −  𝐹𝑃 ∙ 𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 

 

𝑛𝑀𝐶𝐶 =  
𝑀𝐶𝐶 +  1

2
 

 

𝐹1 =  
𝑇𝑃

𝑇𝑃 +  
1
2

(𝐹𝑃 +  𝐹𝑁)
 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

 

Equation 3. Performance metrics. Accuracy, Matthews Correlation Coefficient (MCC), normalized Matthews Correlation 

Coefficient (nMCC), F1 score, True Positive Rate (TPR), and True Negative Rate (TNR).  

True Positive (TP): Predicted: variant in kataegis locus. Truth set: variant in kataegis locus.  

False Positive (FP): Predicted: variant in kataegis locus. Truth set: variant not in kataegis locus. 

True Negative (TN):  Predicted: variant not in kataegis locus. Truth set: variant not in kataegis locus. 

False Negative (FN): Predicted: variant not in kataegis locus. Truth set: variant in kataegis locus. 

 

We utilized Venn diagrams to display the concordance of the kataegis detection packages. We showed in 

which samples the packages detected one or more kataegis loci and which kataegis loci were detected by the 

packages. Two packages are said to detect the same kataegis locus if the genomic locations of their respective 

kataegis locus overlap by at least one base pair. 

 

To give insight into the packages computation time, the packages runtime performance was recorded using 

the proc.time() function from the base R package. All packages and comparisons were run on the same 



 15 

server utilizing an AMD EPYC 7742 64-Core Processor. The packages Katdetectr and SigProfilerClusters 

contained options for parallel processing and used at most four cores per sample during the analyses. All other 

packages used a single processing core per sample. 

 

All scripts necessary for running and visualizing the performance evaluation of all evaluated packages are 

available on GitHub at https://github.com/ErasmusMC-CCBC/evaluation_katdetectr. All data used for the 

performance evaluation is available at https://dx.doi.org/10.5281/zenodo.6810477.  

 

Synthetic data generation 

The synthetic dataset was generated using the generateSyntheticData() function within the 

Katdetectr package. Mutations were randomly sampled on a reference genome such that each base has an 

equal probability, p, of being mutated (except for N bases for which p = 0). This reduces the occurrence of 

mutations on the reference genome to a sequence of X1, X2, ..., Xn, independent Bernoulli trials, Xi, i.e., a 

Bernoulli process, where;  

 

𝐏(𝑋𝑖  =  𝟏)  =  𝐏(Mutation at 𝑖th base)  =  𝑝 

𝐏(𝑋𝑖  =  𝟎)  =  𝐏(No mutation at 𝑖th base)  =  1 –  𝑝 

Equation 4 

with probability mass function (PMF), expectation and variance: 

 

𝑝𝑠(𝑘) =  (
𝑛

𝑘
) 𝑝𝑘 (1 −  𝑝)𝑛−𝑘 ,      𝑘 =  0, 1, . . . . , 𝑛 

 

𝐄(𝑆)  =  𝑛𝑝 

 

𝑣𝑎𝑟(𝑆)  =  𝑛𝑝(1 −  𝑝) 

Equation 5 

https://github.com/ErasmusMC-CCBC/evaluation_katdetectr
https://dx.doi.org/10.5281/zenodo.6810477
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with p as the probability of success (i.e., mutation), n as the number of independent trials (i.e., length of the 

genome in base pairs), and k as the number of successes (i.e., number of occurred mutations). The IMD now 

reduces to geometric random variable T; with PMF, expectation, and variance: 

 

𝑝𝑇(𝑡)  =  (1 −  𝑝) − 1𝑝 

 

𝐄(𝑇)  =  
1

𝑝
 

 

𝑣𝑎𝑟(𝑇)  =  
1 −  𝑝

𝑝2
 

Equation 6 

The genomic start location of a kataegis locus was sampled as an independent Bernoulli trial. The genomic end 

location of a kataegis locus was calculated using: 

 

𝑒𝑛𝑑𝑖  =  𝑠𝑡𝑎𝑟𝑡𝑖  +  𝐄 (𝑇)𝑖(𝑘𝑖  +  1) –  1 

Equation 7 

Synthetic dataset description 

The synthetic data consists of 1024 samples with a total of 21.299.360 SNVs (Table 2). All mutations were 

generated on chromosome 1 on the human reference genome hg19. These samples were generated such that 

8 different TMB classes (0.1, 0.5, 1, 5, 10, 50, 100, 500) were considered.  

 

𝑇𝑀𝐵 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔𝑒𝑛𝑜𝑚𝑒 𝑖𝑛 𝑏𝑝
 ∗  106  

Equation 8 

For each TMB class, a sample was generated for all combinations of the following parameters: the number of 

kataegis loci (1, 2, 3, 5); the number of variants within each kataegis loci (6, 10, 25, 50); and the expected IMD 

of the variants in kataegis loci (100, 250, 500, 750). This resulted in 64 kataegis samples per TMB class. To 
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balance the dataset, 64 samples without kataegis loci were generated for each TMB class. The synthetic 

dataset contained 1232 kataegis loci and 33.245 variants within kataegis loci.  

 

Descriptive statistics of synthetic dataset 

 TMB class (no. of background 

mutations) 

No. Samples (with 

kataegis) 

No. Kataegis 

loci 

No. Variants in kataegis 

loci 

0.1 (25) 128 (64) 176 4.005 

0.5 (125) 128 (64) 176 4.006 

1 (249) 128 (64) 176 4.006 

5 (1.246) 128 (64) 176 4.014 

10 (2.493) 128 (64) 176 4.029 

50 (12.463) 128 (64) 176 4.077 

100 (24.925) 128 (64) 176 4.183 

500 (124.625) 128 (64) 176 4.925 

Table 2. Showing per Tumor Mutational Burden (TMB) class: TMB, number of generated background mutations per sample, the total 

number of samples, total number of samples with kataegis, total number of kataegis loci, and total number of variants within a kataegis 

loci of 1024 synthetic samples. 

 

Whole Genome Sequence (WGS) dataset description 

The WGS dataset (as used in this study; table 3) is publicly available in .txt format[1]. This dataset contained 

7.042 primary cancer samples from 30 different tissues; of which 507 originate from whole genome 

sequencing (WGS) and 6.535 from whole exome sequencing (WES). Only the WGS samples (n = 507) were 

originally labeled using a Piece-Wise Constant Fit (PCF) model and manually curated for kataegis presence (or 

absence) by the original study. Only the respective WGS samples were re-interrogated within our performance 

evaluation. Additionally, we binned this dataset into three TMB classes (low: TMB < 0.1, middle: 0.1 ≥ TMB < 

10, high: TMB ≥ 10) and filtered it such that it only contained single nucleotide variants (SNVs). 
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Descriptive statistics of WGS dataset.  

 TMB class # Samples (with 

kataegis) 

# Kataegis loci # Variants in kataegis 

loci 

Low: TMB < 0.1 301(45) 93 946 

Middle: 0.1 ≥ TMB < 10 186 (89) 444 5.058 

High: TMB ≥ 10 20(18) 336 3.107 

Table 2. Showing per Tumor Mutational Burden (TMB) class: TMB range, the total number of samples, total number of samples with 

kataegis, total number of kataegis loci, and total number of variants within a kataegis loci of 507 Whole Genome Sequenced (WGS) 

samples labeled by Alexandrov et al. [1]. 

 

Pre-processing and parameter settings of alternative kataegis detection packages 

Both the synthetic and the Alexandrov et al. datasets were converted to MAF format for use in MafTools [6] 

ClusteredMutations [7], and kataegis [8] and to BED format for use in SeqKat [9]. All other parameter settings 

for MafTools, kataegis, ClusteredMutations, and SeqKat were set to the default values as specified in their 

respective manuals and vignettes. 

 

For SigProfilerClusters [10] both the synthetic and the Alexandrov et al. datasets were converted to a .txt file 

with column names as specified in the manual of SigProfilerClusters. We set the following parameters for 

SigProfilerSimulator(): genome="GRCh37", contexts = ['288'], simulations=100, overlap=True. For subsequent 

cluster detection, we set the following parameters for SigProfilerClusters.analysis(): genome="GRCh37", 

contexts="96", simContext=["288"], analysis="all", sortSims=True,  subClassify=True, correction=True, 

calculateIMD=True, max_cpu=4, includedVAFs=False. 

 

From the output of SigProfilerClusters we selected the class 2 (kataegis) clusters for further analysis. The 

definition of kataegis used by SigProfilerClusters differs from the one used in our performance evaluation. 

SigProfilerClusters defines kataegis as a cluster of ≥4 genomic variants of which the mean IMD is statistically 

different from the sample specific IMD cut-off. To include SigProfilerClusters in our performance evaluation we 

only selected clusters detected by SigProfilerClusters that fit the definition of kataegis we used for the 

performance evaluation, i.e., a kataegis locus contains ≥6 genomic variants with a mean IMD ≤1000 bp.  
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