M14.53 Prioritization report

<u>Prepared by</u>: Mohammed Toufiq (The Jackson Laboratory for Genomic Medicine, Farmington, CT)

1. Composition

The module M14.53 belongs to Aggregate A37 from the BloodGen3 fixed module repertoire (1, 2). This module aggregate is associated with circulating erythroid cells. It was found to be associated with RSV disease severity (3). We showed in the same study that the abundance of A27 transcripts is also elevated in the blood of patients with stage IV melanoma (3).

It comprises 18 genes: MARCH8, BCL2L1, BSG, CDC34, CHPT1, CHPT1, FHL2, GLRX5, IGF2BP2, KLF1, LOC650832, LOC653778, LOC654103, MAP2K3, RBM38, RBM38, RIOK3, TMEM63B.

2. Functional convergence

Functional Themes	Associated Genes	Comments
Ubiquitination and protein turnover	MARCH8, CDC34	The proteins encoded by MARCH8, CDC34 genes play key roles in protein ubiquitination and implicated in the process of protein sorting and degradation which required for cell cycle progression.
Signal transduction	BSG, FHL2, MAP2K3, RIOK3	It has multiple functions, including a role in cell adhesion, signal transduction, and matrix metalloproteinase induction. Plays a role in signal transduction, cell differentiation and proliferation. Part of the MAPK signaling pathway, playing a role in cell proliferation, differentiation, and apoptosis.Involved in signal transduction and cellular stress response.
Post- transcriptional regulation of RNA	IGF2BP2, RBM38	Has a role in RNA binding and is implicated in post- transcriptional regulation. Involved in post-transcriptional regulation of mRNA, including mRNA stability and translation.
Cell survival, proliferation, and death	BCL2L1, FHL2, MAP2K3	It is an anti-apoptotic gene involved in regulating cell death and survival. Plays a role in signal transduction, cell differentiation and proliferation. Part of the MAPK signaling pathway, playing a role in cell proliferation, differentiation, and apoptosis.

3. Scoring and prioritization

Genes were scored on six criteria using GPT-4 and Claude. The scores were averaged, and candidate genes ranked according to their cumulative scores (**Figure 1**, Methods: Step 3 and Step 4).

The two LLMs were requested to score each gene on the following six statements:

- a. The gene is associated with erythroid cells or erythropoiesis.
- b. The gene is currently being used as a biomarker in clinical settings.
- c. The gene has potential value as a blood transcriptional biomarker.
- d. The gene is relevant to circulating leukocytes immune biology.
- e. The gene is a known drug target.
- f. The gene is therapeutically relevant for immune-mediated diseases.

Figure 1: The stacked bar graph shows cumulative scores across six criteria for the 18 M14.53 genes.

The top five genes selected for further evaluation were: BCL2L1, BSG, KFL1, MAP2K3 and GLRX5 (Figure 2).

Figure 2: The radar plot represents individual scores for the 5 top scoring genes: BCL2L1, BSG, KFL1, MAP2K3 and GLRX5.

4. Knowledge-driven evaluation of top five candidates

Justifications given by the GPT-4 and Claude for the scores provided across the 6 criteria were compiled and summarized by GPT-4 (Methods: Step 5). For each statement pertinent references were retrieved using GPT-4 or Claude, with the relevance of each reference checked and attributed manually by researcher authoring this report.

<u>Function</u>: "The BCL2L1 gene produces two isoforms: Bcl-xL and Bcl-xS, which are integral in apoptosis regulation. Bcl-xL inhibits cell death by binding to pro-apoptotic factors, whereas Bcl-xS promotes apoptosis. Notably, Bcl-xL overexpression in cancers is associated with chemotherapy resistance ([https://pubmed.ncbi.nlm.nih.gov/23378584/] [https://pubmed.ncbi.nlm.nih.gov/19632186/] [https://pubmed.ncbi.nlm.nih.gov/18097445/] [https://pubmed.ncbi.nlm.nih.gov/9430630/] [https://pubmed.ncbi.nlm.nih.gov/8358789/] [https://pubmed.ncbi.nlm.nih.gov/1085534/] [https://pubmed.ncbi.nlm.nih.gov/10732784/] [https://pubmed.ncbi.nlm.nih.gov/7655019/]). The BSG gene encodes the glycoprotein basigin (CD147), which plays roles in cell adhesion, nutrient transport, and metalloproteinase activation, influencing processes like metastasis and inflammation ([https://pubmed.ncbi.nlm.nih.gov/7812975/] [https://pubmed.ncbi.nlm.nih.gov/10921872/] [https://pubmed.ncbi.nlm.nih.gov/15946952/]). The KLF1 gene, crucial for erythropoiesis, controls the activation of genes essential for erythrocyte differentiation and maturation; mutations can lead to anemia ([https://pubmed.ncbi.nlm.nih.gov/21190291/] [https://pubmed.ncbi.nlm.nih.gov/26903544/] [https://pubmed.ncbi.nlm.nih.gov/20508144/] [https://pubmed.ncbi.nlm.nih.gov/21613252/] [https://pubmed.ncbi.nlm.nih.gov/21055716/] [https://pubmed.ncbi.nlm.nih.gov/21531944/]).The MAP2K3 gene produces a kinase operating in the MAP kinase pathway, impacting cell proliferation, differentiation, and immune reactions ([https://pubmed.ncbi.nlm.nih.gov/8622669/] [https://pubmed.ncbi.nlm.nih.gov/9430721/] [https://pubmed.ncbi.nlm.nih.gov/17496909/] [https://pubmed.ncbi.nlm.nih.gov/22535895/] [https://pubmed.ncbi.nlm.nih.gov/7914033/].). Lastly, the GLRX5 gene encodes glutaredoxin-5 in the mitochondrial matrix, essential for forming iron-sulfur clusters and managing mitochondrial iron balance and oxidative stress. Mutations here can result in sideroblastic anemia ([https://pubmed.ncbi.nlm.nih.gov/20481466/] [https://pubmed.ncbi.nlm.nih.gov/17485548/])".

a. Relevance to erythroid cells and erythropoiesis: "BCL2L1, encoding Bcl-xL, plays a role in erythroid progenitor cell survival, but its direct association with erythroid cells remains unconfirmed, given its widespread anti-apoptotic functions across diverse cell types ([https://pubmed.ncbi.nlm.nih.gov/10359572/] [https://pubmed.ncbi.nlm.nih.gov/9226163/] [https://pubmed.ncbi.nlm.nih.gov/9735050/]). The BSG gene, encoding CD147, lacks concrete evidence linking it to erythroid cells or erythropoiesis, as CD147 is universally expressed in numerous cells ([https://pubmed.ncbi.nlm.nih.gov/26684586/] [https://pubmed.ncbi.nlm.nih.gov/22080952/] [https://pubmed.ncbi.nlm.nih.gov/9501026/] [https://pubmed.ncbi.nlm.nih.gov/15946952/].). KLF1, on the other hand, exhibits a robust association with erythroid cells and erythropoiesis, functioning specifically as an essential erythroid transcription factor regulating differentiation-related genes ([https://pubmed.ncbi.nlm.nih.gov/21190291/] [https://pubmed.ncbi.nlm.nih.gov/21900194/] [https://pubmed.ncbi.nlm.nih.gov/10688844/] [https://pubmed.ncbi.nlm.nih.gov/21613252/]). The link between MAP2K3, a part of the MAP kinase pathway, and erythropoiesis is tenuous, with minimal evidence supporting a connection ([https://pubmed.ncbi.nlm.nih.gov/7750577/] [https://pubmed.ncbi.nlm.nih.gov/7839144/] [https://pubmed.ncbi.nlm.nih.gov/32429593/] [https://pubmed.ncbi.nlm.nih.gov/34299300/] [https://pubmed.ncbi.nlm.nih.gov/18383321/]). GLRX5 is integral to erythroid heme synthesis, iron metabolism, and erythroid cell maturation, though its activities extend beyond erythroid-specific processes. Notably, GLRX5 gene mutations contribute to sideroblastic anemia ([https://pubmed.ncbi.nlm.nih.gov/20364084/])".

b. <u>Is used as a clinical biomarker:</u> "In the realm of oncology, the BCL2L1 gene is predominantly investigated as a potential drug target due to its ties with apoptosis resistance, though its clinical value as a biomarker remains unvalidated ([<u>https://pubmed.ncbi.nlm.nih.gov/26822577/]</u> [<u>https://pubmed.ncbi.nlm.nih.gov/17629468/]</u> [<u>https://pubmed.ncbi.nlm.nih.gov/19043450/]</u> [<u>https://pubmed.ncbi.nlm.nih.gov/27537525/]</u>). BSG, also termed CD147, associated with cell invasion and metastasis in various cancers, also lacks validated evidence for routine clinical use as a diagnostic or prognostic biomarker ([https://pubmed.ncbi.nlm.nih.gov/25081536/] [https://pubmed.ncbi.nlm.nih.gov/7812975/]). KLF1's importance in cellular processes doesn't translate to its routine use as a biomarker; however, its gene mutations are identifiable via genetic testing

([https://pubmed.ncbi.nlm.nih.gov/7753195/] [https://pubmed.ncbi.nlm.nih.gov/23065504/] [https://pubmed.ncbi.nlm.nih.gov/21055716/]). The MAP2K3 gene, part of the MAP kinase pathway, is currently not backed by research to serve as a clinical biomarker ([https://pubmed.ncbi.nlm.nih.gov/12471242/]

[https://pubmed.ncbi.nlm.nih.gov/18383321/]). Although GLRX5 is vital for iron metabolism, it isn't traditionally employed as a clinical biomarker. Still, genetic testing can pinpoint anemias attributed to GLRX5 gene mutations ([https://pubmed.ncbi.nlm.nih.gov/20364084/] [https://pubmed.ncbi.nlm.nih.gov/17485548/])".

c. <u>Potential relevance as a blood transcriptional biomarker</u>: "BCL2L1, recognized for its anti-apoptotic properties, is under scrutiny as a potential blood transcriptional biomarker in oncology to assess disease progression and therapeutic effects, with its levels reflecting cellular apoptotic status. Still, its broad acceptance as a biomarker necessitates comprehensive validation ([https://pubmed.ncbi.nlm.nih.gov/26822577/]

[https://pubmed.ncbi.nlm.nih.gov/35983950/] [https://pubmed.ncbi.nlm.nih.gov/12209154/] [https://pubmed.ncbi.nlm.nih.gov/17097560/] [https://pubmed.ncbi.nlm.nih.gov/30792387/]). BSG (CD147) is emerging as a promising blood transcriptional biomarker for certain malignancies and inflammatory conditions, with early studies linking it to metastasis and inflammation; rigorous validation is critical for its definitive clinical use ([https://pubmed.ncbi.nlm.nih.gov/26684586/] [https://pubmed.ncbi.nlm.nih.gov/25081536/] [https://pubmed.ncbi.nlm.nih.gov/26684586/] [https://pubmed.ncbi.nlm.nih.gov/19438743/] [https://pubmed.ncbi.nlm.nih.gov/17579119/] [https://pubmed.ncbi.nlm.nih.gov/11688976/]). KLF1's central role in erythropoiesis suggests its potential as a biomarker, where its levels could indicate erythroid progenitor cell activity ([https://pubmed.ncbi.nlm.nih.gov/32311573/] [https://pubmed.ncbi.nlm.nih.gov/21531944/] [https://pubmed.ncbi.nlm.nih.gov/20676097/]). MAP2K3, involved in immune cell signaling, is being explored as a leukocyte biomarker, but thorough validation is mandatory for its widespread clinical utilization ([https://pubmed.ncbi.nlm.nih.gov/23535064/]

[https://pubmed.ncbi.nlm.nih.gov/15735648/]). Lastly, GLRX5, crucial for iron metabolism, presents potential as a blood transcriptional biomarker, particularly in iron-related conditions, with its levels reflecting mitochondrial iron metabolic status; however, its clinical implementation demands rigorous validation ([https://pubmed.ncbi.nlm.nih.gov/20364084/] [https://pubmed.ncbi.nlm.nih.gov/19731322/])".

d. <u>Relevance to leukocytes immune biology</u>: "BCL2L1, known for producing the antiapoptotic Bcl-xL, plays a role in the survival of immune cells, especially lymphocytes, though its specific function in circulating leukocytes remains unverified ([<u>https://pubmed.ncbi.nlm.nih.gov/11163351/</u>] [<u>https://pubmed.ncbi.nlm.nih.gov/37488586/</u>] [<u>https://pubmed.ncbi.nlm.nih.gov/17322918/</u>] [<u>https://pubmed.ncbi.nlm.nih.gov/8358789/</u>]). BSG, or CD147, is integral to leukocyte biology, aiding in lymphocyte proliferation, modulating macrophage responses, and facilitating leukocyte chemotaxis and extravasation at inflammation sites, emphasizing its key role in leukocyte functionality

([https://pubmed.ncbi.nlm.nih.gov/21083710/] [https://pubmed.ncbi.nlm.nih.gov/34421910/] [https://pubmed.ncbi.nlm.nih.gov/25977287/]). KLF1, primarily associated with erythroid cells, is not currently recognized as having a direct impact on the immune biology of circulating leukocytes ([https://pubmed.ncbi.nlm.nih.gov/20616217/]

[https://pubmed.ncbi.nlm.nih.gov/35822667/] [https://pubmed.ncbi.nlm.nih.gov/33570494/]). MAP2K3, vital for leukocyte signaling, is implicated in modulating cytokine production, signifying its importance in immune cell biology ([https://pubmed.ncbi.nlm.nih.gov/12951578/] [https://pubmed.ncbi.nlm.nih.gov/16567640/] [https://pubmed.ncbi.nlm.nih.gov/22101742/] [https://pubmed.ncbi.nlm.nih.gov/23580600/] [https://pubmed.ncbi.nlm.nih.gov/12951578/] [https://pubmed.ncbi.nlm.nih.gov/35743792/]). Meanwhile, the role of GLRX5, a mitochondrial protein, in circulating leukocyte immune biology remains ambiguous, necessitating further research for clarity ([https://pubmed.ncbi.nlm.nih.gov/30660387/])".

e. <u>Is a known drug target</u>: "BCL2L1, via its product Bcl-xL, is known to contribute to chemotherapy resistance in cancer, spurring active efforts to develop Bcl-xL inhibitors, which are currently in clinical trials targeting various cancers

([https://pubmed.ncbi.nlm.nih.gov/30537511/] [https://pubmed.ncbi.nlm.nih.gov/18806758/] [https://pubmed.ncbi.nlm.nih.gov/11085534/] [https://pubmed.ncbi.nlm.nih.gov/15902208/] [https://pubmed.ncbi.nlm.nih.gov/23291630/] [https://pubmed.ncbi.nlm.nih.gov/22184378/] [https://pubmed.ncbi.nlm.nih.gov/22426421/] [https://pubmed.ncbi.nlm.nih.gov/18657507/]). BSG, or CD147, has been marked as a significant drug target in oncology due to its critical role in tumor invasion and metastasis, with anti-BSG/CD147 antibodies showing anti-tumor effects in preclinical and early clinical trials ([https://pubmed.ncbi.nlm.nih.gov/26604323/] [https://pubmed.ncbi.nlm.nih.gov/25268615/] [https://pubmed.ncbi.nlm.nih.gov/17145878/] [https://pubmed.ncbi.nlm.nih.gov/15781323/] [https://pubmed.ncbi.nlm.nih.gov/24801417/] [https://pubmed.ncbi.nlm.nih.gov/37090718/]). While KLF1 is linked to blood disorders, it lacks broad recognition as a drug target, with minimal evidence supporting its potential in drug

development ([https://pubmed.ncbi.nlm.nih.gov/24443441/]

[https://pubmed.ncbi.nlm.nih.gov/26903544/] [https://pubmed.ncbi.nlm.nih.gov/35130609/] [https://pubmed.ncbi.nlm.nih.gov/26679864/]). MAP2K3 emerges as a key drug target in inflammatory disease research, with ongoing clinical trials of p38 inhibitors, believed to target MAP2K3, focusing on conditions like rheumatoid arthritis

([https://pubmed.ncbi.nlm.nih.gov/12951578/] [https://pubmed.ncbi.nlm.nih.gov/17827184/] [https://pubmed.ncbi.nlm.nih.gov/22535895/] [https://pubmed.ncbi.nlm.nih.gov/23954936/] [https://pubmed.ncbi.nlm.nih.gov/15735648/]). Conversely, despite GLRX5's essential role in iron metabolism, it is not currently recognized as a primary drug target, indicating a potential area for expanded research ([https://pubmed.ncbi.nlm.nih.gov/32685019/] [https://pubmed.ncbi.nlm.nih.gov/37345031/] [https://pubmed.ncbi.nlm.nih.gov/34732213/] [https://assets.researchsquare.com/files/rs-971437/v1/a355aff9-4ab7-412d-8034-34f42d433397.pdf?c=1642404554])".

f. Potential therapeutic relevance for immune-mediated diseases: "BCL2L1, although involved in immune cell survival regulation, is primarily noted for its role in conferring resistance to apoptosis in lymphocytes, particularly in autoimmune disorders like systemic lupus erythematosus (SLE) ([https://pubmed.ncbi.nlm.nih.gov/22342458/] [https://pubmed.ncbi.nlm.nih.gov/35983950/] [https://pubmed.ncbi.nlm.nih.gov/25473892/] [https://pubmed.ncbi.nlm.nih.gov/17534896/] [https://pubmed.ncbi.nlm.nih.gov/37488586/] [https://pubmed.ncbi.nlm.nih.gov/7878471/]). BSG, known for its roles in inflammatory responses and lymphocyte proliferation, has been linked with inflammation in conditions such as rheumatoid arthritis, multiple sclerosis, and lung disease, even though its research isn't limited to the immune context ([https://pubmed.ncbi.nlm.nih.gov/21228176/] [https://pubmed.ncbi.nlm.nih.gov/19350111/] [https://pubmed.ncbi.nlm.nih.gov/11943775/] [https://pubmed.ncbi.nlm.nih.gov/11353871/]). KLF1, central to erythropoiesis, is not directly associated with immune-mediated diseases, remaining primarily an erythroid transcription factor ([https://pubmed.ncbi.nlm.nih.gov/29728568/] [https://pubmed.ncbi.nlm.nih.gov/7753195/] [https://pubmed.ncbi.nlm.nih.gov/36231031/]). MAP2K3, instrumental in proinflammatory signaling in immune cells, is gaining traction as a potential therapeutic target for immune-mediated conditions

([https://pubmed.ncbi.nlm.nih.gov/23954936/] [https://pubmed.ncbi.nlm.nih.gov/7535770/] [https://pubmed.ncbi.nlm.nih.gov/19995751/] [https://pubmed.ncbi.nlm.nih.gov/12951578/]). Meanwhile, GLRX5, closely tied to sideroblastic anemia, lacks definitive evidence of its involvement in the pathogenesis of immune-mediated diseases, warranting further research in this domain ([https://pubmed.ncbi.nlm.nih.gov/32685019/]

[https://pubmed.ncbi.nlm.nih.gov/20364084/] [https://pubmed.ncbi.nlm.nih.gov/34732213/] [https://pubmed.ncbi.nlm.nih.gov/30401706/])".

5. Examining expression patterns of top 5 candidates across leukocyte populations

The expression patterns of the top 5 candidate genes were examined across diverse leukocyte populations and hematopoietic precursors using two reference transcriptomic datasets.

5.1 <u>Densely interconnected transcriptional circuits control cell states in human hematopoiesis</u> – (GSE24759)

http://developmentalimmunology.gxbsidra.org/dm3/geneBrowser/show/4000026

Figure 3: This stacked bar graph shows the expression levels of five candidate genes. ERY3-5 populations are CD71+ GLYA+ erythroid cells. The original article provides full experimental details: (4). The web link above also provides access to more complete information about this dataset as well as individual gene profiles.

5.2 <u>Next generation sequencing of human immune cell subsets across diseases – (GSE60424)</u> <u>http://cd2k.gxbsidra.org/dm3/geneBrowser/show/4000098</u>

Figure 4: This stacked bar graph shows the expression levels measured by RNAseq of the five candidate genes across six leukocyte populations and whole blood. The abundance is shown for each gene in each population for an average of up to 20 samples. Additional experimental details are accessible via the link provided above and is available as part of this sample series GEO record (<u>GSE60424</u>) (5).

5.3 BloodGen3 reference cohorts (GSE100150)

Α

Figure 5: The box plot in panel A shows the changes in abundance of transcripts comprising the M14.53 module, expressed within a cohort as the percentage of genes showing differential expression between each patient and the respective set of control subjects for this cohort. Differential expression is based on fixed cut-off (Log2 Fold Change >1.5, difference>10). These values are expressed as % module activity and can range from 100% (all genes are upregulated) to -100% (all genes are downregulated). The box plot in panel B show expression levels for the top 5 scoring M14.53 genes in patient cohorts relative to respective control subjects matched for demographic variables.

6. Overall pick(s) for M14.53

We aim to establish a universal immune profiling assay that measures transcript abundance of a panel of genes in whole blood using small- or meso-scale molecular profiling technology. Compelling candidates identified here from the M14.53 selection pool will be subjected to more in-depth evaluation using a pre-established workflow (6, 7).

Claude and GPT-4 were prompted to select a top candidate on the basis of the information summarized above in section 4, taking into account all six scoring criteria equally (Methods: Step 7).

Claude chose KLF1:

Here is a summary of the key conclusions regarding selection of a candidate gene for inclusion in a targeted blood transcriptional profiling panel:

Initial Summary:

Based on preliminary evidence, KLF1 was recommended due to its specialized role in erythropoiesis and erythroid cell biology.

Leukocyte RNA-seq Data:

• Low KLF1 expression in immune cell types supported its erythroid specificity over immune function.

Leukocyte Microarray Data:

• High KLF1 expression found specifically in erythroid precursor cells confirmed its relevance to erythropoiesis.

Patient Cohort RNA Abundance Data:

• Moderate decreases in KLF1 levels across immune-related diseases provided further evidence of its usefulness as an erythroid focused biomarker.

In summary, KLF1 was consistently recommended throughout the process due to multiple lines of evidence indicating its vital role in erythropoiesis and high expression in erythroid cell types. The data sources reinforced KLF1 as an ideal candidate to meet the intended purpose of an erythroid focused blood transcriptional biomarker for the panel.

GPT-4 chose BSG:

Of course! Here's a summary of the key conclusions drawn from the conversation and the data you provided:

1. Gene Selection: You provided data on five genes – BCL2L1, BSG, KLF1, MAP2K3, and GLRX5.

2. Immune Cells & RNAseq Data:

• BCL2L1 was identified as a potential marker for lymphocyte differentiation and has been associated with multiple immune processes.

• BSG (also known as CD147) has roles in T-cell activation and is involved in inflammatory processes.

• KLF1 is significant for erythroid differentiation and function.

• MAP2K3 is involved in the p38 MAPK signaling pathway, playing a role in various immune responses.

• GLRX5 is involved in iron-sulfur cluster biogenesis in mitochondria and affects cell proliferation.

3. Microarray Data: You presented averaged log2 fold changes in RNA abundance from patients with different diseases compared to controls.

Key Observations:

- BCL2L1:
- Elevated in metastatic melanoma, multiple sclerosis, and some other conditions.
- Reduced in HIV infection, acute influenza, Kawasaki disease, and some other conditions.
- BSG:

• Elevated in metastatic melanoma, acute respiratory syncytial virus infection, and some other conditions.

- Reduced most notably in HIV infection and acute influenza.
- KLF1:

• Elevated in metastatic melanoma, active pulmonary tuberculosis, and pregnant subjects.

- Reduced significantly in HIV infection, acute influenza, and multiple sclerosis.
- MAP2K3:
- Elevated in metastatic melanoma, sepsis, and some other conditions.
- Reduced in HIV infection, chronic obstructive pulmonary disease, and multiple sclerosis.
- GLRX5 (incomplete data):

- Elevated in patients with B-cell deficiency.
- 4. Considerations:

• Several diseases, notably HIV infection and acute influenza, commonly showed reduced RNA abundance across multiple genes.

• Metastatic melanoma often showed an increase in RNA abundance.

• The provided data could suggest potential roles for these genes in immune response or alterations during certain disease states. The functions of these genes in immune cells and their differential expression in various diseases indicate their potential importance in immune system regulation or pathology of the mentioned diseases.

In summary, the provided genes are significant in various aspects of immune function and show differential expression in various diseases. Further research is needed to clarify their exact roles and potential as therapeutic targets or disease markers.

Given the information and discussion so far, I would prioritize BSG (CD147) as a candidate gene for further investigation, and here are the reasons:

1. Broad Immunological Relevance: BSG (CD147) is known to have roles in T-cell activation and is involved in inflammatory processes. Its function directly relates to the immune system, making it a prime candidate for understanding immune responses.

2. Differential Expression: In the provided RNA abundance data, BSG showed notable differential expression across several conditions. Its elevated expression in metastatic melanoma and acute respiratory syncytial virus infection and reduced expression in HIV infection and acute influenza suggest its potential importance in both immune response and pathology.

3. Current Relevance: Given that respiratory infections like COVID-19 have been a global concern, understanding genes like BSG, which show differential expression in respiratory viral infections, could have broader implications for therapeutic strategies.

4. Potential Therapeutic Target: Due to its role in T-cell activation and involvement in inflammatory processes, BSG presents itself as a potential therapeutic target. Modulating its expression or function might help in treating diseases where immune regulation is disrupted. That said, the decision to focus on BSG doesn't diminish the significance of the other genes. Each gene has its unique role and could be significant in its own right depending on the research question. BSG, however, stands out due to its direct relevance to the immune system and its clear differential expression across a range of diseases.

The LLMs did not incorporate reference transcriptional profiling data in their evaluation and prioritization of candidate genes. Given its comparatively higher expression levels and restriction across leukocyte populations, our top choice based on this criterion is KLF1. Considering this, in conjunction with the rationale provided by both LLMs and our understanding of BSG and KLF1 biological and clinical relevance, we identify KLF1 as our primary M14.53 selection for subsequent characterization.

Prompts	CLAUDE	GPT-4
PROMPT 1: Based on the	Based on the criteria	Given the detailed summary
summary below, please	provided, I would	and weighing the provided
recommend the top	recommend KLF1 as the top	criteria equally, here's an
candidate gene to include in	candidate gene to include in	evaluation of each gene
a targeted blood	the targeted blood	based on the criteria:
transcriptional profiling	transcriptional profiling	1. Relevance to
panel. The intent is for the	panel. The key reasons are:	erythroid cells and
selected gene to be	• KLF1 has a robust,	erythropoiesis:
representative of an	specific association with	• BCL2L1: Plays a role
erythroid cell signature	erythroid cells and	in erythroid progenitor cell
associated with response to	erythropoiesis as an	survival, but its association
mRNA vaccines, severity of	essential erythroid	with erythroid cells is
RSV infection and that found	transcription factor. This	unconfirmed.
to be expressed at high levels	strongly aligns with the	• BSG (CD147): Lacks
in patients with metastatic	criterion of relevance to	evidence linking it to
melanoma and in liver	erythrold blology.	erythrold cells.
transplant recipients. Please	• KLF1 mutations can	• KLF1: Exhibits a
weigh the following criteria	cause anemia, nighignung	robust association with
equally in your	disorders relevant to	erythronoiceis functioning
recommendation: 1)	anditiona like DSV	as an omithroid
Relevance to erythroid cells	conditions like KSV	as all el yullolu
and erythropoiesis 2)	• As a master	• MAP2K3: Minimal
Current use as a biomarker	• As a master regulator of erythropoiesis	evidence supporting its
3) Potential use as a blood	KI F1 has clear notential as	connection to
transcriptional biomarker 4)	a biomarker of erythroid	erythronoiesis
Relevance to leukocyte	nrogenitor cell activity	• GLRX5: Integral to
immune biology 5) Status as	• KLF1 meets the	ervthroid heme synthesis
a known drug target 6)	criteria of linking to anemia	iron metabolism and
Therapeutic relevance for	erythropoiesis, and holding	ervthroid cell maturation.
immune mediated diseases:	promise as a blood	2. Current use as a
linnut summarized and fact	biomarker for ervthroid	biomarker:
	biology.	

checked justifications from	The other genes	BCL2L1: Clinical
Step 5]	have more peripheral or	value remains unvalidated.
	unestablished connections	• BSG (CD147): Lacks
	to erythroid cells and lack	validated evidence for
	KLF1's definitive specificity	clinical use.
	in erythropoiesis.	KLF1: Not routinely
	While not a drug	used as a biomarker, but
	target itself, KLF1 levels	mutations identifiable via
	could provide insights into	genetic testing.
	mRNA vaccine response,	MAP2K3: Not backed
	RSV severity, and other	by research as a clinical
	erythroid-related	biomarker.
	conditions.	• GLRX5: Not
	In summary, KLF1 is the	traditionally employed as a
	strongest fit for the intended	clinical biomarker, but
	purpose of the panel due to	genetic testing can identify
	its specialized role in	anemias due to its
	erythroid cell biology and	mutations.
	strong associations with	3. Potential use as a
	erythropoiesis and anemia. It	blood transcriptional
	surpasses the other genes for	biomarker:
	meeting the stated criteria.	• BCL2L1: Potential,
		but requires validation.
		• BSG (CD147):
		Emerging with potential,
		requires valuation.
		KLF1: SHOWS
		anythropoissis
		• MAD2K2: Roing
		• MAFZKS. Dellig
		thorough validation
		GLRX5: Potential
		especially in iron-related
		conditions: requires
		validation
		4 Relevance to
		leukocyte immune hiology:
		• BCL2L1: Plays a role
		in the survival of
		lymphocytes.
		• BSG (CD147):
		Integral to leukocyte
		biology.

	• KLF1: Not
	recognized as impacting
	leukocyte immune biology.
	• MAP2K3: Vital for
	leukocyte signaling.
	• GLRX5: Role remains
	ambiguous.
	5. Status as a known
	drug target:
	• BCL2L1: Potential
	target due to chemotherapy
	resistance in cancer.
	• BSG (CD147):
	Significant drug target in
	oncology.
	• KLF1: Lacks broad
	recognition as a drug target.
	• MAP2K3: Key drug
	target in inflammatory
	diseases.
	• GLRX5: Not
	recognized as a primary
	drug target.
	6. Therapeutic
	relevance for immune
	mediated diseases:
	• BCL2L1: Role in
	autoimmune disorders like
	SLE.
	• BSG (CD147): Linked
	with conditions like
	rheumatoid arthritis and
	multiple sclerosis.
	• KLF1: Not directly
	associated with immune-
	mediated diseases.
	• MAP2K3: Potential
	therapeutic target for
	immune-mediated
	conditions.
	• GLRX5: Lacks
	definitive evidence of
	involvement.
	Recommendation: Based on
	the equal weighting of the

		criteria, KLF1 emerges as the top candidate gene. It has a robust association with erythroid cells and erythropoiesis (Criterion 1), shows potential as a blood transcriptional biomarker (Criterion 3), and although it's not predominantly recognized in the immune context (Criterion 4) or as a major drug target (Criterion 5), its primary relevance to erythroid cells makes it particularly suitable for a targeted blood transcriptional profiling panel focusing on an erythroid cell signature.
provided an initial recommendation based on the summary, take into account the following RNA- sequencing expression data from key immune cell types and whole blood samples: <i>[input textualized transcriptional data].</i> Given this additional RNA-seq expression data, does your recommended gene selection remain the same? Please explain which gene you would recommend at this stage and why, incorporating both the summarized information provided earlier and RNA-seq data in your rationale."	 additional RNA-seq expression data, I would maintain my original recommendation of KLF1 as the top candidate gene. The key reasons are: The RNA-seq data shows KLF1 expression is highly specific to whole blood, with minimal detection in isolated immune cell types. This fits with its erythroid specificity. In contrast, the other genes like BCL2L1, BSG, MAP2K3, and GLRX5 show broader expression across immune cells, indicating more generalized roles. The RNA-seq data 	 the initial summary, let's re- evaluate our top candidate gene: 1. Relevance to erythroid cells and erythropoiesis: KLF1 is the strongest candidate in this domain, being essential for erythropoiesis. GLRX5 also plays a role in erythroid heme synthesis and iron metabolism. Current use as a biomarker: Neither BCL2L1, BSG, KLF1, MAP2K3, nor GLRX5 are currently used widely as clinical biomarkers, although BCL2L1 and BSG show
	reinforces that KLF1's expression is restricted to erythroid lineages, while	BCL2L1 and BSG show some potential in oncology and inflammation, respectively.

the other genes are more	3. Potential use as a
widely expressed.	blood transcriptional
 Low KLF1 levels in 	biomarker:
isolated leukocytes	• BSG (CD147) shows
supports its strong	promise here especially
anythroid accodition over	given its relatively high
immun o fun ation	DNA and country in whole
Immune Iunction.	RNA-seq counts in whole
• The RNA-seq data aligns with and provides	• BCL2L1 and
confirming evidence for the	MAP2K3 also have notable
summary indicating KLF1's	RNA-sea counts in blood.
specialized erythroid role	suggesting notential as
In summary the addition of	blood transcriptional
RNA-seq expression data	hiomarkers
further colidities KI E1 ac	A Relevance to
highly appoint to anythraid	leukocyte immune biology:
nighty specific to erythroid	• BSC has a key role in
cells, which aligns with the	leukocyte functionality and
rationale for originally	shows high PNA-sog counts
selecting it as the top	across various immuno coll
erythroid-focused candidate.	trues welving it a front
The new data is consistent	types, making it a front-
with the summary	runner in unis domain.
information for KLF1.	• MAP2K3 is also vital
	for immune cell signaling,
	further evidenced by its
	substantial RNA-seq counts
	in neutrophils.
	5. Status as a known
	drug target:
	 BCL2L1 and BSG are
	strong candidates. Both
	have ongoing or early
	clinical trials, targeting
	various conditions.
	6. Therapeutic
	relevance for immune-
	mediated diseases:
	• BSG is linked to
	various inflammatory
	conditions.
	• MAP2K3 has
	potential as a therapeutic
	target for immune-
	mediated conditions.

	Given the criteria, let's
	weigh the RNA-seq data:
	• BCL2L1: Moderate
	expression in whole blood
	and certain immune cell
	types like NK cells.
	• BSG (CD147): High
	expression in whole blood
	and across all immune cell
	types, especially
	neutrophils.
	KLF1: Very low
	expression in whole blood
	and almost negligible in
	immune cell types implying
	its specificity to erythroid
	cells
	• MAP2K3: High
	expression in whole blood
	highest in neutronhils
	GI RX5: Moderate
	expression in whole blood
	consistent across all
	immune cells
	Recommendation: While
	the initial analysis pointed
	towards KI F1 due to its
	robust association with
	erythroid cells and
	erythronoiesis the RNA-seq
	data sheds new light
	especially for criteria 3
	(blood transcriptional
	biomarker) and 4
	(relevance to leukocyte
	immune biology)
	Given the RNA-seg data, BSG
	(CD147) stands out It's
	highly expressed in whole
	blood and across various
	immune cell types Its
	involvement in loukeeute
	functionality ongoing divisal
	triale torgeting its rate in
	trials targeting its role in
	metastasis, and its link to

		inflammatory conditions support its potential as a key biomarker. Therefore, BSG (CD147) would be the top recommendation considering both the summarized information and the RNA-seq data.
PROMPT 3: Now that you have provided an initial recommendation based on the summary and the RNAseq data, take into account the following microarray expression data from key immune cell types and hematopoietic precursors: <i>[input textualized</i> <i>transcriptional data]</i> . Given this additional microarray expression data, does your recommended gene selection remain the same? Please explain which gene you would recommend at this stage and why, incorporating the summarized information and RNA-seq data provided earlier, as well as this new microarray data in your rationale.	After reviewing the microarray expression data, I would maintain my original recommendation of KLF1 as the top candidate gene. The key reasons are: • The microarray data shows very high expression of KLF1 specifically in erythroid precursor cells, confirming its specialized role in erythropoiesis. • There is minimal KLF1 expression across most immune cell types, which fits with its erythroid specificity. • In comparison, the other genes like BCL2L1, BSG, MAP2K3, and GLRX5 exhibit broader expression across immune cells and lack erythroid selectivity. • The RNA-seq and microarray data align in indicating the unique erythroid lineage expression pattern of KLF1. • This expression profile fits the intended purpose of a biomarker reflecting erythroid biology for the panel. In summary, the addition of the microarray data provides further confirming evidence	[IV/A: Input exceed GPT-4 limits. Attempts to break down inputting the textualized data were unsuccessful as GPT-4 lost the thread of the conversation. Thus, we chose to skip to the next prompt]

	that KLF1 has the ideal	
	expression pattern for an	
	erythroid focused blood	
	transcriptional biomarker	
	based on its specificity to	
	ervthroid precursors.	
	Therefore, KLF1 remains the	
	top choice.	
PROMPT 4: Now that you have provided an initial recommendation based on the summary and the immune cells RNAseq and microarray data, take into account the following averaged log2 fold changes in RNA abundance in patient cohorts compared to controls. <i>[input textualized</i> <i>transcriptional data]</i> . Given this additional data, does your recommended gene selection remain the same? Please explain which gene you would recommend at this stage and why, incorporating the summarized information, the leukocytes RNA-seq and microarray data provided earlier, as well as these new patient cohort profiles in your	Therefore, KLF1 remains the top choice. After reviewing the RNA abundance log fold change data for the various patient cohorts, I would maintain my recommendation of KLF1 as the top candidate gene. The key reasons are: • KLF1 showed the most consistent decreases across conditions like influenza, HIV, juvenile arthritis, etc, implying correlation with immune activity. • The decreases were moderate overall (in -0.2 to -1.2 range) indicating erythroid activity changes but not radical fluctuations. • Other genes like BCL2L1 and GLRX5 had more variable patterns of ingraage (degrees among	Analyzing this data, it's clear that there are varied responses in the RNA abundance of the genes of interest (BCL2L1, BSG, KLF1, MAP2K3, and GLRX5) across multiple conditions when compared to controls. I'll summarize the insights for each gene: 1. BCL2L1: • Increased in: B-cell deficiency, metastatic melanoma, multiple sclerosis, active pulmonary tuberculosis, acute respiratory syncytial virus infection, sepsis, systemic onset juvenile idiopathic arthritis, staphylococcus aureus infection, and liver transplant recipients under maintenance therapy.
rationale.	the cohorts.	chronic obstructive
	• The cohort profiles	pulmonary disease, acute
	align with use of KLF1 as a	influenza infection, HIV
	biomarker reflecting shifts	infection, juvenile
	in erythroid biology.	dermatomyositis, Kawasaki
	• KLF1's specialized	disease, pregnant subjects,
	role in erythropoiesis	and systemic lupus
	makes its cohort patterns	erythematosus.
	most relevant to the	2. BSG:
	intended purpose.	• Increased in: B-cell
	In summary, the cohort RNA	deficiency, metastatic
	abundance changes provide	melanoma, pregnant
	further supporting evidence	subjects, active pulmonary

that KLF1 exhibits moderate	tuberculosis, acute
but detectable decreases	respiratory syncytial virus
across diverse immune-	infection, sepsis, systemic
related conditions. This fits	onset juvenile idiopathic
well with the rationale for	arthritis, staphylococcus
selecting KLF1 to provide an	aureus infection, and liver
erythroid focused blood	transplant recipients under
transcriptional signature The	maintenance therapy.
new data does not provide	• Decreased in:
any reason to reconsider	chronic obstructive
KIE1 as the ten choice	pulmonary disease, acute
KLF1 as the top choice.	influenza infection, HIV
	infection, juvenile
	dermatomyositis, Kawasaki
	disease, multiple sclerosis,
	and systemic lupus
	erythematosus.
	3. KLF1:
	• Increased in: B-cell
	deficiency, metastatic
	melanoma, pregnant
	subjects, active pulmonary
	tuberculosis, acute
	respiratory syncytial virus
	infection, sepsis, systemic
	lupus erythematosus,
	staphylococcus aureus
	infection, and liver
	transplant recipients under
	maintenance therapy.
	• Decreased in:
	chronic obstructive
	pulmonary disease, acute
	influenza infection, HIV
	infection, juvenile
	dermatomyositis, Kawasaki
	disease, and multiple
	sclerosis.
	4. MAP2K3:
	• Increased in: B-cell
	deficiency, metastatic
	melanoma, pregnant
	subjects, acute respiratory
	syncytial virus infection,
	sepsis, systemic lupus

	erythematosus, systemic
	onset juvenile idiopathic
	arthritis, staphylococcus
	aureus infection and liver
	transplant recipionts under
	maintananaa tharany
	maintenance therapy.
	• Decreased in:
	chronic obstructive
	pulmonary disease, HIV
	infection, juvenile
	dermatomyositis, Kawasaki
	disease, and multiple
	sclerosis.
	5. GLRX5:
	• The data for GLRX5
	was not completely shown
	but based on the provided
	information it was
	in crossed in D coll
	Increased in B-cell
	deficiency.
	Notable Observations:
	HIV infection shows
	a noticeable reduction
	across all genes, indicating a
	broad suppression of these
	genes in this condition.
	Metastatic
	melanoma is associated
	with an increase in the
	expression of all genes
	listed, suggesting an
	unregulation of these genes
	in the context of this type of
	cancor
	Cancer.
	• Sepsis also showed
	an upregulation for all
	genes except for KLF1,
	which had a minor increase.
	From this information, it's
	evident that while some
	diseases or conditions, like
	HIV, appear to broadly
	suppress the expression of
	these genes, others like
	metastatic melanoma and

		sepsis, tend to have a broad increase in their expression. This provides valuable information about the potential role these genes might play in the underlying mechanisms of these conditions. However, understanding the direct implications requires deeper analysis, including protein-level studies, pathway analysis, and functional assays.
PROMPT 5: Could you please summarize the key	Here is a summary of the key conclusions regarding	Of course! Here's a summary of the key conclusions
conclusions you have drawn from the conversation so far?	selection of a candidate gene for inclusion in a targeted blood transcriptional profiling panel: Initial Summary: • Based on preliminary evidence, KLF1 was recommended due to its specialized role in erythropoiesis and erythroid cell biology. Leukocyte RNA-seq Data: • Low KLF1 expression in immune cell types supported its erythroid specificity over immune function. Leukocyte Microarray Data: • High KLF1 expression found specifically in erythroid precursor cells confirmed its relevance to erythropoiesis. Patient Cohort RNA Abundance Data: • Moderate decreases in KLF1 levels across	drawn from the conversation and the data you provided: 1. Gene Selection: You provided data on five genes – BCL2L1, BSG, KLF1, MAP2K3, and GLRX5. 2. Immune Cells & RNAseq Data: • BCL2L1 was identified as a potential marker for lymphocyte differentiation and has been associated with multiple immune processes. • BSG (also known as CD147) has roles in T-cell activation and is involved in inflammatory processes. • KLF1 is significant for erythroid differentiation and function. • MAP2K3 is involved in the p38 MAPK signaling pathway, playing a role in various immune responses. • GLRX5 is involved in iron-sulfur cluster

immune-related diseases	biogenesis in mitochondria
provided further evidence	and affects cell proliferation.
of its usefulness as an	3. Microarray Data: You
erythroid focused	presented averaged log2
biomarker.	fold changes in RNA
In summary, KLF1 was	abundance from patients
consistently recommended	with different diseases
throughout the process due	compared to controls.
to multiple lines of evidence	Key Observations:
indicating its vital role in	• BCL2L1:
erythropoiesis and high	• Elevated in
expression in erythroid cell	metastatic melanoma,
types. The data sources	multiple sclerosis, and some
reinforced KLF1 as an ideal	other conditions.
candidate to meet the	• Reduced in HIV
intended purpose of an	infection, acute influenza,
ervthroid focused blood	Kawasaki disease, and some
transcriptional biomarker for	other conditions.
the panel.	• BSG:
	• Elevated in
	metastatic melanoma, acute
	respiratory syncytial virus
	infection, and some other
	conditions.
	Reduced most
	notably in HIV infection and
	acute influenza.
	• KLF1:
	• Elevated III
	nulmonoru tuborgulogia
	and program subjects
	• Poducod significantly
	in HIV infoction acuto
	influenze and multiple
	sclerosis
	• MAP2K3·
	 Flevated in
	metastatic melanoma
	sensis and some other
	conditions.
	Reduced in HIV
	infection. chronic
	obstructive pulmonary

	disease, and multiple
	sclerosis.
	• GLRX5 (incomplete
	data):
	• Elevated in patients
	with B-cell deficiency.
	4. Considerations:
	• Several diseases,
	notably HIV infection and
	acute influenza commonly
	showed reduced PNA
	showed reduced KNA
	abundance across multiple
	genes.
	Metastatic
	melanoma often showed an
	increase in RNA abundance.
	• The provided data
	could suggest notential roles
	for those genes in immune
	nor mese genes in initiane
	response of alterations
	during certain disease
	states. The functions of
	these genes in immune cells
	and their differential
	expression in various
	diseases indicate their
	notential importance in
	immuno system regulation
	initiale system regulation
	or pathology of the
	mentioned diseases.
	In summary, the provided
	genes are significant in
	various aspects of immune
	function and show
	differential expression in
	various disassas Eurthan
	various diseases. Further
	research is needed to clarify
	their exact roles and
	potential as therapeutic
	targets or disease markers.
	Given the information and
	discussion so far I would
	prioritize BSC (CD147) as a
	prioritize DSG (CD147) dS d
	candidate gene for further

	investigation, and here are
	the reasons:
	1 Broad
	Immunological Relevance
	BSG (CD147) is known to
	have reles in T cell
	nave roles in r-cen
	inflormatory processes. Its
	function directly relates to
	function directly relates to
	the immune system, making
	It a prime candidate for
	understanding immune
	responses.
	2. Differential
	Expression: In the provided
	RNA abundance data, BSG
	showed notable differential
	expression across several
	conditions. Its elevated
	expression in metastatic
	melanoma and acute
	respiratory syncytial virus
	infection and reduced
	expression in HIV infection
	and acute influenza suggest
	its potential importance in
	both immune response and
	pathology.
	3. Current Relevance:
	Given that respiratory
	infections like COVID-19
	have been a global concern,
	understanding genes like
	BSG, which show differential
	expression in respiratory
	viral infections, could have
	broader implications for
	therapeutic strategies.
	4. Potential
	Therapeutic Target: Due to
	its role in T-cell activation
	and involvement in
	inflammatory processes,
	BSG presents itself as a
	potential therapeutic target.

Modulating its expression or
function might help in
treating diseases where
immune regulation is
disrupted.
That said, the decision to
focus on BSG doesn't diminish
the significance of the other
genes. Each gene has its
unique role and could be
significant in its own right
depending on the research
question. BSG, however,
stands out due to its direct
relevance to the immune
system and its clear
differential expression across
a range of diseases.

7. References

- 1. Altman, M.C. *et al.* Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data. Nat Commun. 2021 Jul 19;12(1):4385.
- 2. Rinchai, D. *et al*. BloodGen3Module: Blood transcriptional module repertoire analysis and visualization using R. Bioinformatics. 2021 Aug 25;37(16):2382-2389.
- 3. Rinchai, D. *et al.* Definition of erythroid cell-positive blood transcriptome phenotypes associated with severe respiratory syncytial virus infection. Clin Transl Med. 2020 Dec;10(8):e244.
- 4. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011 Jan 21;144(2):296–309.
- Linsley, P.S. et al. Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. PloS One. 2014;9(10):e109760.
- Rinchai, D. et al. A training curriculum for retrieving, structuring, and aggregating information derived from the biomedical literature and large-scale data repositories. [Internet]. F1000Research; 2022 [cited 2023 Mar 29]. Available from: <u>https://f1000research.com/articles/11-994</u>

 Rinchai, D. et al. Assessing the potential relevance of CEACAM6 as a blood transcriptional biomarker [Internet]. F1000Research; 2022 [cited 2023 Mar 31]. Available from: <u>https://f1000research.com/articles/11-1294</u>