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Infection time estimates by HIV RNA test dates and seroconversion dates 

 

The first sample of SC4 was collected on December 8th, 2009. This individual's HIV RNA last 

negative and first positive dates were March 14th, 2008, and November 17th, 2008, respectively. 

Therefore, we estimated that SC4's first sample was collected between 21 and 269 days after 

infection (Table 2). At the time of the first RNA positive date, this study participant was 

seronegative and thus at Fiebig stage I or II. By adding the estimated duration of Fiebig stage I or 

II (19.5 [13-34] days) to the elapsed time between the RNA first positive date and the date of 

specimen collection (21 days) [1, 2], we obtained an estimated infection duration of 40.5 [34 - 55] 

days for the first sample. This Fiebig staging estimate was within the interval obtained from HIV 

RNA test dates. Throughout the course of more than a year, eight additional samples were collected 

from this study participant (Table 2). The time since infection for each subsequent sample was 

estimated by adding the sample collection interval to the first sample’s estimate.  

 

Other study participants, SC8, SC15, SC18, SC19, SC20, SC22, SC23, SC24, and SC25 were also 

seronegative when the first sample was collected and the time since infection was estimated using 

the Fiebig estimate (Table 1). The first sample collected from study participant SC5 was 

seropositive, but it was estimated that this sample was taken within 77 days post infection based 

on the individual’s HIV RNA negative test date. A middle time point of 38.5 days was used as the 

estimate for the time of infection. The HIV RNA negative and positive test dates for study 

participant SC21 indicated that the first seropositive sample was collected within 609 days since 

infection (Table 1). Instead of the middle point estimate, the shifted Poisson mixture model [3] 

was used to estimate time since infection, as detailed below. 

 

Sources for publicly available incident and chronic specimens 

 

We collected publicly available HIV complete envelope gene sequences as previously described 

[4, 5]. A total of 417 incident specimens were used to estimate GSI distribution over time, which 

comprised of 252 incident specimens at Fiebig stages I, II, III, IV, and V [2, 6-18] and 165 incident 

longitudinal specimens obtained from 43 individuals [2, 6, 7, 9, 11, 16, 19-21]. An additional 107 

publicly available incident specimens were used to measure the detection accuracy of recent 

infections [22]. A total of 162 publicly available chronic specimens with an infection time longer 

than one year were analyzed to determine the false recency rate (FRR) [2, 17, 19, 23-42].  
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Supplementary Figure 1. Modeling biomarker dynamics. A total of 417 publicly available 

incident samples with infection times estimated by Fiebig staging and sample collection intervals 

[16, 17]. Data points with line segments represent serial samples collected from individuals. The 

maximum likelihood estimates of the model parameters were as follows: c = 0.95 [0.94 – 0.96], M 

= 253.8 [220.2 – 292.2], S = 50.1 [37.9 – 67.9], and V = 1.00 [0.94 – 1.05]. To obtain the 95% 

confidence interval (CI) for each parameter, we resampled the 417 incident specimens with 

replacement 1,000 times. The fitted mean for GSI dynamics was presented as a red solid line and 

99% prediction intervals were presented as red dotted lines over days post infection.   
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Supplementary Figure 2. Time since infection estimated by shifted Poisson mixture model 

(SPMM). A. The fit of SPMM (red line) to the Hamming distance distribution of SC8-1’s 13 

envelope gene sequences (grey boxes). B. Time since infection estimated by SPMM, 218.2 [183.9 

– 252.5], was greater than HIV RNA test date estimate of [139 – 165] and Fiebig staging estimate 

of 158.5 [152 – 173] days. C. The fit of SPMM to the Hamming distance distribution of SC18-1. 

D. The fit of SPMM to the Hamming distance distribution of SC18-2. E. The fit of SPMM to the 

Hamming distance distribution of SC18-3. F. The model estimates were not consistent with HIV 

RNA test date estimates and Fiebig staging (Pearson correlation coefficient = −0.79). G. The fit 

of SPMM to the Hamming distance distribution of SC19-2. H. The model estimate agreed with 

the infection time range determined by dates of the last negative and first positive HIV RNA tests. 

I. The fit of SPMM to the Hamming distance distribution of SC24-2. J. The fit of SPMM to the 

Hamming distance distribution of SC24-3. K. The fit of SPMM to the Hamming distance 

distribution of SC24-4. L. The fit of SPMM to the Hamming distance distribution of SC24-6. M. 

SPMM’s infection time estimates were consistent with Fiebig estimates for the SC24’s four 

samples (=0.94). N. The fit of SPMM to the Hamming distance distribution of SC25-2. O. The 

fit of SPMM to the Hamming distance distribution of SC25-5. P. The model estimates were 

consistent with Fiebig estimates (=0.99). 
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