Supplemental Methods

Analysis of single cell RNA-Sequencing (scRNA-seq) Data

scRNA-seq data from BM samples of patients with MM (GSE186448)¹ were analysed using the scflow pipeline (https://github.com/cribbslab/scflow). The kallisto/bustools workflow² was used to pseudoalign the reads, using a kmer size of 31 base pairs to the GRCh38 (hg38) reference transcriptome. The output was converted to a singleCellExperiment class object for initial filtering and then converted to a Seurat object for further downstream processing. Quality control and filtering was performed using a mitochondrial ratio cuttoff of 0.1, fewer than 500 UMIs, or fewer than 300 or greater than 6000 features were removed. Clustering and sample integration were performed using Seurat (v4)³. Automated cell type annotation using singleR⁴, scCLassify⁵ and clustifyr⁶ were used as a guide for manual annotation. Seurat's Wilcoxon approach was used for differential gene expression analysis.

Published scRNA-seq and associated CITE-seq data from two healthy control BM samples, obtained with donor consent from AllCells (GSE139369)⁷ were analysed using scanpy 1.7.0⁸. CD3 protein-expressing bone marrow single-cells were processed to 7 clusters. Briefly, size factor-normalised log-transformed scaled highly variable genes were used to calculate principal components for neighbourhood graph construction, in turn used for leiden clustering⁹ and UMAP calculation¹⁰. T cell phenotype was assigned to each cluster using canonical marker genes and surface expression.

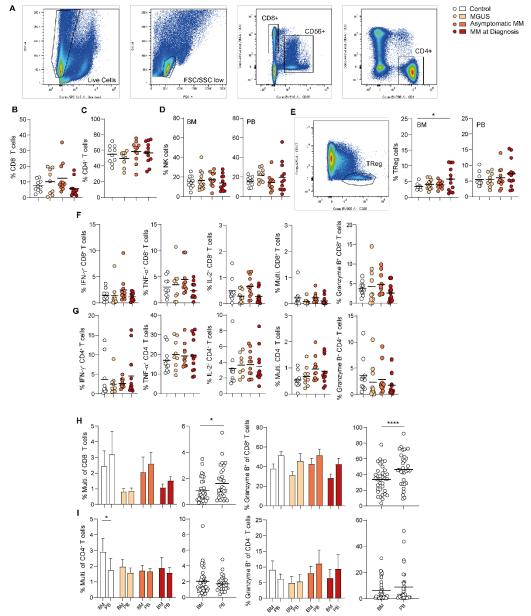
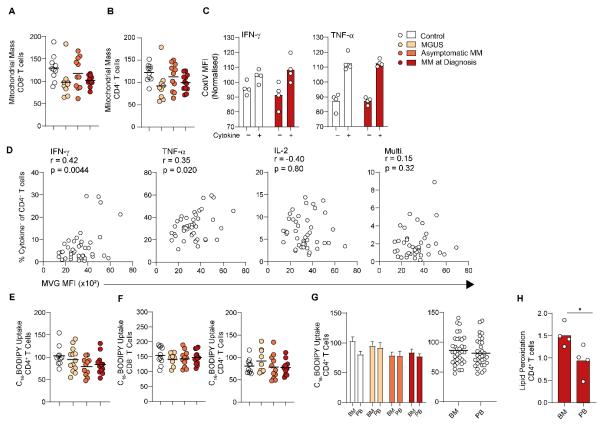
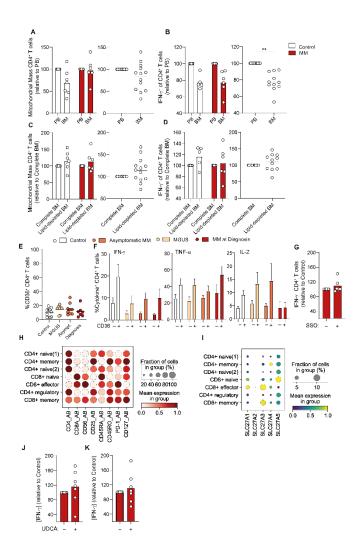

	Control	MGUS	Asymptomatic MM	MM at Diagnosis	MM on relapse	MM in remission
n	10	13	11	12	14	12
Age – Median	83	65	72	74	65	73
(Range)	(44-97)	(50-91)	(56-82)	(48-86)	(47-88)	(53-86)
Sex - % male	30	46	50	50	50	60
MMPC Abundance						
Trephine % -	N/A	5	16	55	40	5
Median (Range)		(0-9)	(11-50)	(15-70)	(0-80)	(0-8)
Paraprotein (PP) Abundance and Type						
PP level - Median	N/A	10.5	20.5	21.0	14.0	0.0
(Range)		(2.0-16.0)	(6.8-26.0)	(0.0-51.6)	(0.0-17.0)	(0.0-4.0)
lgG (%)	N/A	66.7	85.7	88.9	92.8	58.3
lgA (%)	N/A	33.3	14.3	11.1	0	41.7
Light Chain (%)	N/A	0	0	0	7.2	0

Table S2: Treatment details for MM patients on relapse or in remission

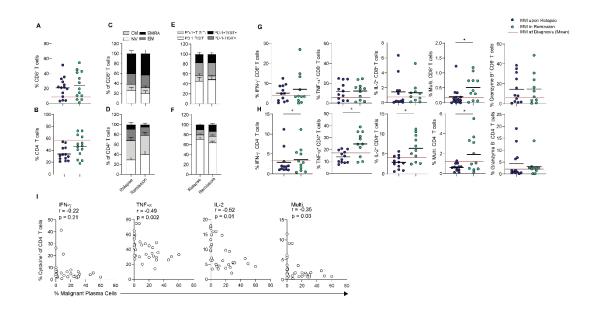
	MM on relapse	MM in remission			
Lines of therapy – Mean (Range)	1.7	1.3			
	(1-3)	(1-3)			
% Autologous stem-cell transplant	57.1	33.3			
Treatment at Sampling					
% Immunomodulatory Drug	50.0	91.7			
% Proteasome Inhibitor	78.6	66.6			
% Glucocorticoid	92.9	83.3			
% Alkylating Agent	50.0	0.0			
% CD38-targeting agent	28.6	41.6			


Table S3: Details of flow cytometry antibodies

Antibody	Clone	Supplier and Cat #
Anti-CD4 BV785	OKT4	Biolegend #317442
Anti-CD8 AF700	SK1	Biolegend #344724
Anti-CD56 BV510	HDC56	Biolegend #318340
Anti-CD127 APC	A019D5	Biolegend #351342
Anti-CD25 BV605	BC96	Biolegend #302632
Anti-CD45RA BV421	HI100	Biolegend #304130
Anti-CCR7 BUV373	2-L1-A	BD #749676
Anti -TIGIT BUV395	741182	BD #747845
Anti-PD1 PE-cy7	EH12.2H7	Biolegend #329918
Anti-CD36 PE	TR9	Molecular probes A15777
Anti-IFN-γ FITC	B27	Biolegend #506504
Anti-TNF-α PE	MAb11	Biolegend #502909
Anti-IL-2 BV605	1-17H12	Biolegend #500332
Anti-Granzyme B	QA16A02	Biolegend #372212
Anti-COX IV AF647	mAbcam339851	Abcam ab197491
Anti-VDAC unconjugated	20B12AF2	Abcam ab14734
Goat-anti-mouse PE-cy7	Poly4053	Biolegend #405315


Supplementary Figure 1:

(A) Representative dot plots show cell population gates for CD4⁺ and CD8⁺ T cells, and CD56⁺ NK cells within BM and PB live FSC/SSC low cells. (**B-C**) Graphs show percentage of (**B**) CD8⁺ and (**C**) CD4⁺ T cells in PB mononuclear cells from controls (n=10), individuals with MGUS (n=13), asymptomatic MM (Asympt. n=11) or MM at diagnosis (Diagnosis n=12). (**D**) Proportions of CD56⁺ NK cells in BM and PB mononuclear cells from each group as indicated. (**E**) Representative dot plots show cell population gate for CD4⁺CD127⁻CD25⁺ TReg cells. Proportion of CD4⁺CD127⁻CD25⁺ TReg cells in BM and PB mononuclear cells from each group as indicated. (**F-G**) Proportion of PB FSC/SSC low cells from indicated groups expressing (**F**) CD8 or (**G**) CD4 and IFN- γ , TNF- α , IL-2, all three cytokines (Multifunctional) or Granzyme B as indicated, after 4 hours stimulation via CD3/CD28 in presence of brefeldin A. (**H-I**) Proportion of (**H**) CD8⁺ and (**I**) CD4⁺T cells within BM or PB mononuclear cells from indicated groups expressing IFN- γ , TNF- α and IL-2 (Multifunctional) or Granzyme B after 4 hours stimulation as in (F-G). Proportions within the BM and PB are directly compared for each group individually and for all patients combined. Significance was calculated using (B-G) one-way or (H-I bars) two-way ANOVA and Sidak's multiple comparison tests or (H-I circles) paired t test; *p<0.05, **p < 0.01, ***p < 0.0001.


Supplementary Figure 2:

(A-B) Mitochondrial mass of (A) CD8⁺ and (B) CD4⁺ T cells PB mononuclear cells from controls (n=10), individuals with MGUS (n=13), asymptomatic MM (Asympt. n=11) or MM at diagnosis (Diagnosis n=12) assessed using mitoview green. (C) CoxIV MFI of CD4⁺ T cells positive or negative for IFN- γ or TNF- α as indicated from control (n=4) or MM at diagnosis (n=4) samples. (D) Correlation of mitochondrial mass (MVG fluorescence) with frequency of BM CD4⁺ T cells positive (+) for the indicated cytokines for all patient samples combined. (E-F) C₁₆-BODIPY uptake of (E) BM CD4⁺ T cells, (F) PB CD8⁺ and PB CD4⁺ T cells within indicated groups. (G) C₁₆-BODIPY uptake of BM and PB CD4⁺ T cells are directly compared for each group and for all patient samples combined. (H) Lipid peroxidation capacity of CD4⁺ T cells within BM and PB mononuclear cells from MM patients at diagnosis (n=4), assessed using the lipid peroxidation probe Bodipy 581/591. Significance was calculated using (A-B, E-F) one-way or (C, G bars) two-way ANOVA and Sidak's multiple comparisons test, (D) Pearson's correlation (G circles, H) paired t test, *p<0.05, **p < 0.01, ***p < 0.0001.

Supplementary Figure 3:

(A-B) BM mononuclear cells from controls (n=6) or relapsed MM patients (n=6) were cultured in autologous PB or BM plasma as indicated for 72 hours. (A) CD4⁺ T cell mitochondrial mass was assessed by flow cytometry using mitoview green and is shown for each group (left) and both combined (right). (B) At 72 hours T cells were activated with PMA/ionomycin and expression of IFN-y was assessed within CD4⁺ T cells by flow cytometry. (C-D) BM mononuclear cells were cultured and assessed as in (A-B) but in either complete or lipid-depleted BM autologous plasma as indicated. (E) Proportion of CD4⁺ T cells expressing CD36 within controls (n=10), individuals with MGUS (n=8), asymptomatic MM (Asympt. n=9) or MM at diagnosis (Diagnosis n=7) were assessed by flow cytometry. (F) Expression of IFN- γ , TNF- α and IL-2 by CD36 positive and negative CD4⁺ T cells within indicated BM mononuclear cell samples. (G) BM mononuclear cells from MM patients at diagnosis (n=7) were cultured in autologous BM plasma as in (A-D), in absence or presence of the CD36 inhibitor, SSO and assessed for IFN- γ expression within CD4⁺ T cells by flow cytometry. (H-I) Dot plots demonstrating (H) phenotypic T cell cluster allocation by indicated protein expression and (I) SLC27A1-5 gene expression within indicated T cell clusters from CITE-Seq data of two healthy control BM samples. (J-K) BM mononuclear cells from MM patients at diagnosis (n=7) were cultured in autologous PB (J) or BM (K) plasma as in (A-D), in absence or presence of the FATP5 inhibitor UDCA and assessed for IFN-y expression by ELISA. Significance was calculated using (A-D circles, G, J-K) Wilcoxon matchedpairs signed rank test; **p < 0.01, ***p < 0.0001.

Supplementary Figure 4:

(A-B) Proportion of (A) CD8⁺ and (B) CD4⁺ T cells within PB mononuclear cells from relapsed MM patients (n=14) and MM patients in remission (n=12). (C-D) Proportions of NV, CM, EM and EMRA (C) CD8⁺ and (D) CD4⁺ T cells in indicated PB samples. (E-F) Percentage of PD-1⁻TIGIT⁻, PD-1⁺TIGIT⁻, PD-1⁻TIGIT⁺ and PD-1⁺TIGIT⁺ (E) CD8⁺ and (F) CD4⁺ T cells in PB mononuclear cells from indicated samples. (G-H) Proportion of (G) CD8⁺ and (H) CD4⁺ T cells within PB mononuclear cells from each group expressing IFN- γ , TNF- α , IL-2, all three of these cytokines (Multifunctional) or Granzyme B after 4 hours of stimulation via CD3/CD28 brefeldin A. (I) Correlation of percentage of malignant plasma cells within the BM sample with frequency of BM CD4⁺ T cells positive (+) for the indicated cytokines for samples combined for patients with MM at diagnosis (n=12), relapsed MM patients (n=14) and MM patients in remission (n=12). Significance was calculated using (A-B, G-H) unpaired t test and (I) Pearson correlation; *p<0.05.

- 1. Kurata K, James-Bott A, Tye MA, et al. Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma. *Blood Cancer J.* 2023;13(1):1–12.
- 2. Melsted P, Booeshaghi AS, Liu L, et al. Modular, efficient and constant-memory single-cell RNAseq preprocessing. *Nat Biotechnol*. 2021;39(7):813–818.
- 3. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. *Cell*. 2021;184(13):3573-3587.e29.
- 4. Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. *Nat Immunol*. 2019;20(2):163–172.
- 5. scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. *Molecular Systems Biology*. 2020;16(6):e9389.
- 6. Fu R, Gillen AE, Sheridan RM, et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. 2020;
- 7. Granja JM, Klemm S, McGinnis LM, et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. *Nat Biotechnol*. 2019;37(12):1458–1465.
- 8. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biology*. 2018;19(1):15.

- 9. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. *Sci Rep*. 2019;9(1):5233.
- 10. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. 2020;