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Abstract: Background
Kataegis refers to the occurrence of regional genomic hypermutation in cancer and is a
phenomenon that has been observed in a wide range of malignancies. A kataegis
locus constitutes a genomic region with a high mutation rate, i.e., a higher frequency of
closely interspersed somatic variants than the overall mutational background. It has
been shown that kataegis is of biological significance and possibly clinically relevant.
Therefore, an accurate and robust workflow for kataegis detection is paramount.
Findings
Here we present Katdetectr, an open-source R/Bioconductor-based package for the
robust yet flexible and fast detection of kataegis loci in genomic data. In
addition, Katdetectr houses functionalities to characterize and visualize kataegis and
provides results in a standardized format useful for subsequent analysis. In
brief, Katdetectr imports industry-standard formats (MAF, VCF, and VRanges),
determines the intermutation distance of the genomic variants and performs
unsupervised changepoint analysis utilizing the Pruned Exact Linear Time search
algorithm followed by kataegis calling according to user-defined parameters.
We used synthetic data and an a priori labeled pan-cancer dataset of whole genome
sequenced malignancies for the performance evaluation of Katdetectr and five publicly
available kataegis detection packages. Our performance evaluation shows that
Katdetectr is robust regarding tumor mutational burden (TMB) and shows the fastest
mean computation time. Additionally, Katdetectr reveals the highest accuracy (0.99,
0.99) and normalized Matthews Correlation Coefficient (0.98, 0.92) of all evaluated
tools for both datasets.
Conclusions
Katdetectr is a robust workflow for the detection, characterization, and visualization of
kataegis and is available on
Bioconductor: https://doi.org/doi:10.18129/B9.bioc.katdetectr
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Response to Reviewers: Please note that we have added a supplementary pdf file that contains our response to
the editor and the reviewers. This supplementary files contains mathematical
expressions which we use in our response to the reviewers.

Concerning: GIGA-D-23-00051 and detailed response to its review

Dear Hongling Zhou,

Thank you very much for the thorough evaluation of our manuscript GIGA-D-23-00051
entitled: Katdetectr: An R/Bioconductor package utilizing unsupervised changepoint
analysis for robust kataegis detection” by Daan Hazelaar; Job van Riet; Youri
Hoogstrate; Harmen van de Werken.

We greatly appreciate the opportunity to revise our manuscript according to the high-
quality reports of the reviewers. We include a point-by-point reply to the criticism and
suggestions by the reviewers and you. Moreover, the described changes are indicated
with track changes in the resubmitted manuscript.

1. Register any new software application in the bio.tools and SciCrunch.org databases
to receive RRID (Research Resource Identification Initiative ID) and biotoolsID
identifiers, and include these in your manuscript.

Dear dr. Hongling Zhou, we have registered katdetectr on bio.tools (biotoolsID:
katdetectr)) and SciCrunch.org (RRID: SCR_023506) and added the accompanying
identifiers to the manuscript under the section: Availability and requirements in
compliance with the GIGA journal requirements.

2. Computational workflows should be registered in workflowhub.eu and the DOIs cited
in the relevant places in the manuscript.

We have registered katdetectr (10.48546/workflowhub.workflow.463.1) and the
performance evaluation of katdetectr (10.48546/workflowhub.workflow.500.1) on
workflowhub.eu and added the corresponding to the availability and requirements
section in the manuscript.

Sincerely yours,

Harmen J. G. van de Werken, Ph.D.
Assistant Professor in Computational Biology & Bioinformatics in Immunology and
Cancer at the Erasmus Medical Center in the Department of Immunology

Reviewer #1: minor revision
In this short manuscript, Hazelaar et al. describe a new software package written in R,
called "katdetectr". This package can be useful as an addition to existing computational
tools for identifying and characterizing kataegis in cancer genomes. The paper then
compares katdetectr favorably against other software for detecting kataegis, using
synthetic and real cancer data. Overall, the paper is fine and the katdetectr package is
a nice addition for researchers' toolbox. I would suggest that the authors make the
following improve-ments.

1. Choose a convention for decimal point and digit separator, then stick with it. "." was
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used as both the decimal point and digit separator for large numbers, which gets
confusing. Typically, "." Is used for decimal point and "," is used for digit separator.

We thank the reviewer for this editorial comment. We have indeed revised our
manuscript (and figures) in accordance the convention of using "." as a decimal point
and using "," as a digit separator. We apologize for the previous oversight.

2. The Introduction is so abbreviated that it doesn't serve much purpose. Either flesh it
out with more information or just drop it completely. This journal accepts papers that go
right into re-sults, so it's fine. But the authors should also consider if writing a more
expansive introduction can make the paper more accessible to readers who aren't
already as knowledgeable.

According to the reviewer’s suggestion, we have extended the introduction to improve
this manu-script’s accessibility for readers not yet familiar with kataegis. Additionally,
we have included additional references within the introduction to promote further
reading into the current state of re-search regarding kataegis (lines 60 - 78).

3. The biggest issue is using the 2013 Alexandrov kataegis calls as "ground truth"
when multi-ple packages published since then detect 102 loci that Alexandrov (2013)
missed. Seems like it would be much more sensible to use the calls from the 2020
PCAWG paper instead: https://doi.org/10.1038/s41586-020-1969-6. The data are
controlled access, but it should be possible to get them.

Whilst we agree with the reviewer that utilizing the latest release of the kataegis calls
(as called within the PCAWG) would be a worthwhile endeavor as the PCAWG-calls
would indeed be more recent and potentially contain improved annotations. However,
this dataset is currently (as mentioned) only available under controlled-access whilst
the Alexandrov et al.  call-set is publicly available.

In line with the philosophy of open science and Giga Science, we believe that
reproducible and continued benchmarking of novel computational methodology against
comparable methodology is paramount and that this is restricted when controlled-
access data in involved.

Therefore, we used the publicly-available dataset as described by Alexandrov et al.
(2013) for benchmarking which allowed us to co-publish our input data and results for
public review and future comparison without restriction.

To overcome the potential inaccuracy of the employed ground-truth call-set, we
compared the evaluated methodologies without the dependence of the “ground-truth”
labels by employing a Venn diagram (Fig. 2b) which highlights the (shared)
dis/concordance against the “ground-truth”. This allows for a visual comparison of the
packages which is less dependent on the input.

We have extended and refined our discussion to address these valid concerns on the
employed “ground-truth” set (lines 287 - 289).

4. Katdetectr does outperform other packages for high TMB samples (≧10). But those
are rela-tively few (< 10% of samples). Should state this clearly in text.

We have added the number of currently-investigated WGS samples with a TMB≧ 10 (n
= 20) to our manuscript (line 186).

The large pan-cancer analysis by Priestley et al. (2019)[1] on metastatic cancers
revealed that 17.7% of examined malignancies reveal TMB ≧ 10 and that this is not a
rare occurrence for several malignancies. In particular, metastatic skin and lung
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malignancies reveal 55-60% cases with such elevated TMB. We have further
elaborated these potential use-cases within our discussion (line 260 - 261).

[1] Priestley P, Baber J, Lolkema MP, et al. Pan-cancer whole-genome analyses of
metastatic solid tumours. Nature. 2019;575(7781):210-216. doi:10.1038/s41586-019-
1689-y

5. The runtime data would be better represented by violin plots. Having many data
points bunched together isn't helpful to visualize the distributions.

As per reviewer request, we have replaced the boxplots in fig. 2C and suppl. fig. 2 with
violin plots and individual data-points.

6. I tested the katdetectr package and noticed something peculiar about the
documentation. In section 6 "More parameter settings", there's a disclaimer that the
developers did not test such settings. Doesn't seem like a good practice to put that in
there if the devs themselves don't know how the function will behave.

We thank the reviewer for extensively investigating katdetectr and commenting on the
accompanying vignette.

We would like to emphasize that we have thoroughly tested all available functions
presented within katdetectr (incl. unit-testing) to ensure future sanity and proper
function. In addition, katdetectr adheres to the BioConductor guidelines and follows
their formal programmatic style, testing and documentation.

We merely wished to highlight additional functionality of the presented methodology
and the flexibility of the user-available parameters by showcasing an additional use-
case involving clustered mutations which do not necessarily adhere to the canonical
kataegis ruleset. Whilst we ensured that these additional results were sane, we did not
perform an extensive evaluation and comparison of these additional functionalities
similar to those we performed for the detection of kataegis.

We agree with the reviewer that this could be misconstrued and derailing from the main
functionality of katdetectr, as evaluated within this manuscript, and have removed this
section from the vignette.

We updated katdetectr on BioConductor, but please note that the Bioconductor release
branch is only updated twice per year (incl. the change in the vignette). The most
current version of katdetectr which already includes this change is available from
GitHub: https://github.com/ErasmusMC-CCBC/katdetectr

Reviewer #2: major revision

This manuscript presents a clever tool of hypermutation detection with changepoint
analysis-based R languages, katdetectr. The authors have constructed the R package
based on the changepoint package of Killick and Eckley.

1. In the mutation processing step, the author stated that "the imported variants are
pre-processed such that, per chromosome, all variants are sorted in ascending order
based on their genomic position. Overlapping variants are merged into a single
record." What does "all variants" refer to?

With all variants, we referred to all the genomic variants as supplied by the user within
their VCF, MAF or user-curated VRanges object. Users can perform pre-filtering of
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genomic variants by utilizing the VRanges object (e.g., as generated from a VCF) and
supplying this VRanges into the kataegis detection method. This VRanges can house
SNVs, (long) InDels and structural variants and all will be used for downstream
kataegis detection if present.

We apologize for the previous omission of details and have extended this within our
manuscript (line 358 - 359).

2. Are other variants, e.g., long Indel and structure variation included?

As also mentioned in the previous comment (#1), all forms of genomic variants can be
supplied to katdetectr and used for subsequent kataegis detection. The presented
analysis and evaluation of kataegis calls as presented within this manuscript was
performed on SNVs-only as at least one package only imported SNVs.

Katdetectr merges (partially) overlapping genomic variants (regions) using
IRanges::reduce() and from this generates a single record with the 5’-most shared
position as reference anchor (start position), an X as reference allele, XX as alternative
allele and containing information detailing which variant records were merged.

However, it would be advisable to filter all or large (e.g., >1kb) structural variations
beforehand as these could potentially overlap with many (smaller) genomic variants
resulting in a potential loss of kataegis detection.

We have extended our methodology with these details on merging overlapping variants
(line 358 - 360)

3. How do the other tools deal with such variants, and what's your consideration for this
treatment?

To better address this interesting question, we performed an investigation on how the
alternative packages handle (long) and overlapping variants as the respective papers,
manuscripts, vignettes and manuals lack much (if any) detail on this topic.

We added an additional script to our public repository which we used to assess the
behavior of these packages regarding overlapping variants:
https://github.com/ErasmusMC-
CCBC/evaluation_katdetectr/blob/main/notebooks/R/checking_overlapping_variants.R
md

With this script, we generated a small synthetic sample-set of (non-)overlapping
variants:
1 InDel (1200 kb)
10 random SNVs
10 kataegis SNVs
9 SNVs that overlap with one or more of the previous
10 SNVs at exactly the same genomic location

If no merging is performed, 40 variants should be present in the resulting data-tables. If
merging is performed (such as in katdetectr), only 22 variants should be present. This
allows us to empirically determine the (default) behavior of the packages as the
documentation and respective application notes are scarce on details regarding
overlapping variants.

Please see below, comment #4, for the details of this analysis. In summary, none of
the (other) evaluated packages performed merging of overlapping variants.

Maftools
We did not find relevant parameters regarding overlapping variants and no reference to
overlapping variants in the documentation, paper or manual of this tools.
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From our test-set, we observed that the overlapping variants are not merged.

SeqKat
We did not find relevant parameters regarding overlapping variants and no reference to
overlapping variants in the documentation, paper or manual of this tools. SeqKat
furthermore only allows the import of a BED file containing SNVs, disregarding
anything larger than 1bp.

From our remaining test-set of SNVs-only, we observed that the overlapping variants
are not merged.

ClusteredMutations
We did not find relevant parameters regarding overlapping variants and no reference to
overlapping variants in the documentation, paper or manual of this tools.

From our test-set, we observed that the overlapping variants are not merged.

SigProfilerClusters
We did not find relevant parameters regarding overlapping variants and no reference to
overlapping variants in the documentation, paper or manual of this tools.

From our test-set, we observed that the overlapping variants are not merged.

Kataegis
We did not find relevant parameters regarding overlapping variants and no reference to
overlapping variants in the documentation, paper or manual of this tools.

From our test-set, we observed that the overlapping variants are not merged.

4. What are "overlapping variants"?

Please see comment #3 for an explanation of the algorithm and internal handling.
Please see the supplementary rebuttal pdf file that contains mathematical expressions
which we use to respond to this important question.

5. Why should they be merged?

We deemed merging overlapping genomic variants necessary as we currently do not
implement phasing of alleles or include clonal cancer fractions for detection of kataegis
to ease the interpretation and accessibility of katdetectr for a general audience.
Therefore, if two overlapping variants would not be merged, they would contain a
negative or 0 IMD. This could inflate the detection of kataegis whilst likely reflecting an
admixture of clones with mutations on alternate genomes / haplotypes or an altogether
complex genomic rearrangement. (line 360)

Please note that any merged records will always contain unique metadata (“revmap”)
detailing the merged variants, a reference allele of X and an alternative allele of XX.
This allows user to manually further investigate these regions.

6. Are there any outcomes of these treatments here?

Within all 1024 synthetic samples constituting a total of 21,299,360 SNVs, 4592 SNVs
(0.02%) were merged to a single datapoint.

Within all 507 evaluated WGS samples (Alexandrov et al. 2013) constituting a total of
3,382,751 SNV, no SNVs were merged which likely reflects a pre-filtering step within
the initial dataset by the authors.
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7. There is a lookup table for chromosome length of UCSC hg19 (in
function_performChangepointDetection.R). Does this tool also support other reference
genomes of different species or different versions of human genomes? If so, how can
users change this parameter?

The previous version (v1.0.0) as deposited at submission of this article indeed only
(erroneously) contained a lookup table for hg19. We previously addressed this
reviewer’s concern in the following git issue: https://github.com/ErasmusMC-
CCBC/katdetectr/issues/1

On 26-04-2023, the release branch of BioConductor was updated which includes this
update (katdetectr v1.2.0). This updated version of katdetectr contains the argument
“refSeq” in detectKataegis() which can be used to specify which human reference
genome (by supplying “hg19” or “hg38”) should be considered. Additionally, this
argument can be used to supply the necessary sequence length for analysis other
genomes; allowing for the analysis of additional organisms.

We have also included additional information within the vignette detailing this, please
see section: “Analyzing non-standard sequences” in the vignette accompanied with the
katdetectr package (v1.2.0):
https://bioconductor.org/packages/devel/bioc/vignettes/katdetectr/inst/doc/General_ove
rview.html

8. The authors tested four algorithms of changepoint package for kataegis detection,
and found the PELT algorithm outperformed the others. The authors have described
the results roughly, could the authors state the reasons in mathematical aspect more
detailly? And are these methods recommended in another scenario?

Whilst this is an interesting question, we feel that Killick and Eckley[1,2] have already
expertly detailed the various mathematical intricacies of these algorithms, as employed
within the changepoint package. These excellent works contain the information
concerning; mathematical proofs, computational complexity, definitions of the search
algorithms, possible loss functions and their implications, methods for guarding against
overfitting, changes in mean, changes in variance, changes in mean and variance, and
more examples.

Within our manuscript, we opted to forego this introduction to focus on the empirical
performance of these search methods in the context of kataegis detection within WGS
data.

 [1] R. Killick, P. Fearnhead & I. A. Eckley (2012) Optimal Detection of Changepoints
With a Linear Computational Cost, Journal of the American Statistical Association,
107:500, 1590-1598, DOI: 10.1080/01621459.2012.737745

[2] Killick, R., & Eckley, I. A. (2014). changepoint: An R Package for Changepoint
Analysis. Journal of Statistical Software, 58(3), 1–19.
https://doi.org/10.18637/jss.v058.i03

9. I noticed you have added one pseudo IMD in the distance from the last variant to the
end of the DNA sequence to make the rates detection in change point analysis equal
the mutation rate of the entire chromosome. Why this process is necessary?

Please see the supplementary rebuttal pdf file that contains mathematical expressions
which we use to respond to this relevant question.

10. Except for these four algorithms, do you have any plan for implementing other
algorithms for this package?
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To our understanding, PELT is the current state-of-the-art search algorithm for
changepoint analysis. Therefore, have currently employed this as the default algorithm.
Nevertheless, we implemented katdetectr in a flexible and open-source manner which
allows us or other contributors to easily implement additional search methods when
requested. As PELT provided us with overall good results regarding kataegis detection,
we do not foresee the immediate usage of alternate methods.

11. In the performance evaluation, you have the same variants files tested with
different tools with default parameters. As we know, the tools with PCF algorithms may
have parameters of penalty for each discontinuity in the curve. What are these
parameters set default in these tools?

Both MafTools and Kataegis mostly employ a Piecewise Constant Fit (PCF)
methodology for kataegis detection. To the best of our knowledge, we did not discern a
relevant parameter in maftools (maftools::rainfallPlot()) which concerns the “penalty for
each discontinuity” therefore we cannot comment on this further.

Within the package Kataegis, the kataegis::kata() function contains the “gamma”
parameter for which the manual states that this sets the “penalty for each discontinuity
in the curve” and is by default set to 25 (and was also left default during our
performance evaluation).

We have sought to perform all alternative tools utilizing their hard-coded or otherwise
suggested default settings as mentioned by the authors in their respective manuscripts
and/or manuals to the best of our ability (line 600 - 618). Katdetectr was likewise
performed with its defaults settings as described within our manuscript and/or hard-
coded default values.

12. Are there any influences on the kataegis detection?

As also mentioned in comment #11, we have sought to perform all alternative tools
utilizing their hard-coded or otherwise suggested default settings as mentioned by the
authors in their respective manuscripts and/or manuals to the best of our ability (line
621 - 638). Katdetectr was likewise performed with its defaults settings as described
within our manuscript and/or hard-coded default values. We have not performed
additional parameter sweeps for the alternative packages as we argue that the default
settings will be used by the majority of users. We therefore cannot discard that fine-
tuning the parameters would have an influence on the current evaluation.

We have added this limitation to the discussion (line 307 - 312).

13. For different tools you have convert the datasets to different formats, i.e., MAF,
BED, why do you choose MAF as the input format and how do you keep the input data
consistency in all these different formats?

Within katdetectr, we provide functions to import VCF and MAF files or custom
VRanges. However, several other evaluated packages were only capable of importing
MAF or BED files. Therefore, we converted the variant data into the preferred formats
as specified in the respective manuals of each package. Each time, we checked the
consistency of the transformed data to exclude possible artefacts during conversion.

All utilized code for the importing and transformation of the data can be found in our
GitHub repository:https://github.com/ErasmusMC-CCBC/evaluation_katdetectr/

14. For the evaluation scores, could the authors provide raw score of true positive and
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true negative other than TPR and TNR?

Supplementary tables 1 and 2 contain the raw data detailing all true positives, false
positives, true negatives, and false negatives per package for the synthetic and WGS
datasets respectively.

15. In addition, the deposited data for performance evaluation is not accessible outside
my workplace. And more detailed instructions are necessary for the data. After I loaded
the data named parameters_synthetic_data.RData in R, I was lost for deeper looking
into the data. When I tried to direct the loaded data to an object, a text of "chr
"parameters"" was echoed.

To ease further reproducibility of our work, we have implemented a Jupyter (R)
Notebook in which the various steps of the comparison can be reproduced in a virtual
environment (or within a local R environment when installing the IRkernel package):
https://github.com/ErasmusMC-
CCBC/evaluation_katdetectr/blob/main/notebooks/1.EvaluatePackages.ipynb

In addition, this notebook contains a code snippet (using zen4R) which can
automatically download all our initial input and generated results directly from
Zenodo:https://dx.doi.org/10.5281/zenodo.6810477

These downloaded data can then be used in the downstream visualization and
performance evaluations code-blocks. We hope this eases the reviewer reproduction
of the initial dataset and following steps leading to the (re-)production of all presented
figures and tables.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely

Yes
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identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Introduction 54 

 55 

Large-scale next-generation sequencing of malignancies has revealed that a myriad of mutational mechanisms 56 

and mutational rates are at play within even a single tumor genome. Moreover, it has been shown that 57 

mutations can cluster together, i.e., the acquired mutations are found in proximity to one another, much 58 

closer than expected if each base-pair had an equal probability of being mutated. This phenomenon was 59 

termed kataegis and its respective genomic location was termed a kataegis locus [1, 2]. 60 

 61 

Kataegis, Greek for thunderstorm or shower, was first observed and visualized in whole genome sequencing 62 

(WGS) data of 21 primary breast cancers [1]. Alexandrov and colleagues, subsequently, detected 873 kataegis 63 

loci in a pan-cancer dataset containing 507 WGS samples from primary malignancies [2]. 64 

 65 

Extensive exploration of the etiology of kataegis revealed a significant positive association between kataegis 66 

and two distinct mutational signatures (COSMIC signatures SBS2 and SBS13) both attributed to the APOBEC 67 

enzyme-family [3, 4]. Subsequently, multiple studies confirmed the importance of the APOBEC enzymes in 68 

cancer, showing that APOBEC enzymes are a major cause of mutagenesis, grouped in clusters, dispersed 69 

throughout the cancer genome and in extrachromosomal DNA[5–7]. Additionally, kataegis has been ascribed 70 

in lymphomas to two other mutational signatures (COSMIC signatures SBS84 and SBS85) related to the 71 

APOBEC family member Activation-induced cytidine deaminase (AID) enzyme [8]. 72 

 73 

Moreover, the locations of kataegis loci have been associated with locations of somatic structural variant 74 

breakpoints. Kataegis loci have been observed most frequently within the proximity of deletions and complex 75 

rearrangement breakpoints [3, 9]. Furthermore, kataegis can occur within known cancer driver genes including 76 

https://doi.org/doi:10.18129/B9.bioc.katdetectr
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TP53, EGFR and BRAF which are associated with overall survival in some cancer types [5]. However, the clinical 77 

relevance of kataegis remains to be validated and therefore obfuscates kataegis as a clinical biomarker for 78 

prognosis. Moreover, future insight into kataegis etiology and clinical applications requires accurate and 79 

robust detection of kataegis.  80 

 81 

Since the discovery of kataegis, different computational detection tools using genomic variant data have been 82 

developed and are publicly available, including; MafTools [10], ClusteredMutations [11], kataegis [12], SeqKat 83 

[13] and, SigProfilerClusters [14]. These packages employ distinct statistical methods for kataegis detection 84 

and differ in their ease of use and computational feasibility. Therefore, a comparison of their performances is 85 

currently needed. 86 

 87 

Here, we introduce Katdetectr, an R-based Bioconductor package that contains a suite for the detection, 88 

characterization, and visualization of kataegis. Additionally, we have evaluated and compared the performance 89 

of Katdetectr to the five commonly used and publicly available kataegis detection packages. 90 

 91 

Results 92 

The principle of Katdetectr is to assess the variation in the mutation rate of a cancer genome. To achieve this, 93 

Katdetectr starts by importing and preprocessing industry-standard variant calling formats (VCF, MAF, 94 

VRanges) (Figure 1A). Next, the Intermutation Distance (IMD) is determined, which denotes the distance 95 

between variants in base-pairs (Figure 1B, see Methods). Unsupervised changepoint analysis is performed, 96 

using the IMD as input, which results in detected changepoints. The changepoints, which denote the points at 97 

which the distribution of the IMD changes, are used to segment the genomic sequence. Finally, segments are 98 

annotated and labeled as a putative kataegis locus if a segment fits the user-defined settings: the mean IMD of 99 

the segment ≤ IMDcutoff and the number of variants in the segment ≥ minSizeKataegis. The IMD, 100 

segmentation, and detected kataegis loci can be visualized by Katdetectr in a rainfall plot (Figure 1C). 101 

 102 

Figure 1, Overview of the Katdetectr workflow, Intermutation distance, and rainfall plots. A) General workflow of Katdetectr from data 103 

import to data visualization represented by arrows. B) The intermutation distance (IMD) is determined for all genomic variants in each 104 
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chromosome, and rainfall plots are used to visualize the IMDs. Single Nucleotide Variant (SNV), Multi Nucleotide Variant (MNV). C) Rainfall 105 

plot of WGS breast cancers sample PD7049a as interrogated by Katdetectr with IMDcutoff = 1,000 and minSizeKataegis = 6 [2]. Y-axis: IMD, 106 

x-axis: variant ID ordered on genomic location, light blue rectangles: kataegis loci with genomic variants within kataegis loci shown in bold. 107 

The color depicts the mutational type.  The vertical lines represent detected changepoints, while black horizontal solid lines show the 108 

mean IMD of each segment.  109 

 110 

Katdetectr search algorithm selection 111 

To optimize Katdetectr for kataegis detection, we generated a synthetic dataset to test four changepoint 112 

search algorithms, namely; Pruned Exact Linear Time (PELT) [15], Binary Segmentation (BinSeg) [15], Segment 113 

Neighbourhoods (SegNeigh) [17], and At Most One Change (AMOC). The synthetic dataset contains 1024 114 

samples with a varying number of kataegis loci and Tumor Mutational Burden (TMB) (see Methods). All 115 

variants in this dataset were binary labeled for kataegis, as a variant either lies within a kataegis locus (TRUE) 116 

or not (FALSE). This dataset was considered ground truth and was used for computing performance metrics. 117 

We analyzed the synthetic dataset separately for each search algorithm showing that the PELT algorithm 118 

outperformed the alternatives (Supplementary table 1, supplementary figure 1, 2). Therefore, we set PELT as 119 

the default search algorithm in Katdetectr.  120 

 121 

Performance evaluation 122 

We utilized the synthetic dataset to evaluate the performances of Katdetectr and five publicly available 123 

kataegis detection packages: MafTools, ClusteredMutations, Kataegis, SeqKat, and, SigProfilerClusters (Table 1, 124 

supplementary table 1). Katdetectr revealed the highest overall accuracy (0.99), normalized Matthews 125 

Correlation Coefficient (nMCC: 0.98), and F1 score (0.97), whereas ClusteredMutations showed the highest 126 

True Positive Rate (TPR: 0.99) and Kataegis showed the highest True Negative Rate (TNR: 0.99). Most packages 127 

showed a high nMCC for samples with a TMB ranging from 0.1 - 50. However, the performance of all packages 128 

dropped for samples with a TMB ≥ 100 (Figure 2A). More specifically, for Katdetectr and Kataegis, this is due to 129 

an increase in false negatives. For SeqKat, MafTools, ClusteredMutations, and SigProfilerClusters, this 130 

performance drop is due to an increase in false positives in samples with a TMB of 100 and 500 131 

(Supplementary figure 1). 132 

 133 
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Next to the synthetic dataset, we evaluated the performance of the kataegis detection packages on a dataset 134 

containing 507 a priori labeled Whole Genome Sequenced (WGS) samples from Alexandrov et al. (see 135 

Methods) [2]. Katdetectr revealed the highest overall accuracy (0.99), nMCC (0.92), and F1 score (0.83), 136 

whereas ClusteredMutations showed the highest TPR (0.99) and SigProfilerClusters showed the highest TNR 137 

(0.99) (Table 1, Supplementary figure 1). Katdetectr, ClusteredMutations, and MafTools showed a high nMCC 138 

(>0.92) on the samples with a low or middle TMB. However, the performance of all packages drops for samples 139 

with a TMB >10 (n = 20) (figure 2A). This is due to an increase in false negatives by Kataegis and SeqKat and 140 

false positives by Katdetectr, MafTools, ClusteredMutations, and SigProfilerClusters.  141 

 142 

Summary and performance of kataegis detection packages. 143 

 144 

Table 1. Summary information of all evaluated kataegis detection packages and their respective performance metrics regarding kataegis 145 

classification on 1,024 synthetic samples and 507 a priori labeled Whole Genome Sequenced (WGS) samples. Accuracy, normalized 146 

Matthews Correlation Coefficient (nMCC), F1 score, True Positive Rate (TPR) and True Negative Rate (TNR), Pruned Exact Linear Time 147 

(PELT), Piecewise Constant Fit (PCF), Intermutation Distance (IMD). 148 

 149 

We visualized the concordance regarding per sample kataegis classification and kataegis locus between 150 

Katdetectr, SigProfilerClusters, ClusteredMutations, MafTools, and the original authors of the WGS dataset: 151 

Alexandrov et al., 2013 (Figure 2B). In total, 451 kataegis loci were detected in 127 WGS samples by all the 152 

packages and the original publication. Interestingly, Katdetectr, SigProfilerClusters, ClusteredMutations, and 153 

MafTools concordantly detected 102 previously unannotated kataegis loci within the original publication. 154 

 155 

The runtimes of all packages were recorded to give insight into the computational feasibility of these packages. 156 

Katdetectr showed the lowest mean runtime on both the synthetic and the WGS datasets (figure 2C). 157 

 158 

Figure 2. Performance evaluation of kataegis detection tools. A) The normalized Matthews Correlation Coefficient (nMCC) per package 159 

and Tumor Mutational Burden (TMB) class is depicted by individual data points connected with a dashed line (colored per package). B) 160 

Venn diagrams showing the concordance between Katdetectr, SigProfilerClusters, MafTools, ClusteredMutations, and Alexandrov et al. 161 



 7 

regarding kataegis classification per sample (i.e., does a sample contain one or more kataegis loci) and per kataegis loci (i.e., does a 162 

detected kataegis locus overlap with a kataegis locus detected by another package). C) Boxplots with individual data points represent the 163 

per sample runtimes of kataegis detection packages on the synthetic and Whole Genome Sequence datasets. Boxplots were sorted in 164 

ascending order based on mean runtime (depicted in the text below the boxplot). Y-axis is log10-scaled. Boxplots depict the Inter Quartile 165 

Range, with the median as a black horizontal line.  166 

 167 

Katdetectr examples with different TMBs 168 

We highlight four samples from the datasets that illustrate how Katdetectr accurately detects kataegis loci 169 

regardless of the TMB of the respective sample (Figure 3). The synthetic sample 124625_1_50_100 (TMB: 500) 170 

harbors one kataegis locus, containing 57 variants, which is detected by Katdetectr (Figure 3A). This kataegis 171 

locus is also detected by SeqKat, MafTools, ClusteredMutations, and SigProfilerClusters, in addition to 172 

numerous false positives. The package Kataegis did not detect any kataegis loci in this synthetic sample.  173 

 174 

In lung adenocarcinoma sample LUAD-E01014 (TMB: 7.6), Katdetectr detected 37 kataegis loci containing 449 175 

variants (Figure 3B).  MafTools, ClusteredMutations, and SeqKat detected similar kataegis loci in this sample, 176 

whereas Kataegis and SigProfilerClusters did not detect any kataegis loci in this sample. In breast cancer 177 

sample PD7207a (TMB: 0.8), two kataegis loci were detected by Katdetectr MafTools, ClusteredMutations, and 178 

SigProfilerClusters (Figure 3C). Kataegis and SeqKat did not detect any kataegis loci in this sample. Lastly, in the 179 

breast cancer sample PD4086a (TMB: 0.6), one kataegis locus was detected by all packages except for Kataegis 180 

(Figure 3D). 181 

 182 

Figure 3. Rainfall plots constructed by Katdetectr and confusion matrices, accuracy, and nMCC for four samples. A) Synthetic sample 183 

124625_1_50_100 with Tumor Mutational Burden (TMB): 500, B) Lung adenocarcinoma Whole Genome Sequenced (WGS) sample LUAD-184 

E01014 with TMB: 7.6. C) Breast cancer WGS sample PD7207a with TMB: 2.5. D) Breast cancer WGS sample PD4086a with TMB: 0.62. The 185 

WGS samples were collected and labeled for kataegis by Alexandrov et al.; their results were used as ground truth to construct the 186 

confusion matrices and performance metrics [2]. Rainfall plot: Y-axis: IMD, x-axis: variant ID ordered on genomic location, light blue 187 

rectangles: kataegis loci with genomic variants within kataegis loci shown in bold. The color depicts the mutational type.  The vertical lines 188 

represent detected changepoints, while black horizontal solid lines show the mean IMD of each segment. Confusion matrix: True Positive 189 

(TP), False Positive (FP), True Negative (TN), False Negative (FN), Accuracy, and normalized Matthews Correlation Coefficient (nMCC).  190 

 191 
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Discussion 192 

Here, we described Katdetectr, an R/Bioconductor package for the detection, characterization, and 193 

visualization of kataegis in genomic variant data by utilizing unsupervised changepoint analysis.  194 

 195 

First, we tested four search algorithms for changepoint analysis, which revealed that the PELT [15] algorithm 196 

outperformed the BinSeg [16], SegNeigh [17], and AMOC algorithms both in terms of prediction accuracy and 197 

computational feasibility. The BinSeg algorithm performed reasonably well, however, it underfitted the data, 198 

which resulted in many false negatives. The SegNeigh algorithm performed well on samples with a TMB < 5; 199 

however, this algorithm is computationally expensive, as it scales exponentially with the size of the data, and 200 

cannot reasonably be used for the analysis of samples with a TMB > 10.  Unsurprisingly, the AMOC (at most 201 

one change) algorithm cannot detect kataegis as a kataegis locus is generally defined by two changepoints. 202 

 203 

Besides testing search algorithms, we benchmarked Katdetectr using PELT and five publicly available kataegis 204 

detection packages which were recently published and used for supporting kataegis research [2, 5, 14, 15]. 205 

Since no consensus benchmark was available, we aimed to get insight into the performance of these tools. The 206 

complexity of kataegis detection is to separate genomic regions of higher-than-expected mutational density 207 

from the background of somatic mutations. Therefore, we argued that generating a synthetic dataset 208 

containing samples of varying TMB (0.1-500), would provide a good measure for algorithmic solvability of the 209 

kataegis detection problem. Benchmarking on this synthetic dataset revealed that the accuracy of kataegis 210 

detection for all evaluated packages drops when the TMB increases.  Performance evaluation per TMB-binned 211 

class revealed that Katdetectr is on par with alternative packages for samples with low or middle TMB. 212 

However, in contrast to alternative packages, Katdetectr remained robust when analyzing samples with a high 213 

TMB. This could be an important feature when analyzing late-stage (metastatic) malignancies or malignancies 214 

with a known predisposition of acquiring many somatic mutations such as skin or lung malignancies [20]. 215 

Additionally, the computation times of Katdetectr are feasible for samples with a TMB ranging from 0.1 to 500 216 

as PELT scales linearly with the size of the data [15]. This shows that kataegis detection using Katdetectr is 217 

feasible on reasonably modern computer hardware. 218 

 219 
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The presented performance evaluation depends on the truth labels provided by the datasets. Both the 220 

synthetic and the WGS dataset have their limitations. We constructed the synthetic dataset by modeling 221 

mutations on a genome as a Bernoulli process, which is a common approach for modeling events that occur in 222 

a sequence. However, we did not incorporate prior biological knowledge in the synthetic dataset generation. 223 

Both SeqKat and SigProfilerClusters incorporate biological assumptions regarding kataegis, e.g., mutation 224 

context, which possibly negatively influenced their performance regarding the synthetic dataset. Additionally, 225 

the distance between events generated by a Bernoulli process is a geometric random variable. For a large n, 226 

which is the case for a human genome, a geometric random variable approximates an exponential random 227 

variable. Since we constrain Katdetectr to only fit exponential distributions it is unsurprising that Katdetectr 228 

performs well on the synthetic dataset. Nevertheless, MafTools, ClusteredMutations, SeqKat, and 229 

SigProfilerClusters are less robust when analyzing the synthetic samples with a TMB of 100 and 500 as they 230 

classify many false positives kataegis loci. 231 

 232 

In addition to the synthetic dataset, we used the a priori labeled pan-cancer WGS dataset from the 233 

groundbreaking work of Alexandrov et al. to evaluate the kataegis detection tools [2]. However, the field of 234 

kataegis has grown and evolved since the publication of this dataset. Therefore, we want to emphasize that 235 

this dataset should not be considered an unequivocal truth, and the performance metrics should not be taken 236 

at face value. The annotation of this dataset likely contains several false positives and false negatives; as 237 

highlighted by the concordant discovery of 102 additional kataegis loci by several packages. Nevertheless, we 238 

believe that the current benchmarking results give insight into the behavior of the evaluated packages 239 

regarding kataegis classification in samples with varying TMB. Additionally, the dataset published by 240 

Alexandrov and the predictions by all tools evaluated here are publicly available which facilitates 241 

benchmarking of future endeavors regarding kataegis loci detection methods. 242 

 243 

Our benchmarking showed that, for the WGS dataset, Katdetectr, MafTools, ClusteredMutations, and, 244 

SigProfilerClusters have a high concordance in classifying a whole sample as kataegis positive or negative. 245 

However, when concerning distinct kataegis loci, we observed more differences. ClusteredMutations reported 246 

the overall largest number of loci (n = 2,360), indicating it has the highest sensitivity. Conversely, kataegis (n = 247 

8) and SeqKat (n = 528) reported the overall smallest number of loci which we deem too small based on visual 248 
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inspection. The third smallest number of kataegis loci is reported by SigProfilerClusters (n = 764), indicating it 249 

has the highest specificity. Katdetectr appears to balance sensitivity and specificity as it only detects kataegis 250 

loci detected by one or more alternative packages (n = 1,050). 251 

 252 

We have sought to test the performance of all alternative tools utilizing their hard-coded or otherwise 253 

suggested default settings as mentioned by the authors in their respective manuscripts or manuals. Katdetectr 254 

was likewise performed with its default settings as described within this manuscript. We have not performed 255 

additional parameter sweeps for the alternative packages as we argue that the default settings will be used by 256 

the majority of users. We therefore cannot discard that fine-tuning the parameters would have had an 257 

influence on our performance evaluation. 258 

 259 

Kataegis is the most commonly used term for local hypermutations and has historically been defined as a 260 

cluster of at least six variants, of which the mean IMD is less or equal to 1000 base pairs [1, 16]. However, this 261 

definition has been altered recently, making the formal definition of kataegis ambiguous [2, 4, 5, 14]. For 262 

instance, another type of clustered mutations is called Omikli, which refers to clusters smaller than kataegis, 263 

generally containing three or four variants [7]. Although different types of clustered variants can be detected 264 

using Katdetectr by supplying the correct parameters, we only evaluated Katdetectr for the detection of 265 

kataegis. 266 

 267 

We made Katdetectr publicly available on the Bioconductor platform, which requires peer-reviewed open-268 

source software and high standards regarding development, documentation, and unit testing. Furthermore, 269 

Bioconductor ensures reliability and operability on common operating systems (Windows, macOS, and Linux). 270 

We designed Katdetectr to fit well in the Bioconductor ecosystem by incorporating common Bioconductor 271 

object classes. This allows Katdetectr to be used reciprocally with the plethora of statistical software packages 272 

available in Bioconductor for preprocessing and subsequent analysis. Lastly, we implemented Katdetectr 273 

flexibly, allowing Katdetectr to be used in an ad hoc manner for quick assessment of clustered variants and 274 

extensive research of the mutation rates across a tumor genome. 275 

 276 
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Conclusion 277 

Katdetectr is a free, open-source R package available on Bioconductor that contains a suite for the detection, 278 

characterization, and visualization of kataegis. Katdetectr employs the PELT search algorithm for unsupervised 279 

changepoint analysis, resulting in robust and fast kataegis detection. Additionally, Katdetectr has been 280 

implemented in a flexible manner which allows Katdetectr to expand in the field of kataegis. Katdetectr is 281 

available on Bioconductor[21] and on GitHub[22]. 282 

 283 

Methods 284 

Implementation Katdetectr 285 

Katdetectr (v1.2.0, git commit 5a6e5d04109eb082cbea040049dca34237b6c8f5) was developed in the R 286 

statistical programming language (v4.2.0) [23]. Katdetectr imports genomic variants through generic, 287 

standardized file formats for variant calling: MAF, VCF, or Bioconductor-standard VRanges objects. Within 288 

Katdetectr, the imported variants are pre-processed such that, per chromosome, all variants (all rows in 289 

variant file; incl. InDels or structural variations) are sorted in ascending order based on their genomic position. 290 

Overlapping variants are merged into a single record as phasing and clonality are not considered by katdetectr. 291 

Following, per 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗, the intermutation distance (𝐼𝑀𝐷𝑖,𝑗) of each 𝑣ariant𝑖,𝑗  and its closest upstream 292 

𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖 − 1,𝑗  is calculated according to; 293 

 294 

𝐼𝑀𝐷𝑖,𝑗  = {
 𝑖 =  1      𝑠𝑖,𝑗                         

𝑖 >  1      𝑠𝑖,𝑗 − 𝑠𝑖 −1,𝑗       
  𝑖 =  {1, 2, . . . , 𝑘𝑗} 295 

Equation 1 296 

With 𝑖 as the variant number, j as the chromosome number, s as the genomic location of the first base-pair of 297 

a 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖,𝑗 and 𝑘𝑗  as the total number of variants in 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗  (Figure 1B). Additionally, for each 298 

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗  one pseudo IMD, 𝐼𝑀𝐷𝑝,𝑗 ,  is added such that; 299 

𝑛𝑗 =   𝐼𝑀𝐷𝑝,𝑗  +  ∑ 𝐼𝑀𝐷𝑖,𝑗

𝑘𝑗

𝑖 = 1
 300 

Equation 2 301 
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With 𝑛𝑗  as the total number of base-pairs in 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗  302 

Katdetectr aims to identify genomic regions characterized by specific mutation rates. An unsupervised 303 

technique called changepoint analysis is performed per chromosome on the IMDs to assess the variability in 304 

mutation rate across each chromosome. Changepoint analysis refers to the process of detecting points in a 305 

sequence of observations where the statistical properties of the sequence significantly change. Subsequently, 306 

the detected changepoints are used to segment the input sequence into segments. For a detailed description 307 

of the changepoint analysis, see the work of Killick, Fearnhead, and Eckley [15]  308 

We implemented the cpt.meanvar() function from the commonly used R changepoint package (v2.2.3) in 309 

Katdetectr for the unsupervised segmentation of IMDs, as detailed by [11, 20, 21]. We set the following 310 

parameters settings; method: Pruned Exact Linear Time (PELT), minimal segment length: 2, test statistic: 311 

Exponential, and penalty: Bayesian Information Criterion (BIC), as default settings in Katdetectr. 312 

 313 

After changepoint analysis, each segment is annotated with its respective genomic start and end positions, its 314 

mean IMD, and the total number of included variants. Since we use an exponential distribution as the test 315 

statistic in changepoint analysis, each segment has a corresponding rate parameter of the fitted exponential 316 

distribution. Whereas each segment is annotated with its corresponding mutation rate, the mutation rate of 317 

an entire sample can be expressed as the weighted arithmetic mean of the mutation rate of the segments; 318 

 319 

𝜆𝑡 =   
𝑘𝑡

𝑛𝑡

 =  ∑  
𝜆𝑠 𝑛𝑠

𝑛𝑡

𝑚

𝑠 = 1
 320 

Equation 3 321 

 322 

With 𝜆𝑡 as the mutation rate of the entire sample, 𝑘𝑡 as the total number of variants present in the sample, 𝑛𝑡 323 

as the total number of base pairs in the genome, 𝑚 as the total number of segments in the sample, and 𝜆𝑠 and 324 

𝑛𝑠 as the mutation rate and the number of base-pairs in 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 325 

 326 

To call a segment a putative kataegis locus, it has to adhere to two user-defined parameters: the maximum 327 

mean IMD of the segment (IMDcutoff) and the minimum number of included variants (minSizeKataegis). These 328 
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parameters can be provided as static integer values or as a custom R function determining the IMD cutoff for 329 

each segment. For example, the following function for annotation of kataegis events, as was used by the 330 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, can be easily implemented in Katdetectr [3]: 331 

 332 

𝐼𝑀𝐷𝑐𝑢𝑡𝑜𝑓𝑓𝑠  ≤  

−𝑙𝑜𝑔 (1 − √
0.01

𝐿𝑠

𝑘𝑠−1

)

𝜆𝑚𝑒𝑑

 333 

 334 

𝑤𝑖𝑡ℎ; ⌈𝐼𝑀𝐷𝑐𝑢𝑡𝑜𝑓𝑓⌉  =  1000  335 

Equation 4 336 

 338 

 337 

With 𝐼𝑀𝐷𝑐𝑢𝑡𝑜𝑓𝑓𝑠   as the IMD cut-off value, 𝑘𝑠 as the number of mutations and 𝐿𝑠 as the length of 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 339 

in base-pairs. For this function the rate of the whole sample is modeled assuming an exponential distribution 340 

with; 341 

 342 

𝜆𝑚𝑒𝑑  =  
𝑙𝑜𝑔(2)

𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑀𝐷)
 343 

Equation 5 344 

Henceforth, all segments satisfying these user-specified parameters are considered putative kataegis loci and 345 

stored appropriately. Two or more adjacent kataegis loci are merged and stored as a single record. 346 

 347 

The output of Katdetectr consists of an S4 object of class “KatDetect” which stores all relevant information 348 

regarding kataegis detection and characterization. A KatDetect object contains four slots: 1) the putative 349 

kataegis loci (Granges), 2) the detected segments (Granges), 3) the inputted genomic variants with annotation 350 

(Vranges), and 4) the parameters settings (List). These data objects can be accessed using accessor functions. 351 

 352 

In addition, we implemented three methods for the KatDetect class, summary, show, and rainfallPlot. In 353 

concordance with R standards, the summary function prints a synopsis of the performed analysis, including the 354 
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number of detected kataegis loci; and the number of variants inside a kataegis loci. The show function displays 355 

information regarding the S4 class and the synopsis.  356 

 357 

The method rainfallPlot is a function for generating rainfall plots. These rainfall plots display the genomic 358 

ordered IMDs (from all genomic variants) within a sample and highlight putative kataegis loci and associated 359 

genomic variants. This function has additional arguments: showSequence, which allow the user to display 360 

specific chromosomes, and showSegmentation, for displaying the changepoints and the mean IMD of all 361 

segments. 362 

 363 

For additional examples and more hands-on technical instructions, we refer to the accompanying vignette 364 

(Supplemental vignette) or the online Bioconductor repository[21]. 365 

 366 

Performance evaluation 367 

As multiple packages for kataegis detection are publicly available, we compared Katdetectr against MafTools 368 

(v2.13.0), ClusteredMutations (v1.0.1), kataegis (v0.99.2), SeqKat (v0.0.8) and, SigProfilerClusters (v1.0.11) [6-369 

10]. For benchmarking, we used an in-house generated synthetic dataset and an a priori labeled pan-cancer 370 

dataset of whole genome sequenced malignancies. As not all evaluated packages accepted InDels 371 

 372 

We used the following definition of kataegis as postulated by Alexandrov and colleagues: a kataegis locus is 1) 373 

a continuous segment harboring ≥6 variants and 2) the captured IMDs within the segment have a mean IMD of 374 

≤1000 bp [2]. To quantify and compare performances, the task of kataegis detection was reduced to a binary 375 

classification problem. The task of the kataegis detection packages was to correctly label each variant for 376 

kataegis, i.e., whether or not a genomic variant lies within a kataegis locus.  377 

 378 

Performance metrics 379 

Only a small fraction of all observed variants is located within kataegis loci, this results in a large class 380 

imbalance which renders the interpretation of performance metrics, such as accuracy, F1, TPR, and TNR, 381 

counterintuitive and possibly unrepresentative (Equation 3). Therefore, the normalized Matthews Correlation 382 
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Coefficient (nMCC) was used as the primary metric for performance evaluation. The nMCC considers 383 

performance proportionally to both the size of positive and negative elements in a dataset [26].  384 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
 385 

 386 

𝑀𝐶𝐶 =  
𝑇𝑃 ∙ 𝑇𝑁 −  𝐹𝑃 ∙ 𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 387 

 388 

𝑛𝑀𝐶𝐶 =  
𝑀𝐶𝐶 +  1

2
 390 

 389 

𝐹1 =  
𝑇𝑃

𝑇𝑃 +  
1
2

(𝐹𝑃 +  𝐹𝑁)
 392 

 393 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 394 

 391 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 395 

 396 

Equation 6. Performance metrics. Accuracy, Matthews Correlation Coefficient (MCC), normalized Matthews Correlation 397 

Coefficient (nMCC), F1 score, True Positive Rate (TPR), and True Negative Rate (TNR).  398 

True Positive (TP): Predicted: variant in kataegis locus. Truth set: variant in kataegis locus.  399 

False Positive (FP): Predicted: variant in kataegis locus. Truth set: variant not in kataegis locus. 400 

True Negative (TN):  Predicted: variant not in kataegis locus. Truth set: variant not in kataegis locus. 401 

False Negative (FN): Predicted: variant not in kataegis locus. Truth set: variant in kataegis locus. 402 

 403 

We utilized Venn diagrams to display the concordance of the kataegis detection packages. We showed in 404 

which samples the packages detected one or more kataegis loci and which kataegis loci were detected by the 405 

packages. Two packages are said to detect the same kataegis locus if the genomic locations of their respective 406 

kataegis locus overlap by at least one base pair. 407 

 408 
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To give insight into the package’s computation time, the packages runtime performance was recorded using 409 

the proc.time() function from the base R package. All packages and comparisons were run on the same 410 

server utilizing an AMD EPYC 7742 64-Core Processor. The packages Katdetectr and SigProfilerClusters 411 

contained options for parallel processing and used at most four cores per sample during the analyses. All other 412 

packages used a single processing core per sample. 413 

 414 

All scripts necessary for running and visualizing the performance evaluation of all evaluated packages are 415 

available on GitHub[22]. All data used for the performance evaluation is available at Zenodo[27].  416 

 417 

Synthetic data generation 418 

The synthetic dataset was generated using the generateSyntheticData() function within the 419 

Katdetectr package. Mutations were randomly sampled on a reference genome such that each base has an 420 

equal probability, p, of being mutated (except for N bases for which p = 0). This reduces the occurrence of 421 

mutations on the reference genome to a sequence of X1, X2, ..., Xn, independent Bernoulli trials, Xi, i.e., a 422 

Bernoulli process, where;  423 

 424 

𝐏(𝑋𝑖  =  𝟏)  =  𝐏(Mutation at 𝑖th base)  =  𝑝 425 

𝐏(𝑋𝑖  =  𝟎)  =  𝐏(No mutation at 𝑖th base)  =  1 –  𝑝 426 

Equation 7 427 

with probability mass function (PMF), expectation and variance: 428 

 429 

𝑝𝑠(𝑘) =  (
𝑛

𝑘
) 𝑝𝑘 (1 −  𝑝)𝑛−𝑘 ,      𝑘 =  0, 1, . . . . , 𝑛 430 

 431 

𝐄(𝑆)  =  𝑛𝑝 432 

 433 

𝑣𝑎𝑟(𝑆)  =  𝑛𝑝(1 −  𝑝) 434 

Equation 8 435 
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with p as the probability of success (i.e., mutation), n as the number of independent trials (i.e., length of the 436 

genome in base pairs), and k as the number of successes (i.e., number of occurred mutations). The IMD now 437 

reduces to geometric random variable T; with PMF, expectation, and variance: 438 

 439 

𝑝𝑇(𝑡)  =  (1 −  𝑝) − 1𝑝 440 

 441 

𝐄(𝑇)  =  
1

𝑝
 442 

 443 

𝑣𝑎𝑟(𝑇)  =  
1 −  𝑝

𝑝2
 444 

Equation 9 445 

The genomic start location of a kataegis locus was sampled as an independent Bernoulli trial. The genomic end 446 

location of a kataegis locus was calculated using: 447 

 448 

𝑒𝑛𝑑𝑖  =  𝑠𝑡𝑎𝑟𝑡𝑖  +  𝐄 (𝑇)𝑖(𝑘𝑖  +  1) –  1 449 

Equation 10 450 

Synthetic dataset description 451 

The synthetic data consists of 1,024 samples with a total of 21,299,360 SNVs (Table 2). All mutations were 452 

generated on chromosome 1 on the human reference genome hg19. These samples were generated such that 453 

8 different TMB classes (0.1, 0.5, 1, 5, 10, 50, 100, 500) were considered.  454 

 455 

𝑇𝑀𝐵 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔𝑒𝑛𝑜𝑚𝑒 𝑖𝑛 𝑏𝑝
 ∗  106  456 

Equation 11 457 

For each TMB class, a sample was generated for all combinations of the following parameters: the number of 458 

kataegis loci (1, 2, 3, 5); the number of variants within each kataegis loci (6, 10, 25, 50); and the expected IMD 459 

of the variants in kataegis loci (100, 250, 500, 750). This resulted in 64 kataegis samples per TMB class. To 460 
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balance the dataset, 64 samples without kataegis loci were generated for each TMB class. The synthetic 461 

dataset contained 1,232 kataegis loci and 33,245 variants within kataegis loci.  462 

 463 

Descriptive statistics of synthetic dataset 464 

 TMB class (no. of background 

mutations) 

No. Samples (with 

kataegis) 

No. Kataegis 

loci 

No. Variants in kataegis 

loci 

0.1 (25) 128 (64) 176 4,005 

0.5 (125) 128 (64) 176 4,,006 

1 (249) 128 (64) 176 4006 

5 (1,246) 128 (64) 176 4,014 

10 (2,493) 128 (64) 176 4,,029 

50 (12,463) 128 (64) 176 4077 

100 (24,925) 128 (64) 176 4,183 

500 (124,625) 128 (64) 176 4,925 

Table 2. Showing per Tumor Mutational Burden (TMB) class: TMB, number of generated background mutations per sample, the total 465 

number of samples, total number of samples with kataegis, total number of kataegis loci, and total number of variants within a kataegis 466 

loci of 1024 synthetic samples. 467 

 468 

Whole Genome Sequence (WGS) dataset description 469 

The WGS dataset (as used in this study; table 3) is publicly available in .txt format[2]. This dataset contained 470 

7,042 primary cancer samples from 30 different tissues; of which 507 originate from whole genome 471 

sequencing (WGS) and 6,535 from whole exome sequencing (WES). Only the WGS samples (n = 507) were 472 

originally labeled using a Piece-Wise Constant Fit (PCF) model and manually curated for kataegis presence (or 473 

absence) by the original study. Only the respective WGS samples, with a total of 3,382,751 SNVs, were re-474 

interrogated within our performance evaluation. Additionally, we binned this dataset into three TMB classes 475 

(low: TMB < 0.1, middle: 0.1 ≥ TMB < 10, high: TMB ≥ 10) and filtered it such that it only contained single 476 

nucleotide variants (SNVs). 477 

 478 

Descriptive statistics of WGS dataset.  479 
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 TMB class # Samples (with 

kataegis) 

# Kataegis loci # Variants in kataegis 

loci 

Low: TMB < 0.1 301(45) 93 946 

Middle: 0.1 ≥ TMB < 10 186 (89) 444 5,058 

High: TMB ≥ 10 20(18) 336 3,107 

Table 2. Showing per Tumor Mutational Burden (TMB) class: TMB range, the total number of samples, total number of samples with 480 

kataegis, total number of kataegis loci, and total number of variants within a kataegis loci of 507 Whole Genome Sequenced (WGS) 481 

samples labeled by Alexandrov et al. [1]. 482 

 483 

Pre-processing and parameter settings of alternative kataegis detection packages 484 

Both the synthetic and the Alexandrov et al. datasets were converted to MAF format for use in MafTools [10] 485 

ClusteredMutations [11], and kataegis [12] and to BED format for use in SeqKat [13]. All other parameter 486 

settings for MafTools, kataegis, ClusteredMutations, and SeqKat were set to the default values as specified in 487 

their respective manuals and vignettes. 488 

 489 

For SigProfilerClusters [14] both the synthetic and the Alexandrov et al. datasets were converted to a .txt file 490 

with column names as specified in the manual of SigProfilerClusters. We set the following parameters for 491 

SigProfilerSimulator(): genome="GRCh37", contexts = ['288'], simulations=100, overlap=True. For subsequent 492 

cluster detection, we set the following parameters for SigProfilerClusters.analysis(): genome="GRCh37", 493 

contexts="96", simContext=["288"], analysis="all", sortSims=True,  subClassify=True, correction=True, 494 

calculateIMD=True, max_cpu=4, includedVAFs=False. 495 

 496 

From the output of SigProfilerClusters we selected the class 2 (kataegis) clusters for further analysis. The 497 

definition of kataegis used by SigProfilerClusters differs from the one used in our performance evaluation. 498 

SigProfilerClusters defines kataegis as a cluster of ≥4 genomic variants of which the mean IMD is statistically 499 

different from the sample specific IMD cut-off. To include SigProfilerClusters in our performance evaluation we 500 

only selected clusters detected by SigProfilerClusters that fit the definition of kataegis we used for the 501 

performance evaluation, i.e., a kataegis locus contains ≥6 genomic variants with a mean IMD ≤1,000 bp.  502 
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