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Supplementary Note

Additional details on CoalNN’s network architecture

We apply a convolutional neural network on genomic windows of fixed length L, where L is the number of sites
necessary to cover the first 10 centimorgans (cM) of Chromosome 2, since this provides a receptive field large enough
to capture long identical-by-descent segments as explained in the intepretability section. We selected the beginning of
Chromosome 2 as a representative region due to its recombination rate being close to the genome-wide average (1.66
cM per Mb in the first 30 Mb; mean = 1.45 cM per Mb, s.d. = 0.33 across the autosomes (Palamara et al., 2018)).
We measure genomic regions using cM, rather than base pairs, to account for uneven recombination rates along
the genome, as recombination is the primary determinant of changes in TMRCA. During training, recombination
maps from di↵erent chromosomes are sampled at random to avoid overfitting to chromosome 2. Rather than using
padding, we add a fixed amount of genomic data as context on either side of the input sequence, resulting in a region
of length L1 > L.

The genotype data provided in input to CoalNN is encoded as xi, i 2 {1, ..., L1}, where xi takes floating point
values. For simulated SNP array and sequencing data xi 2 {0, 1} indicates whether the haploid individual carries
an ancestral or a derived allele, while in experiments involving imputed data, xi takes continuous dosage values in
[0, 1], reflecting imputation uncertainty. For binary data, we compute the AND and the XOR functions between
the two haplotypes, which reflect the presence of mismatching or shared alleles, respectively. We also performed
experiments in which we trained a model by providing the raw sequencing data as input directly, without applying
the AND and XOR functions. For imputation experiments, we trialled two approaches: using the model trained on
sequencing data after rounding the continuous dosage to binary values, or training a new model on dosages from
simulated imputed data, allowing the network to take floating-point values in input.

We first apply a batch normalization layer and stack five convolution blocks (ConvBlocks), each consisting of a
convolution layer, a batch normalization layer, and a ReLU activation function. The first convolution block aims to
capture long-range dependencies by using a large kernel size while subsequent layers focus on smaller and smaller
windows (kernel sizes of 701, 201, 51, 7, 3 respectively). These kernel sizes were chosen to allow the first layers of
the network to have large receptive fields, without significantly increasing the number of trainable parameters. Since
small TMRCAs correspond to shared ancestry in the recent past, they are characterized by long (e.g., > 1 cM) and
nearly identical haplotype segments. To capture these segments, we increased the receptive field of the network by
utilizing a dilated convolution in the first block, which e↵ectively enlarges the convolution kernel by inserting gaps
between kernel elements (Yu and Koltun, 2015). The dilation factor is automatically tuned so that the receptive field
approximately corresponds to the first 5 cM of Chromosome 2. A convolutional layer goes through all input channels
in the previous layer and the number of channels in each layer is incrementally increased to allow for increasingly
complex feature extraction. At the same time, since a convolution operation can be seen as summarizing nearby
elements in the input, after each convolution block, the sequence length is reduced until ultimately reaching L
(L1 > L2 > L3 > L4 > L5 > L). We finally apply a 1 ⇥ 1 convolution layer to reduce the channel dimension. The
resulting output is a L ⇥ 1 ⇥ 2 tensor, containing the TMRCA estimates and the unscaled estimated probabilities
(logits) of observing a recombination breakpoint for each of the L sites, i.e., for every genomic site the network
predicts the TMRCA and whether that site is a recombination breakpoint, resulting in 2 ⇥ L predictions. When
deploying CoalNN for inference, we apply an additional scaling layer on both estimates: predicted TMRCAs that
exceed the maximum coalescence time observed while training are clipped and a softmax function is applied to
the logits to turn them into estimated probabilities of recombination. Clipping is not applied to the predictions of
ASMC, since the HMM discretizes time, producing a bounded output.
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Additional simulation experiments

We performed experiments where we assumed recombination rates to be unknown a priori. We trained CoalNN
using Ne = 10K and a constant recombination rate of ⇢ = 1cM/Mb, while other evolutionary parameters were
set as described in the Methods section. We then simulated distinct data sets using recombination rates from
Chromosome 2, and aimed to estimate the unknown underlying simulated recombination rate between each pair of
neighboring sites, ⇢̂i. At every position i along the genome and for every pair of haplotypes j, CoalNN outputs
an estimate of TMRCA t̂i,j and the estimated probability of recombination p̂i,j . We estimated recombination rates

using ⇢̂i = N�1
PN

j=0
p̂i,j/t̂i,j , which accounts for the fact that the probability of observing a recombination event

depends approximately linearly on ⇢iti,j , where ⇢i is the true recombination rate at position i and ti,j is the true
TMRCA for the pair. We observed these estimates to be highly correlated with the true underlying genetic distance
between consecutive polymorphisms (r = 0.255, SE= 0.002 across 5 distinct random seeds).
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Supplementary Figures
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Supplementary Fig. 1. Forming piecewise constant TMRCA estimates. a, c. In b (resp in d) we report

the average percent improvement of piecewise constant TMRCA prediction over the raw output of CoalNN using

L1 (mean absolute error: MAE) and L2 (root mean squared error: RMSE) losses for sequencing (resp. array) data,

for increasing threshold values. b, d. In c (resp. in e) we report the average ratio between the total number of

predicted segments and the total number of true segments for increasing threshold values, where a segment refers

to a piece of the genome with constant TMRCA value. Error bars represent standard errors across 10 simulations.

4



Supplementary Fig. 2. Pairwise TMRCA sampling distribution. Distributions of pairwise TMRCA in

generations (empirical histograms) obtained from a uniform sampler (in green) and a relatedness-informed sampler

(in blue) from a single simulation under a European demographic model (top) and a constant population size

Ne = 10, 000 (below). Solid curves show kernel density estimations using Gaussian kernels (bandwidth = 0.25).
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a

b

Supplementary Fig. 3. CoalNN training and validation loss. Training (a) and validation (b) loss obtained

during the training of CoalNN on a constant population size demography with Ne = 10,000. Y axes represent loss

values, X axes represent number of training epochs.
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a

b

Supplementary Fig. 4. Pairwise TMRCA and allele age prediction under a European demographic

model. a. True pairwise TMRCAs (x axis) versus those estimated by CoalNN and ASMC (y axis) on array data

for one simulation. b. True non-singleton variant ages (x axis) versus those estimated by CoalNN, Relate and

tsinfer+tsdate (y axis) on sequencing data for one simulation.
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Supplementary Fig. 5. Robustness to genotyping and phasing errors. Average percent performance

improvement for TMRCA prediction in sequencing data of CoalNN over ASMC mean posterior in a, b and over

ASMC MAP in c, d for the L1 (mean absolute error: MAE) and L2 (root mean squared error: RMSE) losses for

increasing switch and genotyping error rates respectively. Error bars represent standard errors across 20 simulations.
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Supplementary Fig. 6. Scatter plots of true vs CoalNN-predicted TMRCA. The evolutionary model

and parameters used are: Kingman coalescent with Ne = 10,000 (top left), Beta coalescent with alpha = 1.8 and

Ne = 20,000 (top middle), Beta coalescent with Ne = 50,000 and alpha = 1.5 (top right), alpha = 1.3 (bottom left)

and alpha = 1.1 (bottom right).
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Supplementary Fig. 7. Feature importance analysis. We obtained saliency maps (Simonyan et al., 2014;

Zeiler and Fergus, 2014) at a genomic locus with recent coalescence time in a (TMRCA = 37 generations) and

with deep coalescence time in b (TMRCA = 237,079 generations). Values are shown in log scale and correspond to

|input⇥ gradient| (Shrikumar et al., 2016), where input refers to the batch normalized input (see Methods). Higher

values (closer to yellow) indicate input positions with large e↵ects on the TMRCA estimate. Positions with value 0

have no impact on the prediction and are typically outside of the receptive field.
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a b

c

Supplementary Fig. 8. Predicted TMRCA distributions under MAF perturbation. Empirical histograms

showing the predicted TMRCAs at heterozygous (in a) or at homozygous derived (in b) genomic sites before and

after the MAF perturbation, for one simulation. Increasing the input MAF value by 5% at sites for which individuals

are heterozygous resulted in an average increase in predicted TMRCA of 181.5 (SE=3.7) generations. Decreasing

the MAF at homozygous sites resulted in an average decrease of predicted TMRCA of 27.6 (SE=1.7) generations.

c shows TMRCA values predicted by CoalNN at heterozygous and homozygous derived sites, without any MAF

perturbation. Solid curves show kernel density estimations using Gaussian kernels (bandwidth = 0.25).
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Supplementary Fig. 9. Performance of CoalNN trained on a constant demographic prior. We visualise

true pairwise TMRCAs (x axis) versus those estimated by CoalNN trained on a constant demographic population

size (Ne = 20,000, y axis), stratified by derived allele frequency, on simulations using recombination rates and

demographic history from CEU, CHS and YRI (Terhorst et al., 2017; Spence and Song, 2019) (sequencing data for

150 diploid individuals and a 30 Mbp region from chromosome 2).
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Supplementary Fig. 10. Age distribution of variants dated by CoalNN trained on a constant de-

mographic prior. Cumulative age distribution of genome-wide variants dated by CoalNN trained on a constant

demographic population size (Ne = 20,000), stratified by derived allele frequency as observed within a given popu-

lation group. See Supplementary Table 9 for additional information.
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Supplementary Fig. 11. Allele age distribution of variants annotated by PolyPhen-2. Cumulative

distribution function of allele ages inferred by CoalNN for di↵erent variant pathogenicity levels predicted using

PolyPhen-2 (“possibly damaging”, “probably damaging” or “benign”) (Adzhubei et al., 2010), stratified by derived

allele frequency within each population group.
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Supplementary Fig. 12. Allele age distribution of variants annotated by SIFT. Cumulative distribution

function of allele ages inferred by CoalNN for di↵erent variant pathogenicity levels predicted using SIFT (“deleteri-

ous” or “tolerated”) (Sim et al., 2012), stratified by derived allele frequency within each population group.
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Supplementary Fig. 13. S-LDSC analyses including both ARGweaver and CoalNN. a. Correlations

between each of the 26 population-specific MAF-adjusted CoalNN annotations and the MAF-adjusted ARGweaver

annotation. b, c. ⌧⇤ estimates (meta-analysed across 63 independent diseases and complex traits) of CoalNN MAF-

adjusted allele age annotation on each of the 26 populations in marginal independent S-LDSC analyses conditioned

on the full 97 Baseline-LD model in b and conditioned on 96 Baseline-LD annotations (all but ARGweaver) in c.
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Supplementary Fig. 14. CoalNN heritability e↵ect for individual traits. S-LDSC ⌧⇤ value of the CoalNN

MAF-adjusted annotation (averaged across 26 populations) in a and of the ARGweaver MAF-adjusted annotation in

b for 63 independent diseases and traits (listed in Supplementary Table 2), conditioned on 96 baselineLD annotations.

Error bars represent s.e. of the ⌧⇤ estimate.

17



Supplementary Fig. 15. S-LDSC analysis of CoalNN annotations built using population groups. S-

LDSC ⌧⇤ estimates of CoalNN annotations built using each population group (AFR, AMR, EAS, EUR and SAS)

in independent S-LDSC analyses conditioned on 96 baselineLD annotations (all but ARGweaver), meta-analyzed

across 63 independent disease and traits (listed in Supplementary Table 2). For comparison, we also report ⌧⇤ e↵ects

of other Baseline-LD evolutionary annotations (level of LD measured in African populations, recombination rate,

nucleotide diversity, McVicker B-statistic and average pairwise TMRCA ASMCavg) before the introduction of the

CoalNN annotations (in dark grey). Adding the CoalNN annotations did not result in a significant change of ⌧⇤ for

other annotations. Error bars represent standard errors of the meta-analyzed ⌧⇤ estimates. Numerical results are

reported in Supplementary Table 12.
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Supplementary Tables
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Population Code Description Group Code

CHB Han Chinese in Beijing, China EAS

JPT Japanese in Tokyo, Japan EAS

CHS Han Chinese South EAS

CDX Chinese Dai in Xishuangbanna, China EAS

KHV Kinh in Ho Chi Minh City, Vietnam EAS

CEU Utah residents (CEPH) with Northern and Western European ancestry EUR

TSI Toscani in Italy EUR

FIN Finnish in Finland EUR

GBR British in England and Scotland EUR

IBS Iberian populations in Spain EUR

YRI Yoruba in Ibadan, Nigeria AFR

LWK Luhya in Webuye, Kenya AFR

MAG Gambian in Western Division, The Gambia - Mandinka AFR

MSL Mende in Sierra Leone AFR

ESN Esan in Nigeria AFR

ASW African Ancestry in Southwest US AFR

ACB African Caribbean in Barbados AFR

MXL Mexican Ancestry in Los Angeles, California, US AMR

PUR Puerto Rican in Puerto Rico AMR

CLM Colombian in Medellin, Colombia AMR

PEL Peruvian in Lima, Peru AMR

GIH Gujarati Indians in Houston, Texas, US SAS

PJL Punjabi in Lahore, Pakistan SAS

BEB Bengali in Bangladesh SAS

STU Sri Lankan Tamil in the UK SAS

ITU Indian Telugu in the UK SAS

Supplementary Table 1. 1kG populations. Population labels and supergroup assignments. (Retrieved from

www.internationalgenome.org (Byrska-Bishop et al., 2022))
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Phenotype Reference h2
g Z-score N

BMI (UK Biobank) UK Biobank 0.278 41.478 457,824

Years of Education (UK Biobank) UK Biobank 0.136 35.789 454,813

Forced Vital Capacity (FVC) UK Biobank 0.234 32.444 371,949

Intelligence Savage et al. 2018 Nat Genet 0.186 29.047 264,193

Neuroticism (UK Biobank) UK Biobank 0.114 28.475 372,066

Diastolic Blood Pressure UK Biobank 0.233 27.738 422,771

White Blood Cell Count UK Biobank 0.227 27.386 444,502

Height (UK Biobank) UK Biobank 0.674 25.824 458,303

Morning Person UK Biobank 0.106 24.674 410,520

Age at Menarche (UK Biobank) UK Biobank 0.253 24.563 242,278

TotalProtein UK Biobank 0.181 24.147 397,652

Waist-hip Ratio UK Biobank 0.171 23.681 458,417

FEV1-FVC Ratio UK Biobank 0.276 23.615 371,949

Reaction Time Davies et al. 2018 Nat Comm 0.081 22.556 300,486

Creatinine UK Biobank 0.221 21.911 434,158

Red Blood Cell Count UK Biobank 0.261 21.775 445,174

Bipolar and/or Schizophrenia Ruderfer et al. 2018 Cell 0.334 21.656 107,620

Platelet Count UK Biobank 0.351 21.242 444,382

Heel T Score UK Biobank 0.355 20.514 445,921

Sleep Duration Dashti et al. 2019 Nat Comm 0.071 19.667 446,118

IGF1 UK Biobank 0.288 18.682 432,292

General Risk Tolerance Karlsson Linner et al. 2019 Nat Genet 0.051 18.357 466,571

AspartateAminotransferase UK Biobank 0.114 18.306 430,982

Red Blood Cell Distribution Width UK Biobank 0.217 17.803 442,700

Insomnia Jansen et al. 2019 Nat Genet 0.044 17.600 383,948

Height (Lango Allen 2010) Lango Allen et al. 2010 Nature 0.222 17.512 131,547

Number children even born (UKBB, pooled) UK Biobank 0.039 16.783 456,500

Atrial Fibrilation Nielsen et al. 2018 AJHG 0.022 16.769 1,030,836

TestosteroneMale UK Biobank 0.184 16.577 196,813

BMI (Speliotes 2010) Speliotes et al., 2010 Nat Genet 0.146 16.233 122,033

Hypothyroidism UK Biobank 0.055 15.167 459,324

Age first birth Barban et al., 2016 Nat Genet 0.062 15.073 222,037

Balding Type I UK Biobank 0.223 14.697 208,336

AlkalinePhosphatase UK Biobank 0.235 14.675 433,862

Eczema UK Biobank 0.085 14.603 458,699

Drinks per Week Liu et al. 2019 Nat Genet 0.046 14.438 527,299

Phosphate UK Biobank 0.129 14.198 397,561

Medication Use Wu et al. 2019 Nat Comm 0.157 14.036 78,808

IBD de Lange et al. 2017 Nat Genet 0.321 13.193 59,957

VitaminD UK Biobank 0.086 12.464 415,700

Major depressive disorder Wray et al. 2018 Nat Genet 0.073 12.339 170,229

Cholesterol UK Biobank 0.131 11.670 435,137

ADHD Demontis et al. 2019 Nat Genet 0.248 11.634 55,374

TotalBilirubin UK Biobank 0.084 11.066 429,423

Age at Menopause (UK Biobank) UK Biobank 0.109 11.040 143,025

Sunburn Occasion UK Biobank 0.073 9.618 344,229

Number children even born Barban et al., 2016 Nat Genet 0.023 9.542 318,863

Schizophrenia vs Bipolar Ruderfer et al. 2018 Cell 0.265 9.495 38,855

Years of Education (Rietveld 2013) Rietveld et al., 2013 Science 0.077 9.354 126,559

HDL Teslovich et al., 2010 Nature 0.125 9.259 97,749

LDL Teslovich et al., 2010 Nature 0.103 8.821 93,354

Cigarattes per Day Liu et al. 2019 Nat Genet 0.058 8.657 257,073

Ischemic Stroke Malik et al. 2018 Nat Genet 0.017 8.350 440,328

Anorexia Boraska et al., 2014 Mol Psych 0.236 8.274 32,143

Alzheimer’s Disease Jansen et al. 2019 Nat Genet 0.014 7.833 433,886

Rheumatoid Arthritis Okada et al., 2014 Nature 0.187 7.510 37,681

Ever Smoked TAG Consortium, 2010 Nat Genet 0.085 7.482 74,035

Prostate Cancer Schumacher et al. 2018 Nat Genet 0.131 7.016 72,729

Prostate Cancer (UKBB) UK Biobank 0.017 7.000 459,324

Breast Cancer (UKBB) UK Biobank 0.018 6.846 459,324

Type 2 Diabetes Morris et al., 2012 Nat Genet 0.095 6.463 60,786

Autism Spectrum PGC Cross-Disorder Group, 2013 Lancet 0.622 6.191 10,263

Coronary Artery Disease Schunkert et al., 2011 Nat Genet 0.075 6.016 77,210

Supplementary Table 2. Traits used in S-LDSC analyses. We report phenotype name, study reference, SNP

heritability h2g, heritability Z-score, and number of samples N for the 63 independent diseases and complex traits

(Gazal et al., 2021) used in S-LDSC analyses.
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CoalNN ASMC mean posterior

1st decile

MAE 424 (2) 857 (6)

RMSE 1151 (8) 2392 (17)

2nd decile

MAE 745 (7) 1164 (15)

RMSE 1673 (20) 3200 (35)

3rd decile

MAE 1233 (19) 1683 (36)

RMSE 2382 (34) 4070 (54)

4th decile

MAE 2465 (53) 3287 (83)

RMSE 4193 (82) 6245 (106)

5th decile

MAE 4365 (67) 5696 (104)

RMSE 6742 (99) 9163 (114)

6th decile

MAE 5927 (82) 7043 (96)

RMSE 8743 (122) 10689 (122)

7th decile

MAE 7715 (72) 8060 (64)

RMSE 10970 (101) 11859 (71)

8th decile

MAE 10741 (105) 9984 (92)

RMSE 14286 (118) 13941 (104)

9th decile

MAE 15944 (150) 14452 (171)

RMSE 20253 (179) 19063 (196)

10th decile

MAE 34508 (236) 33869 (284)

RMSE 47456 (341) 47604 (422)

Supplementary Table 3. Accuracy of pairwise TMRCA prediction by decile of TMRCA distribution.

We report the average performance of CoalNN and ASMC mean posterior in generations for the mean absolute error

(MAE) and the root mean squared error (RMSE) for deciles of the true TMRCA distribution across 10 simulations

of sequencing data. Numbers in round brackets represent standard errors.
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ASMC mean posterior ASMC MAP Runtime (mins)

D
is
cr
et
iz
at
io
n
b
in
s

100

MAE 8633 (34) 9676 (50)
180.60 (2.79)

RMSE 18189 (158) 21410 (169)

200

MAE 8594 (30) 9758 (45)
222.57 (2.81)

RMSE 17975 (120) 21918 (126)

300

MAE 8574 (28) 9822 (46)
282.77 (8.91)

RMSE 17895 (105) 22285 (114)

400

MAE 8562 (27) 9861 (45)
309.91 (2.52)

RMSE 17853 (99) 22557 (109)

Supplementary Table 4. Accuracy and runtime for di↵erent ASMC time discretizations. We report

the average performance of ASMC for the mean absolute error (MAE) and the root mean squared error (RMSE)

for di↵erent numbers of time discretization bins across 10 simulations for sequencing data. Runtime is the average

number of minutes to decode all pairwise combinations of 200 haplotypes in batches of 100 pairs across the 10

simulations. Numbers in round brackets represent standard errors.

23



CoalNN ASMC mean posterior ASMC MAP

Imputed

panel size = 300
MAE 10138 (79) 9996 (80) 11253 (80)

RMSE 21094 (158) 20908 (167) 24265 (149)

panel size = 1000
MAE 9234 (57) 9206 (54) 10482 (65)

RMSE 19476 (132) 19433 (150) 23259 (139)

panel size = 2000
MAE 8861 (84) 8911 (76) 10121 (84)

RMSE 18689 (164) 18768 (161) 22600 (147)

Supplementary Table 5. Accuracy of pairwise TMRCA prediction in imputed data. We report the average

performance in generations of CoalNN and ASMC for the mean absolute error (MAE) and the root mean squared

error (RMSE) across 10 simulations. The reported performance is obtained by using the CoalNN sequencing weights

and rounding the imputed allele dosages to binarize them. Numbers in round brackets represent standard errors.

Reference panel sizes are in haploid units.
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GC rate CoalNN with GC CoalNN without GC ASMC mean posterior

0
MAE NA (NA) 7982 (32) 8166 (27)

RMSE NA (NA) 13518 (73) 13262 (49)

1.0⇥ 10�8
MAE 7901 (42) 8588 (27) 8897 (27)

RMSE 13540 (72) 14610 (58) 14547 (61)

2.0⇥ 10�8
MAE 8568 (22) 9141 (48) 9518 (51)

RMSE 14767 (48) 15467 (64) 15484 (62)

3.0⇥ 10�8
MAE 8881 (46) 9622 (30) 10000 (32)

RMSE 15160 (67) 16178 (43) 16205 (47)

4.0⇥ 10�8
MAE 9527 (32) 9978 (36) 10399 (36)

RMSE 15958 (61) 16633 (59) 16699 (56)

Supplementary Table 6. Accuracy of pairwise TMRCA prediction for di↵erent non-crossover gene

conversion rates. We report the average performance of CoalNN and ASMC mean posterior, in generations, using

the mean absolute error (MAE) and the root mean squared error (RMSE). Simulations involve a constant e↵ective

population size of 10,000 diploid individuals, a constant recombination rate of 10�8 per base pair per generation,

and di↵erent values of non-crossover gene conversion rate. Numbers in round brackets represent standard errors.

Numbers in round brackets represent standard errors.
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AND gate XOR gate

Channel 1 0.035 (0.001) -0.009 (0.001)

Channel 2 0.024 (0.000) -0.056 (0.001)

Channel 3 -0.008 (0.001) 0.017 (0.001)

Channel 4 0.014 (0.000) 0.002 (0.000)

Channel 5 -0.232 (0.001) -0.016 (0.001)

Channel 6 -0.051 (0.000) 0.08 (0.001)

Channel 7 -0.272 (0.001) -0.172 (0.001)

Channel 8 -0.057 (0.000) 0.101 (0.001)

Supplementary Table 7. Recovery of the AND/XOR features from raw haplotypes. Pearson correlation

coe�cient between the XOR/AND functions calculated on the raw haplotypes and the 8 channels of output of the

first ConvBlock (see Methods). The numbers in brackets are standard errors calculated over 20 simulations.
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DAF bin
(%)

Number of dated variants Median age (generations)

AFR AMR EAS EUR SAS AFR AMR EAS EUR SAS

[0, 0.5] 5,156,014 2,248,935 1,819,869 1,648,497 2,159,787 2,160 (34) 1,570 (16) 1,045 (38) 960 (16) 927 (61)

[0.5, 1] 2,762,406 1,884,075 1,191,727 1,358,230 1,493,628 3,564 (53) 3,071 (53) 1,703 (25) 1,137 (9) 1,066 (16)

[1, 2.5] 3,082,203 1,923,613 913,021 1,181,402 1,384,546 4,904 (53) 4,852 (64) 2,634 (27) 1,593 (20) 1,517 (29)

[2.5, 5] 2,333,277 918,075 646,257 848,596 846,087 7,138 (65) 7,620 (67) 7,089 (93) 4,593 (62) 5,041 (47)

[5, 10] 2,028,081 958,302 736,868 904,633 930,768 1,0581 (71) 11,303 (82) 10,395 (79) 8,046 (48) 8,187 (48)

[10, 25] 2,350,274 1,536,898 1,321,044 1,479,233 1,547,460 17,193 (84) 17,737 (67) 13,441 (56) 12,138 (40) 11,802 (40)

[25, 50] 1,523,362 1,404,734 1,312,117 1,377,671 1,420,932 28,476 (95) 2,6709 (123) 17,970 (93) 18,847 (83) 17,873 (83)

[50, 100] 2,057,347 2,184,241 1,954,993 2,015,680 1,979,944 43,636 (153) 44,824 (201) 28,261 (198) 29,741 (150) 31,261 (172)

Supplementary Table 8. Median age of dated variants among di↵erent population groups. We report

the number of variants dated by CoalNN and their median age in generations stratified by derived allele frequency

(DAF) as observed within a given population group. We only considered non-singleton polymorphic variants for

which high-confidence ancestral information was available (Paten et al., 2008). Numbers in round brackets represent

standard errors obtained by bootstrapping (see Methods).
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Derived allele
frequency bin (%)

Number of dated variants Median age (generations)

CEU CHS YRI CEU CHS YRI

[0.5, 1] N.A 516,114 1,477,617 N.A 628 (17) 3,818 (34)

[1, 2.5] 1,101,465 510,236 2,243,382 701 (18) 599 (17) 4,762 (33)

[2.5, 5] 44,8342 253,321 1,638,788 1,023 (20) 907 (30) 6,795 (34)

[5, 10] 225,484 147,593 1,374,079 2,203 (73) 2,165 (138) 9,438 (39)

[10, 25] 94,380 83,756 833,036 7,761 (314) 9,092 (418) 13,901 (57)

[25, 50] 7,934 12,096 118,731 13,850 (574) 17,104 (727) 22,201 (175)

[50, 100] 58,060 53,894 423,917 60,023 (719) 59,019 (493) 49,115 (215)

Supplementary Table 9. Median age of variants among di↵erent populations dated by CoalNN trained

on a demographic prior of constant size. We report the number of variants dated by CoalNN trained on a

constant population size (Ne = 20, 000) and their median age in generations, stratified by derived allele frequency as

observed within CEU, CHS or YRI. Only variants that remained polymorphic within each population were consid-

ered. Singletons were not included. Numbers in round brackets represent standard errors obtained by bootstrapping

(see Methods). N.A denotes the absence of dated variant within the derived allele frequency bin for the correspond-

ing population.
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DAF
bin (%)

Number of dated variants Median age (generations)

AFR AMR EAS EUR SAS AFR AMR EAS EUR SAS

B
e
n
ig
n

[0, 1] 60243 40505 36714 41811 21027 1083 (24) 812 (10) 741 (36) 524 (10) 510 (19)

[1, 2.5] 7573 4742 2655 3384 3181 4187 (107) 3115 (142) 2311 (44) 1391 (21) 1416 (56)

[2.5, 5] 5277 2217 1590 2185 2005 6364 (80) 5385 (313) 4807 (390) 2743 (126) 4004 (176)

[5, 10] 4215 2098 1632 2028 2053 10116 (181) 9433 (312) 8917 (261) 6730 (242) 6868 (182)

[10, 50] 7264 5876 5233 5724 5837 19695 (243) 19293 (329) 13908 (190) 13168 (188) 12956 (189)

[50, 100] 3949 4367 3802 3997 3807 40953 (301) 41976 (444) 25168 (423) 27154 (441) 28143 (402)

P
o
s
s
.
d
a
m
a
g
in
g [0, 1] 17193 11322 11085 13094 5926 949 (24) 720 (11) 709 (32) 510 (11) 480 (23)

[1, 2.5] 1725 1100 685 829 794 3908 (116) 2204 (178) 2123 (70) 1284 (39) 1243 (34)

[2.5, 5] 1042 480 351 510 439 5952 (244) 3812 (435) 4394 (505) 2255 (224) 3787 (457)

[5, 10] 760 440 331 381 400 9055 (305) 7948 (412) 8509 (609) 6161 (390) 6096 (358)

[10, 50] 1018 816 777 804 823 18243 (365) 17221 (578) 12037 (431) 11993 (421) 11295 (447)

[50, 100] 130 174 211 172 174 38587 (970) 33168 (2346) 20898 (925) 22610 (1776) 24821 (1798)

P
r
o
b
.
d
a
m
a
g
in
g [0, 1] 22284 15063 16221 19044 7941 846 (18) 675 (10) 677 (30) 511 (11) 445 (22)

[1, 2.5] 1803 1145 696 975 878 3362 (135) 1719 (108) 2036 (65) 1226 (38) 1262 (49)

[2.5, 5] 1067 425 375 440 419 5433 (179) 3390 (396) 3193 (230) 1816 (171) 2211 (289)

[5, 10] 703 409 283 364 410 8963 (373) 6391 (538) 6673 (794) 5148 (468) 5190 (389)

[10, 50] 810 694 678 694 654 17500 (444) 16570 (692) 12561 (420) 12095 (510) 11993 (369)

[50, 100] 100 131 170 136 146 34742 (1125) 31530 (2180) 19270 (1157) 20549 (1538) 22579 (1657)

Supplementary Table 10. Median age of variants among di↵erent population groups annotated by

PolyPhen-2. We report the number of annotated variants by PolyPhen-2 dated by CoalNN and their median age

in generations, stratified by derived allele frequency (DAF) as observed within a given population group.
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DAF
bin (%)

Number of dated variants Median age (generations)

AFR AMR EAS EUR SAS AFR AMR EAS EUR SAS

T
o
le
r
a
t
e
d

[0, 1] 63965 42999 39319 45297 22214 1059 (22) 797 (9) 733 (32) 523 (11) 505 (16)

[1, 2.5] 7838 4929 2754 3578 3366 4113 (91) 3058 (140) 2284 (45) 1388 (26) 1407 (49)

[2.5, 5] 5352 2275 1673 2263 2030 6335 (115) 5443 (323) 4453 (364) 2807 (123) 3952 (201)

[5, 10] 4262 2169 1637 2049 2151 9946 (159) 9236 (264) 8912 (271) 6677 (269) 6689 (212)

[10, 50] 7290 5859 5314 5723 5870 19505 (197) 19150 (328) 13741 (157) 13042 (169) 12804 (167)

[50, 100] 3900 4346 3772 3958 3777 40922 (324) 41934 (463) 25187 (489) 27256 (442) 28157 (402)

D
e
le
t
e
r
io
u
s

[0, 1] 36868 24710 25536 29613 13149 900 (18) 698 (9) 698 (34) 510 (10) 467 (22)

[1, 2.5] 3361 2121 1341 1685 1559 3716 (112) 1925 (91) 2154 (47) 1247 (29) 1222 (33)

[2.5, 5] 2127 870 678 912 859 5761 (155) 3489 (259) 3954 (325) 1890 (128) 2923 (184)

[5, 10] 1438 823 634 759 758 9243 (253) 7474 (425) 7638 (525) 5570 (360) 6267 (333)

[10, 50] 1878 1563 1414 1532 1481 18326 (332) 17349 (428) 12800 (318) 12449 (337) 12143 (262)

[50, 100] 294 370 451 384 391 36896 (1064) 32819 (1539) 20601 (507) 21681 (889) 23579 (1261)

Supplementary Table 11. Median age of variants among di↵erent population groups annotated by

SIFT. We report the number of variants annotated by SIFT dated by CoalNN and their median age in generations,

stratified by derived allele frequency (DAF) as observed within a given population group.
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Annotation
E↵ect size ⌧⇤ not
including CoalNN

E↵ect size ⌧⇤ including CoalNN

AFR AMR EAS EUR SAS

CoalNN N.A -0.219 (0.019) -0.174 (0.019) -0.184 (0.019) -0.148 (0.018) -0.187 (0.019)

LLD-AFR -0.271 (0.004) -0.267 (0.004) -0.269 (0.004) -0.268 (0.004) -0.269 (0.004) -0.268 (0.004)

Recombination rate -0.370 (0.006) -0.367 (0.006) -0.369 (0.006) -0.369 (0.006) -0.369 (0.006) -0.368 (0.006)

Nucleotide diversity -0.051 (0.005) -0.046 (0.005) -0.050 (0.005) -0.048 (0.005) -0.050 (0.005) -0.049 (0.005)

B-statistic 0.090 (0.004) 0.089 (0.004) 0.089 (0.004) 0.089 (0.004) 0.089 (0.004) 0.089 (0.004)

CpG content 0.321 (0.006) 0.321 (0.006) 0.321 (0.006) 0.321 (0.006) 0.321 (0.006) 0.321 (0.006)

ASMCavg -0.294 (0.004) -0.292 (0.004) -0.292 (0.004) -0.291 (0.004) -0.293 (0.004) -0.292 (0.004)

Supplementary Table 12. S-LDSC analysis of CoalNN annotation on population groups. ⌧⇤ estimates

(meta-analysed across 63 independent diseases and complex traits) of CoalNN MAF-adjusted allele age annotation

on each population group (AFR, AMR, EAS, EUR and SAS) in independent marginal S-LDSC analyses conditioned

on 96 baseline annotations (the full baseline model except for ARGweaver). We also report e↵ect sizes of Baseline-LD

evolutionary annotations (level of LD measured in African populations LLD-AFR, recombination rate, nucleotide

diversity, B-statistic (McVicker et al., 2009), CpG content (Zhang et al., 2021) and average pairwise TMRCA

ASMCavg (Palamara et al., 2018)), before and after the introduction of the allele age annotation.

31



ARGweaver allele age ASMCavg B-statistic CpG content LLD-AFR Nucleotide diversity Recombination rate

ACB 0.64462 0.28373 -0.0449627 -0.0068927 0.357883 0.193833 -0.0115892

ASW 0.637648 0.262087 -0.0511699 0.0073261 0.308689 0.175725 0.0188068

BEB 0.566617 0.25335 -0.0249983 -0.0177649 0.315825 0.139136 -0.0245286

CDX 0.461265 0.273944 -0.0317672 -0.0211324 0.248805 0.143154 -0.0212694

CEU 0.599494 0.321749 -0.0459838 -0.0102032 0.314191 0.168587 -0.0112538

CHB 0.532193 0.31198 -0.0411218 -0.0324496 0.291585 0.166983 -0.0367068

CHS 0.462519 0.28222 -0.0184473 -0.0334043 0.331941 0.183432 -0.0848482

CLM 0.624238 0.29408 -0.0219222 -0.0232567 0.379901 0.181055 -0.0551782

ESN 0.545247 0.268409 -0.0438037 0.00498154 0.253668 0.187784 0.0165792

FIN 0.565649 0.294069 -0.00533878 -0.0418206 0.38372 0.143829 -0.0882545

GBR 0.597827 0.302148 -0.0403849 -0.00995346 0.308844 0.151967 -0.0144756

GIH 0.527073 0.244278 0.0185592 -0.0524937 0.405602 0.129283 -0.0885153

GWD 0.58232 0.260541 -0.0263054 0.000694733 0.2974 0.174894 -0.0206123

IBS 0.519219 0.276006 -0.0430249 -0.000972771 0.252918 0.12374 0.0289131

ITU 0.585557 0.305872 -0.0515937 -0.0102396 0.311108 0.182995 0.00317832

JPT 0.489656 0.282032 -0.0326494 -0.026941 0.275463 0.158177 -0.0352778

KHV 0.507532 0.253314 -0.0239953 -0.0244129 0.267331 0.125592 -0.0289965

LWK 0.584643 0.260102 -0.0550596 0.0119386 0.235916 0.178538 0.0261056

MSL 0.539203 0.243146 -0.0455326 0.0163128 0.214835 0.16732 0.0288875

MXL 0.59563 0.2825 -0.0410389 -0.0051117 0.312468 0.158115 0.000506131

PEL 0.59611 0.275924 -0.0391656 -0.00776521 0.314023 0.15596 -0.00922475

PJL 0.580811 0.293767 -0.057732 0.00708515 0.268913 0.167449 0.0398443

PUR 0.615749 0.274605 -0.0522987 0.0173573 0.283352 0.172801 0.0367664

STU 0.585506 0.265688 -0.0169196 -0.0237441 0.334048 0.159808 -0.0349042

TSI 0.592384 0.303182 -0.0535334 -0.0155446 0.296478 0.154585 0.00063352

YRI 0.550575 0.262261 -0.0448539 0.00265146 0.254752 0.185644 0.00491168

Supplementary Table 13. Correlation between MAF-stratified CoalNN allele age annotation and other

evolutionary annotations. We report correlations computed on common SNPs (MAF � 5%) between each of

the 26 population specific MAF-adjusted CoalNN annotations and evolutionary annotations from the Baseline-LD

model. ARGweaver allele age, ASMCavg, and LLD-AFR annotations were also MAF-stratified.
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a

Annotation

E↵ect size ⌧⇤ not

including CoalNN

E↵ect size ⌧⇤

including CoalNN

CoalNN N.A -0,218 (0,018)

LLD-AFR -0,271 (0,004) -0,268 (0,004)

Recombination rate -0,370 (0,006) -0,368 (0,006)

Nucleotide diversity -0,051 (0,005) -0,048 (0,005)

B-statistic 0,090 (0,004) 0,089 (0,004)

CpG content 0,321 (0,006) 0,321 (0,006)

ASMCavg -0,294 (0,004) -0,291 (0,004)

b

Annotation

E↵ect size ⌧⇤ not

including ARGweaver

E↵ect size ⌧⇤

including ARGweaver

ARGweaver N.A -0.147 (0.005)

LLD-AFR -0.271 (0.004) -0.241 (0.004)

Recombination rate -0.370 (0.006) -0.348 (0.006)

Nucleotide diversity -0.051 (0.005) -0.039 (0.005)

B-statistic 0.090 (0.004) 0.083 (0.004)

CpG content 0.321 (0.006) 0.314 (0.006)

ASMCavg -0.294 (0.004) -0.249 (0.004)

Supplementary Table 14. S-LDSC analysis of predicted allele age annotations. Numerical values from

Fig. 5b. E↵ect size ⌧⇤ estimates (meta-analysed across 63 independent diseases and traits) of CoalNN MAF-

adjusted allele age annotation on all 26 populations (in a) and of ARGweaver MAF-adjusted allele age annotation

(in b), in marginal S-LDSC analysis conditioned on 96 baseline annotations (the full Baseline-LD model except

for ARGweaver). We also report e↵ect sizes of Baseline-LD evolutionary annotations (level of LD measured in

African populations LLD-AFR, recombination rate, nucleotide diversity, B-statistic (McVicker et al., 2009), CpG

content (Zhang et al., 2021) and average pairwise TMRCA ASMCavg (Palamara et al., 2018)), before and after the

introduction of the allele age annotation.
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