

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

An age-period-cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030

Journal:	BMJ Open	
Manuscript ID	bmjopen-2023-072751	
Article Type:	Original research	
Date Submitted by the Author:	13-Feb-2023	
Complete List of Authors:	Zhao, Yanji; The Hong Kong Polytechnic University, Department of Applied Mathematics Zhuang, Zian; The Hong Kong Polytechnic University, Department of Applied Mathematics; University of California Los Angeles, Department of Biostatistics Yang, Lin; The Hong Kong Polytechnic University, School of Nursing He, Daihai; The Hong Kong Polytechnic University, Department of Applied Mathematics; The Hong Kong Polytechnic University, Research Institute for Future Food	
Keywords:	STATISTICS & RESEARCH METHODS, ONCOLOGY, Risk Factors	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
44
45
16
- 1 0 //7
4/
48
49
50
51
52
53
54
55
56
50
57
58
59

1	An age-period-cohort analysis and projection of
2	cancer mortality in Hong Kong, 1998–2030
3	

4 Yanji Zhao^{1, #}, Zian Zhuang^{1,2, #}, Lin Yang³ and Daihai He^{1,4*}

- 6 1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong,
 - China

5

7

11

- 8 2 Department of Biostatistics, University of California, Los Angeles, CA, United States
- 9 3 School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
- 10 4 Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong, China
- 12 # These authors contributed equally to this work.
- 13 * To whom correspondence should be addressed:
- 14 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong,
- 15 China
 - 16 Tel: 852-27667864; daihai.he@polyu.edu.hk (DH).
- 17
 - 18 Email of all authors
 - 19 Yanji Zhao: <u>yan-ji.zhao@connect.polyu.hk;</u> Zian Zhuang:<u>zianzhuang@ucla.edu;</u>
 - 20Yang Lin: lyang@polyu.edu.hk;Daihai He: daihai.he@polyu.edu.hk;
- 21
 - 22 Word count:2954
- 23

24 Abstract

Objectives: Explore age, period, birth cohort effects and effects across different genders and
 immigration groups on mortality rates of lung, pancreatic, colon, liver, prostate and stomach
 cancers and their projections.

Design, Setting, and Participants: Death registry data in Hong Kong between 1998 and 2021.
The population data were stratified by age, sex, immigration status, and length of stay in Hong
Kong. Immigration status was classified into three groups: locals born in Hong Kong, long-stay
immigrants and short-stay immigrants.

Main Outcomes and Measures: Age-period-cohort analysis was used to examine age, period,
 and birth cohort effects for genders and immigration groups from 1998 to 2021. Bayesian age period-cohort models were applied to predict the mortality rates from 2022 to 2030.

Results: Short-stay immigrants indicated relatively pronounced fluctuations in age, cohort and period effects for six types of cancers, as increasing trends of age effect occurred for both genders and all immigration groups. Monotone decreasing trends or plateau of forecasting occur for both genders and all immigration groups in cancers except for increasing trends for short-stay male immigrants with colon cancer and long-stay male immigrants with pancreatic cancer. Long-stay male immigrants with lung cancer would perform the most significant decline in predictive mean from 100.18 to 79.55 deaths/100,000 population, while the same immigration group with pancreatic cancer would indicate the most significant uptrend in each year of 17.87 deaths and 23.49 deaths/100,000 population in 2022 and 2030, respectively.

48 Conclusions Immigrants had more pronounced fluctuations and sharper slopes of age, cohort, 49 and period effects than locals. Men will be at a higher risk of mortality from cancers than 50 women in the future, except for prostate cancer. Long-stay immigrants for each type of cancer 51 and gender will be at a higher mortality risk than locals.

Keywords: Age-period-cohort analysis, immigration, mortality, lung cancer, pancreatic cancer,

54 colon cancer, liver cancer, prostate cancer, stomach cancer

- Strengths and limitations of this study
 - Complicated population distribution has resulted in intricate causes of cancers, while few • studies have assessed the relationship between immigration status and cancer mortality. This study provides new evidence regarding the relationship between immigration status and cancer mortality.
- We could only depict trends and variations among different immigration and sex groups • and insufficiently perform the estimates of the contributions of three effects or subgroups to mortality rates.

Page 5 of 41

67 Introduction

68 Several migration waves from mainland China to Hong Kong have occurred over the past 69 century. These migration waves included a large-scale migration inflow from 1945 to 1950 (the 70 Chinese Civil War) and a few small-scale inflows in the 1950s, 1970s, and 1990s [1-3]. In 2016, 71 immigrants from mainland China formed approximately 38% of the population of Hong Kong. 72 These inflows have led to a growing interest in research on the disparity of health conditions 73 between the locals and immigrants.

Cancer has been one of most common causes of death, as an estimated 19.3 million new cancer cases and 9.9 million new cancer-associated deaths occurred worldwide in 2020 [4]. In Hong Kong, lung cancer is one of the most common causes of cancer deaths [5, 6]. Previous studies suggested that the primary cause of lung cancer is cigarette smoking [7-11]. Genetic factors, asbestos, radon gas, second-hand smoke, and other forms of air pollution have been proven to influence the risk of lung cancer [12-18]. The overall daily smoking rate in mainland China was approximately 23.2% in 2018 [21], whereas the daily smoking rate in Hong Kong was only 10.2% in 2019 [22]. The leading causes of liver cancer include viral infection, drinking of alcohol and polluted water and food supplies which are also culprits for colon, stomach and pancreatic cancer [19]. Alcohol consumption per capita in Hong Kong has reached to 2.37 liters in 2021 [23], compared to 7.0 liters of per capita consumption of alcohol in mainland China in 2018 [24]. As approximately 99% of prostate cancer cases occur after age 50, factors of prostate cancer have been regarded as old age, race, family history and the diet of red meat consumption [20]. In addition to these risk factors, studies have suggested that cancer mortality rates vary depending on migrant status [25-28]. According to data from the Census and Statistics Department of Hong Kong, approximately 81% of immigrants in Hong Kong immigrated from China mainland, Macau, and Taiwan. Immigrants from mainland China account for a bulk of this population. Previous studies have shown that child immigrants in Hong Kong tend to suffer from a higher risk of wheezing disorders and cardiovascular diseases, and immigrant women have higher age-specific mortality rates of breast cancer than locally-born women in Hong Kong [29, 30]. However, to date, few studies have investigated the effect of length of stay in Hong Kong and birthplace on the risk of other types of cancer.

98 In this study, we compared the mortality rates of lung, pancreatic, colon, liver, prostate and 99 stomach cancers between locally born residents in Hong Kong and immigrants from mainland 100 China. Both populations are widely considered as ethnically homogeneous with similar cultures. 101 Nevertheless, due to different early life experiences, immigrants are exposed to more various 102 social economy and lifestyle than locals. Therefore, it's constructive to ascertain whether 103 immigrants from mainland China have a different mortality pattern of cancers with locals to verify the significance of migration status for this health outcome. As Age-period-cohort (APC)
analysis plays a vital role in studying time-specific phenomena in epidemiology, in this study,
we developed APC models specified by sex and migrant status to assess the effects of age,
period, birth cohort, and of the length of stay in Hong Kong on the mortality risks of cancers.
Additionally, we predicted the mortality rates for the locally born population and immigrants
in Hong Kong for the next 9 years using a predictive model, taking into account age, period,
and birth cohort effects as well.

112 Materials and methods

Data

 We obtained the death registry data in Hong Kong between 1998 and 2021 from the Census and Statistics Department of Hong Kong, as the data in 2022 has not been available up to now. The population data were stratified by age, sex, immigration status, and length of stay in Hong Kong. We retrieved six types of cancer cases from the death registry data using ICD codes, such as ICD-9 code 162 and ICD-10 codes C34.0–C34.3, C348, and C349 for lung cancer. To assure comparability among registries, deaths from the age group of 35-85 years were selected, since cases younger than 35 and older than 85 were relatively trivial for lack of statistical interpretability [31]. Immigration status was classified into three groups: locals born in Hong Kong, immigrants who have lived in Hong Kong for >10 years before death defined as long-stay immigrants, and immigrants who have lived in Hong Kong for ≤ 10 years before death defined as short-stay immigrants. Notably, much focus was placed on immigrants from mainland China, because approximately 81% of immigrants in Hong Kong came from mainland China, Macau, and Taiwan based on the data from the Census and Statistics Department of Hong Kong. Moreover, few cases recorded from Macau and Taiwan are statistically insignificant in the analysis. Demographics and population projections from 2022 to 2030 were retrieved from the Census and Statistics Department of Hong Kong and estimated with cubic smoothing spline as the prerequisite of the predictive model. Codes for APC and BAPC analysis are available in the GitHub repository (https://github.com/kshz2164313/APC-population-projections-for-immigration-HK).

Patient and Public Involvement

135 No patient involved. Death registry data was obtained from Census and Statistics Department136 of Hong Kong.

55 138 <u>Statistical analysis</u>
56

- We modeled cancer mortality rates in Hong Kong using APC analysis based on log-linear
 Poisson regression models. The model aimed to disentangle age, period, and cohort effects of

BMJ Open

1							
2 3 4	141	time-varying phenomena simultaneously [32, 33], given that					
5 6	142	$\log(E_{ij}) = \alpha_i + \beta_j + \gamma_k + \mu + \log(\theta_{ij}) $ (1)					
7 8	143	where E_{ij} denotes expected mortality; $lpha_i, \ eta_j$, and γ_k denote age, period, and cohort					
9 10 11	144	effect, respectively, for $i\!=\!1,,I$, $j\!=\!1,,J$, $k\!=\!1,,K$ with $k\!=\!I\!-\!i\!+\!j$.					
	145	$\log(\theta_{ij})$ is the offset. We mainly focused on the contributions of sex and immigration status					
12 12	146	due to the non-identifiability problem that the effects of these three components are collinear					
13	147	with each other (denoted as period $-$ age $=$ cohort) [34]. The median dates of birth among					
15	148	cases were regarded as the reference cohort, while the second and penultimate period effects					
16	149	were constrained to the reference groups, as birth cohort effect and period effect were					
17 18	150	assessed with relative risks. For sex and immigration status, maximum likelihood framework					
19	151	was applied to estimate the relative risks and 95% confidence intervals (CIs) by age groups,					
20	152	calendar period, and birth cohort.					
21 22	153						
23	154	Several projection approaches for future cancer mortality have been developed, but a					
24	155	Bayesian age-period-cohort (BAPC) model built upon integrated nested Laplace					
25 26	156	approximations (INLA) [35] yields relatively higher coverage and better performance for all					
27	157	evaluated parameter combinations [36]. To prevent some sampling problems caused by					
28 29	158	Markov chain Monte Carlo (MCMC), this MCMC-free BAPC approach was applied to					
30	159	predict future cancer mortality within a fully Bayesian inference setting and provide outputs					
31 32	160	of interest simply, such as projected age-standardized and age-specific rates. Convergence					
33	161	checks are not necessary for this technique [35]. The projections of age-standardized cancer					
34 35	162	mortality rates for each sex and migrant status, taking into account age, period, and birth					
36	163	cohort effects, were performed based on the weights of population age groups from the WHO					
37 38	164	World Standard population [37], with 95% prediction intervals.					
39	165						
40 41	166	All analyses were performed via R version 4.2.1 (R Core Team, R Foundation for Statistical					
42	167	Computing, Vienna, Austria, 2013, http://www.R-project.org/). The APC models were					
43 44	168	established using the Epi package, and the projections based on Bayesian APC models were					
45	169	performed with the BAPC package.					
46 47	170						
48	171						
49 50	172						
51	470	Deculto					
52	173	Kesuits					
53 54	174	Figure 1ab, eFigure 1-4ab and eFigure 5a in Supplement 1 illustrate the estimates of age					
55	175	(assessed by cancer mortality), period and cohort effects (assessed by relative risk) based on					
56 57	176	APC models among three migrant groups for men and women with six types of cancers.					
57 58	177	respectively. All the mortality rates for each gender and immigration status exhibit notable					
59	178	increasing trends with age. Compared to other immigration groups, age, cohort and period					
60	-	6					

BMJ Open

effects of six types of cancer for immigrants who stayed in Hong Kong for ≤ 10 years revealed relatively more pronounced fluctuations and deviations from those effects in other immigration groups. Significant increasing trends of age effect occurred in all types of cancer, regardless of gender and immigration status. For example, compared to no significant effects of immigration status for women on mortality rates of lung cancer by age (Figure 1b), the higher age effect for men who have stayed in Hong Kong for >10 years occurred after the age of 50 years and the lower age effect of men who had short stays occurred before the age of 62 years (Figure 1a). In addition to compatible dynamics of period effect for locals and long-stay immigrants, similar birth cohort effects for locals and long-stay immigrants in lung, colon, liver and stomach cancers occurred before 1945, whereas significant differences of birth cohort effects between these two immigration groups occurred after 1960. Locals and long-stay immigrants in pancreatic and prostate cancer perform almost similar cohort effects all the time. Local men and women had sharper slopes of cohort effect of short stay after 1950 than other immigration groups. Short-stay immigrants who have stayed in Hong Kong for <10 years had more fluctuating period effects before 2020 than those for locals and long-stay immigrants. Lack of young cases, especially young short-stay immigrants, of prostate cancer leads to significant deviations and variances in age and cohort effects.

Figure 1c, eFigure 1-4c and eFigure 5b in Supplement 1 illustrates the age-standardized mortality rates of six types of cancer from 1998 to 2021 and their projections by sex and immigrant status from 2022 to 2030, taking into account age, period, and birth cohort effects. Means and standard deviations of predictive mortality rates are shown in Table 1, Table 2 and eTable 1-4 in Supplement 1. Monotone decreasing trends or plateau of forecasting occur for both genders and all immigration groups in cancers except for increasing trends for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer and male immigrants who have stayed in Hong Kong for > 10 years with pancreatic cancer. Except for prostate cancer, men will be at higher risk of mortality rates of cancers than women in the future. Given the future developing trends of other groups, the group of immigrant men who have stayed in Hong Kong for >10 years with lung, liver, pancreatic, prostate and colon cancer will have relatively higher mortality rates in each year compared with other immigration groups and pronounced decline in predictive mean. Compared with other cancers and immigration groups, male immigrants who have stayed in Hong Kong for >10 years with lung cancer would perform the most significant decline in predictive mean from 100.18 to 79.55 deaths per 100,000 population (average 2.92 deaths/100,000 per annum) (Table 1), while the same immigration group with pancreatic cancer would indicate the most significant uptrend in each year of 17.87 deaths and 23.49 deaths per 100,000 population in 2022 and 2030, respectively (average 0.62 deaths/100,000 per annum) (Table 2).

1		
2 3	047	
4	217	
5 6	218	Discussion
7 8	219	Early detection of cancer is positive and instructive for increasing chances of cure. Nevertheless,
9	220	the high mortality rate of cancer results from late diagnosis among most patients after
10 11	221	progression to more advanced or severe stages. Individuals at high risk of cancer, such as
12	222	smokers, alcoholics or those who are frequently exposed to susceptible circumstances, should
13	223	be screened for early detections to increase opportunities for cure [38]. Therefore, the
14	224	differences in mortality rates among immigration groups are synonymous with detection means,
16	225	therapies, and social history in disparate periods and areas.
17 18	226	
19	227	Age effects for both genders and all immigrant groups revealed pronounced increasing trends
20 21	228	on all cancer mortality rates. The group of long-stay immigrants had a higher risk of death
22	229	from lung, colon and liver cancers than the other two immigration groups after the age of 60
23 24	230	years. Short-stay male immigrants were less likely to die from lung cancer before the age of
25	231	65 years. The contrast in age effects among the immigration groups was partially consistent
26 27	232	with studies [25, 39] that highlighted the age effects for locals and immigrants on breast
28	233	cancer mortality in Hong Kong and lung cancer incidence in Sweden, as they both showed
29 30	234	similar trends and magnitudes between locals and immigrants before the age of 60 years.
31	235	They are also compatible with the results in [40] that diagnosis of liver cancer is the most
32 33	236	frequent among populations at 55 to 65 years old. According to these trends, young
34	237	individuals, especially new young immigrant men, who have benefited from all-rounded
35 36	238	development in mainland China and Hong Kong, are more likely to seek early detection and
37	239	be treated for cancers using more advanced treatments [41]. Differences in birth cohort effects
38 39	240	among immigrant groups partially comply with the interpretation above.
40	241	
41 42	242	We observed significant trends of cohort effects among locals and immigrants. These findings
43	243	are partially consistent but subtly different from previous findings, regarding the effect of
44 45	244	immigration status on cancers. Zhao et al. [25] described multiple peaks of cohort effects on
46	245	breast cancer mortality between locals and immigrants in Hong Kong, as well as a significant
47 48	246	decline of cohort effects after 1950. In contrast, Sung et al. [42] investigated the difference in
49	247	breast cancer incidence between Chinese Americans and non-Hispanic whites in the U.S. and
50 51	248	emphasized that Chinese Americans were at lower risk of breast cancer than non-Hispanic
52	249	whites born in the same year. Here, we interpret the cohort-driven trends resulting from the
53 54	250	intricacy of social history and lifestyle. Compared to a relatively stable social development in
55	251	Hong Kong, representing downward trends of relative risks for locals, wars and social
56 57	252	instability in mainland China resulted in several immigration waves from mainland China to
58 59	253	Hong Kong before 1950. Additionally, remarkable increasing trends were recorded for new

immigrants after 1950, which corresponded to the economic downturn after wars and famine between 1959 and 1961 during their youth [43]. The increasing trends for new immigrants and similar trends for locals and long-stay immigrants were consistent with the finding that nutrient deficiency contributes to higher risk of severe mortality rates of cancers [44]. Furthermore, we speculate that these trends, especially those for locals and long-stay immigrants, are most likely attributed to social development and personal behaviors, such as daily habits, occupational history, different diagnoses and treatments, and domestic environmental exposures. It's notable that short-stay immigrants suffered from lower risk of death from colon cancer for all ages (eFigure 2ab in Supplement 1). As locals and immigrants in Hong Kong transitioned to a more westernized lifestyles, higher consumption of meat was associated with a higher risk of these types of cancer, whereas consumptions of vegetables had a strong protective effect against pancreatic cancer, and moderate consumption of coffee appeared to be beneficial against lung cancer [45,46]. Further studies on potential risk factors are required.

Short-stay immigrants had more fluctuating and non-stationary but inconspicuous period effects before 2021 than locals and long-stay immigrants. Cumulatively, an arch pattern and fluctuating curve depicting period effects externally resulted in an arch pattern of age-standardized mortality rates for short-stay immigrant women and irregular rates for short-stay immigrant men before 2021. The external performance of different period effects on mortality rates could be most likely attributed to the higher effect of different lifestyles and social development on new immigrants than on long-stay immigrants and locals in Hong Kong. With respect to the age-standardized mortality rates and projections, consistent with previous findings [47,48], we predict that the mortality rates of cancer in Hong Kong after 2021 will continue to decline or remain relatively stable, consistent with the trends before 2020, except for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer. Men will be at higher risk of mortality rates of cancer than women, regardless of immigration status. They are also compatible with the results in [4] that males suffer from higher risk of these types of cancer except for prostate cancer than females. Furthermore, new immigrant women will be at lower risk than local women, even though long-stay immigrants will suffer from higher mortality rates than locals in the future. Potential interpretations could be consistent with those for birth cohort effects, as age and period effect are considered as confounders of cohort effect.

 In the past few decades, spurred by an increasing burden of high incidence and mortality rates
of cancer, several studies focused on the inherent identification dilemma of three effects in the
APC model. Further, complicated population distribution and immigration status in Hong

BMJ Open

 Kong, one of the areas with the highest population density and migration frequency in the world, have intricate causes and inherent dynamics of cancer and other diseases. To our knowledge, few studies have assessed the relationship between immigration status and cancer mortality. Therefore, this study is original to examine the effect of the length of stay in Hong Kong and origins of previous residence on cancer deaths, which is instructive for further immigration policy making and targeted strategies of disease detection and intervention. However, this study had several limitations. Given the non-identifiability problem in age-period-cohort models, we could only depict trends and variations among different immigration and sex groups, as illustrated in figures, and insufficiently perform the estimates of the contributions of three effects or subgroups to mortality rates. Furthermore, we adopted cubic smoothing spline to estimate populations of immigrants and locals due to the large proportion of unspecified immigration status from official demographic projections.

306 Conclusion

We conclude that immigrants, especially short-stay immigrants, had more pronounced fluctuations and sharper slopes of age, cohort, and period effects than locals. Men will be at a higher risk of mortality rates of six types of cancer than women in the future. Male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer would perform significant uptrend in the future, while other immigration groups for each type of cancer would continue to decline or remain relatively stable. The predictive means of long-stay immigrants for each type of cancer would be greater than locals.

2		
3	316	Declaration
4	010	
6 7	317	Ethical approval and consent to participate
8 9	318	Ethical approval and consent to participate are not applicable. This study does not involve
10 11	319	human participants. Data was obtained from the Census and Statistics Department of Hong
12 13	320	Kong.
14 15	321	Consent for publication
16 17 18	322	Not applicable.
19 20	323	Availability of data and materials
21 22	324	Data of population in Hong Kong was retrieved from Census and Statistics Department. Codes
23 24	325	for APC and BAPC analysis are available in the GitHub repository
25 26	326	https://github.com/kshz2164313/APC-population-projections-for-immigration-HK
27 28	327	Author contributions
29	328	Yanji Zhao: Methodology, Formal analysis, Data Curation, Writing - Original Draft,
30 31	329	Visualization
32	330	Zian Zhuang: Methodology, Formal analysis, Data Curation, Writing - Review & Editing
33	331	Lin Vang: Validation Writing - Review & Editing
34	222	Deibei Her Concentralization Writing Deview & Editing Supervision
35	332	Dama He: Conceptualization, writing - Keview & Editing, Supervision
36	333	
37 38 30	334	Funding
40 41	335	The work described in this paper was partially supported by a grant from the Research Grants
42 43	336	Council of the Hong Kong Special Administrative Region, China (HKU C7123-20G).
44 45	337	Conflict of interest
46 47	338	None declared.
48 49	339	Acknowledgements
50 51	340	None.
52 53	341	
55		
56		
57		
58		
59 60		
50		11

343 **<u>References</u>**

- б
 - 345 1.Fan S-C. The population projection of Hong Kong. Southeast Asian Journal of Social Science.
 346 1974;2(1/2):105-17.
- 347
 2.Department
 CaS.
 Hong
 Kong
 Statistics
 1947-1967
 (Report).

 348
 https://www.statistics.gov.hk/pub/hist/1961_1970/B10100031967AN67E0100.pdf,
 - Accessed 4th May 2019.
- 350 3. Department CaS. Demographic Trends in Hong Kong 1981-2011 (Report). 14 15 http://www.statistics.gov.hk/pub/B1120017032012XXXXB0100.pdf, Accessed 4th May 2019. 351 16 352 4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer 17 353 Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers 18 19 354 in 185 Countries. CA: A Cancer Journal for Clinicians. 2021 2021/05/01;71(3):209-49. doi:
- 20 355 <u>https://doi.org/10.3322/caac.21660</u>.
- 356
 357
 358
 358
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
 359
- 25
 359
 6. Chiu Y-L, Wang X-R, Qiu H, Yu IT-S. Risk factors for lung cancer: a case-control study in

 27
 360
 Hong Kong women. Cancer Causes & Control. 2010 2010/05/01;21(5):777-85. doi:

 28
 361
 10.1007/s10552-010-9506-9.
- 362 362 7. Office on S, Health. Publications and Reports of the Surgeon General. Women and
 363 363 Smoking: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and
 364 Prevention (US); 2001.
- 33
 365 8. Escobedo LG, Peddicord JP. Smoking prevalence in US birth cohorts: the influence of gender
 366 and education. American Journal of Public Health. 1996 1996/02/01;86(2):231-6. doi:
 367 10.2105/AJPH.86.2.231.
- 37 368 9. Husten CG, Shelton DM, Chrismon JH, Lin YC, Mowery P, Powell FA. Cigarette smoking
 38 369 and smoking cessation among older adults: United States, 1965-94. Tobacco Control.
 40 370 1997;6(3):175. doi: 10.1136/tc.6.3.175.
- 41
 371
 10. Bolego C, Poli A, Paoletti R. Smoking and gender. Cardiovascular Research.

 42
 372
 2002;53(3):568-76. doi: 10.1016/S0008-6363(01)00520-X.
- 373 11. Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary
 374 report. Br Med J. 1954;1(4877):1451-5. PMID: 13160495. doi: 10.1136/bmj.1.4877.1451.
- 46 375 12. Ramada Rodilla JM, Calvo Cerrada B, Serra Pujadas C, Delclos GL, Benavides FG. Fiber
- 376 burden and asbestos-related diseases: an umbrella review. Gaceta Sanitaria. 2021 2021/06/11/.
 377 doi: <u>https://doi.org/10.1016/j.gaceta.2021.04.001</u>.
- 378 378 13. Collishaw NE, Kirkbride J, Wigle DT. Tobacco smoke in the workplace: an occupational health hazard. Can Med Assoc J. 1984;131(10):1199-204. PMID: 6498670.
- 380 14. Dresler CM, Fratelli C, Babb J, Everley L, Evans AA, Clapper ML. Gender differences in genetic susceptibility for lung cancer. Lung Cancer. 2000 2000/12/01/;30(3):153-60. doi:
 382 <u>https://doi.org/10.1016/S0169-5002(00)00163-X</u>.
- 383 15. Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1
 384 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: comparison with
 385 aromatic/hydrophobic adduct formation. Carcinogenesis. 2002;23(12):1969-77. doi:

10.1093/carcin/23.12.1969. 16. Samet JM. Radon and Lung Cancer. JNCI: Journal of the National Cancer Institute. 1989;81(10):745-58. doi: 10.1093/jnci/81.10.745. 17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology. 2013 2013/08/01/;14(9):813-22. doi: https://doi.org/10.1016/S1470-2045(13)70279-1. 19. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71. 20. Wild C. World cancer report 2014. Wild CP, Stewart BW, editors. Geneva, Switzerland: World Health Organization; 2014. 21. 2018 Summary-20190719. Retrieved August 26, 2022, from https://www.who.int/docs/default-source/wpro---documents/countries/china/2018-gats-china-factsheet-cn-en.pdf?sfvrsn=3f4e2da9 2 22. Thematic household survey. Retrieved August 26, 2022, from https://www.censtatd.gov.hk/en/data/stat_report/product/B1130201/att/B11302702020XXXX B0100.pdf 23. Estimated alcohol consumption per capita in Hong Kong. Change4Health. (n.d.). Retrieved December 1, 2022, from https://www.change4health.gov.hk/en/alcohol aware/figures/alcohol consumption/index.htm 24. World Health Organization. Global status report on alcohol and health 2018. World Health Organization; 2019 Feb 14. 25. Zhao S, Dong H, Qin J, Liu H, Li Y, Chen Y, et al. Breast cancer mortality in Chinese women: does migrant status play a role? Annals of Epidemiology. 2019 2019/12/01/;40:28-34.e2. doi: https://doi.org/10.1016/j.annepidem.2019.10.006. 26. Gomez SL, Yang J, Lin S-W, McCusker M, Sandler A, Cheng I, et al. Incidence trends of lung cancer by immigration status among Chinese Americans. Cancer Epidemiol Biomarkers Prev. 2015;24(8):1157-64. PMID: 25990553. doi: 10.1158/1055-9965.EPI-15-0123. 27.Hemminki K, Li X, Czene K. Cancer risks in first-generation immigrants to Sweden. International 2002/05/10;99(2):218-28. Journal of Cancer. doi: https://doi.org/10.1002/ijc.10322. 28. Vanthomme K, Rosskamp M, De Schutter H, Vandenheede H. Lung cancer incidence differences in migrant men in Belgium, 2004–2013: histology-specific analyses. BMC Cancer. 2021 2021/03/30;21(1):328. doi: 10.1186/s12885-021-08038-6. 29. Schooling M, Leung GM, Janus ED, Ho SY, Hedley AJ, Lam TH. Childhood migration and cardiovascular risk. International Journal of Epidemiology. 2004;33(6):1219-26. doi: 10.1093/ije/dyh221. 30. Leung JYY, Li AM, Leung GM, Schooling CM. Mode of delivery and childhood hospitalizations for asthma and other wheezing disorders. Clinical & Experimental Allergy.

1		
2		
4	430	2015 2015/06/01;45(6):1109-17. doi: <u>https://doi.org/10.1111/cea.12548</u> .
5	431	31. Baker A, Bray I. Bayesian projections: what are the effects of excluding data from younger
6	432	age groups?. American Journal of Epidemiology. 2005 Oct 15;162(8):798-805.
/	433	32. Rosenberg PS, Anderson WF. Age-Period-Cohort Models in Cancer Surveillance Research:
9	434	Ready for Prime Time? APC Models. Cancer Epidemiology, Biomarkers & Prevention. 2011
10	435	Jul 1;20(7):1263-8.
11	436	33. Holford T. Analyzing the effects of age, period and cohort on incidence and mortality rates.
12	437	Stat Meth Med Res. 1992;1:317-37.
13	438	34. Brookmeyer R, Stroup DF, editors. Monitoring the health of populations: statistical
15	439	principles and methods for public health surveillance. Oxford University Press; 2004.
16	440	35. Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort
1/ 18	441	analysis with integrated nested Laplace approximations. Biometrical Journal. 2017
19	442	May:59(3):531-49.
20	443	36. Knoll M. Furkel J. Debus J. Abdollahi A. Karch A. Stock C. An R package for an integrated
21	444	evaluation of statistical approaches to cancer incidence projection BMC medical research
22	445	methodology 2020 Dec. 20(1):1-1
23	446	37 Ahmad OB Boschi-Pinto C Lopez AD Murray CL Lozano R Inque M Age
25	440 117	standardization of rates: a new WHO standard Geneva: World Health Organization 2001
26	447 110	In the standard. Scheva. World Health Organization. 2001
27	440	28 Sung H. Forlay, I. Siagal DI. Lawaranna M. Saariamataram I. Jamal A. Dray, F. Clahal
20	449	38. Sung H, Fellay J, Slegel KL, Laversanne M, Soerjonnatarani I, Jennai A, Blay F. Global
30	450	cancer statistics 2020. GLOBOCAN estimates of incidence and mortality worldwide for 30
31	451	cancers in 185 countries. CA: a cancer journal for clinicians. 2021 May; $71(3):209-49$.
32 33	452	39. Mousavi SM, Fallah M, Sundquist K, Hemminki K. Age-and time-dependent changes in
34	453	cancer incidence among immigrants to Sweden: colorectal, lung, breast and prostate cancers.
35	454	International journal of cancer. 2012 Jul 15;131(2):E122-8.
36	455	40. National Cancer Institute. SEER stat fact sheets: liver and intrahepatic bile duct cancer.
37	456	41. Wu X, Chung VC, Hui EP, Ziea ET, Ng BF, Ho RS, Tsoi KK, Wong S, Wu JC.
30 39	457	Effectiveness of acupuncture and related therapies for palliative care of cancer: overview of
40	458	systematic reviews. Scientific reports. 2015 Nov 26;5(1):1-5.
41	459	42. Sung H, Rosenberg PS, Chen WQ, Hartman M, Lim WY, Chia KS, Wai-Kong Mang O,
42	460	Tse L, Anderson WF, Yang XR. The impact of breast cancer-specific birth cohort effects among
45 44	461	younger and older C hinese populations. International journal of cancer. 2016 Aug
45	462	1;139(3):527-34.
46	463	43. The world economy volume 1: a millennial perspective, 2, Historical statistics: Academic
47	464	Foundation, Gurgaon, India (2007)
40 49	465	44. Elias SG, Peeters PH, Grobbee DE, van Noord PA. The 1944-1945 Dutch famine and
50	466	subsequent overall cancer incidence. Cancer Epidemiology Biomarkers & Prevention, 2005
51	467	Aug. 14(8): 1981-5
52	468	45 Chiu YL. Wang XR. Oiu H. Yu IT. Risk factors for lung cancer: a case-control study in
53 54	469	Hong Kong women Cancer Causes & Control 2010 May:21(5):777-85
55	400	46 Li L am AS Vau ST Viu KK Tsoi KK Antihypertensive treatments and risks of lung
56	474	To. Li J, Lam AS, Tau ST, Tiu KK, Isoi KK. Antihypertensive treatments and fisks of lung
57	4/1	Cancer. A large population-based conort study in nong Kong. BMC cancer. 2021 Dec;21(1):1-
58 59	412	7. 47 Du L Sum H Sum V Du L Coo W Sum S According to force multiplication to 1 (00 ())
60	413	47. Du J, Sun H, Sun Y, Du J, Cao W, Sun S. Assessment of age, period, and conort effects of

BMJ Open

3 4 5 6 7 8 9	474 475 476 477 478	 lung cancer incidence in Hong Kong and projection up to 2030 based on changing demographics. American Journal of Cancer Research. 2021;11(12):5902. 48. <i>Centre for Health Protection, Department of Health - Lung Cancer</i>. Centre for Health Protection. Retrieved August 10, 2022, from https://www.chp.gov.hk/en/healthtopics/content/25/49.html
11 12 13 14 15		
17 18 19 20 21		
22 23 24 25 26 27		
28 29 30 31 32 33		
34 35 36 37 38 39		
40 41 42 43 44		
45 46 47 48 49 50		
51 52 53 54 55 56		
57 58 59 60		15

1 2

BMJ Open

1		
2		
3	479	
4	480	Figure 1. Parameter estimates of age, period and cohort effects based on an age-period-cohort model of males' (a)
6	481	and females' (b) lung cancer mortality rates and projections from 2022 to 2030 (c) by immigrant groups: locals,
7	482	immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to
8	483	10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk
9	100	(right axis) 050/ confidence interrule and share as shaded hands. Observations in (a) are shown as data with the
10 11	404	(right axis), 95% confidence intervals are shown as shaded bands. Observations in (c) are shown as dots with the
12	400	predictive distribution between the 5% and 95% quantile, whereby each lighter shade of blue represents an
13	486	additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line
14	487	indicates where prediction started.
15	488	
10 17		
18		
19		
20		
21		
22		
24		
25		
26		
27 28		
29		
30		
31		
32 33		
34		
35		
36		
37		
39		
40		
41		
42 43		
44		
45		
46		
47		
49		
50		
51		
52		
55 54		
55		
56		
57		
58 59		
60		
		16

489

		- ·				
Year	Female immigrants >10 (SD)	Female immigrants ≤10 (SD)	Female locals (SD)	Male immigrants >10 (SD)	Male immigrants ≤10 (SD)	Male locals (SD)
2022	41.33(1.86)	22.21(4.67)	30.21(3.54)	100.18(4.18)	79.89(10.40)	52.26(4.85)
2023	40.58(2.26)	20.55(5.37)	30.63(4.77)	97.17(5.33)	79.81(11.82)	50.82(5.38)
2024	39.86(2.74)	19.01(6.10)	31.05(6.38)	94.33(6.71)	79.72(13.42)	49.56(6.12)
2025	39.18(3.28)	17.57(6.80)	31.47(8.29)	91.69(8.24)	79.62(15.18)	48.17(6.96)
2026	38.52(3.85)	16.23(7.45)	31.89(10.46)	89.14(9.83)	79.49(17.08)	46.64(7.83)
2027	37.88(4.46)	15.00(8.04)	32.31(12.86)	86.65(11.46)	79.32(19.09)	45.12(8.75)
2028	37.26(5.09)	13.85(8.56)	32.73(15.48)	84.18(13.10)	79.08(21.17)	43.82(9.75)
2029	36.64(5.73)	12.79(9.01)	33.14(18.30)	81.80(14.73)	78.77(23.32)	42.66(10.79
2030	36.04(6.39)	11.80(9.39)	33.55(21.32)	79.55(16.37)	78.40(25.52)	41.43(11.79

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
3 I 2 2	
2∠ 22	
27	
25	
30	
27	
20	
30	
<u> </u>	
<u>4</u> 1	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

Predictive mean of age-standardized morality rates of pancreatic cancer per 100,000									
population									
Year	Female immigrants >10 (SD)	Female immigrants ≤10 (SD)	Female locals (SD)	Male immigrants >10 (SD)	Male immigrants ≤10 (SD)	Male locals (SD)			
2022	11.11(0.74)	5.437(1.55)	9.011(1.22)	17.87(1.18)	7.874(2.37)	12.28(1.48)			
2023	11.35(0.90)	5.436(1.69)	9.150(1.33)	18.48(1.49)	7.760(2.53)	12.48(1.64)			
2024	11.61(1.09)	5.430(1.83)	9.289(1.47)	19.11(1.87)	7.639(2.70)	12.69(1.83)			
2025	11.87(1.31)	5.420(1.99)	9.429(1.64)	19.77(2.31)	7.511(2.87)	12.89(2.06)			
2026	12.14(1.56)	5.405(2.15)	9.569(1.83)	20.46(2.83)	7.376(3.05)	13.11(2.32)			
2027	12.42(1.83)	5.386(2.31)	9.710(2.04)	21.18(3.41)	7.237(3.22)	13.32(2.63)			
2028	12.70(2.14)	5.363(2.48)	9.851(2.28)	21.92(4.07)	7.094(3.40)	13.55(2.96)			
2029	12.99(2.48)	5.337(2.66)	9.994(2.54)	22.69(4.79)	6.946(3.57)	13.78(3.33)			
2030	13.29(2.84)	5.307(2.84)	10.13(2.82)	23.49(5.60)	6.796(3.75)	14.02(3.74)			

493

3 Table 2. Predictive means and standard deviations of age-standardized morality rates of

494 pancreatic cancer per 100,000 population for each gender and immigrant status from 2022 to

495 2030.

Figure 1. Parameter estimates of age, period and cohort effects based on an age-period-cohort model of males' (a) and females' (b) lung cancer mortality rates and projections from 2022 to 2030 (c) by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.
Observations in (c) are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of blue represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

473x345mm (300 x 300 DPI)

	Female immigrants >10	Female immigrants ≤10	Female locals	Male immigrants >10	Male immigrants ≤10	Male locals	
Year	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	
2022	18.95(1.12)	7.704(2.50)	13.46(1.59)	29.81(1.45)	16.77(3.76)	19.80(2.07)	
2023	18.76(1.36)	7.248(2.81)	13.23(1.71)	29.65(1.79)	17.00(4.17)	19.38(2.21)	
2024	18.58(1.65)	6.819(3.10)	13.00(1.86)	29.51(2.18)	17.22(4.64)	18.97(2.39)	
2025	18.42(1.97)	6.415(3.37)	12.76(2.04)	29.39(2.62)	17.45(5.14)	18.57(2.61)	
2026	18.26(2.33)	6.034(3.61)	12.53(2.24)	29.30(3.11)	17.66(5.68)	18.17(2.85)	
2027	18.11(2.70)	5.674(3.82)	12.29(2.45)	29.21(3.63)	17.88(6.27)	17.79(3.11)	
2028	17.98(3.10)	5.334(4.01)	12.05(2.68)	29.13(4.19)	18.09(6.89)	17.42(3.40)	
2029	17.85(3.52)	5.013(4.17)	11.82(2.91)	29.05(4.77)	18.30(7.56)	17.06(3.69)	
2030	17.72(3.96)	4.710(4.30)	11.58(3.16)	28.98(5.38)	18.50(8.25)	16.70(4.00)	
T able Imigra	1. Predictive mea	ns and standa 22 to 2030.	rd deviations of	of age-standardize	ed morality rate	es of colon car	ncer per 100,000 population for each ge

Predic	Predictive mean of age-standardized morality rates of liver cancer per 100,000 population							
	Female immigrants >10	Female immigrants ≤10	Female locals	Male immigrants >10	Male immigrants ≤10	Male locals		
Year	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)		
2022	10.67(0.71)	8.65(1.81)	6.36(0.87)	49.22(2.36)	39.02(6.48)	22.16(2.08)		
2023	10.09(0.85)	8.38(1.94)	6.07(0.90)	47.76(2.93)	37.38(7.46)	21.01(2.21)		
2024	9.53(1.00)	8.11(2.08)	5.79(0.93)	46.35(3.59)	35.79(8.51)	19.91(2.38)		
2025	9.01(1.15)	7.84(2.21)	5.52(0.97)	44.99(4.30)	34.25(9.58)	18.85(2.58)		
2026	8.49(1.30)	7.58(2.35)	5.26(1.01)	43.66(5.04)	32.76(10.6)	17.83(2.78)		
2027	8.02(1.45)	7.32(2.49)	5.01(1.06)	42.36(5.80)	31.31(11.6)	16.85(2.99)		
2028	7.56(1.58)	7.07(2.62)	4.76(1.10)	41.10(6.56)	29.91(12.6)	15.91(3.20)		
2029	7.13(1.71)	6.82(2.75)	4.53(1.15)	39.88(7.32)	28.55(13.5)	15.02(3.40)		
2030	6.73(1.83)	6.58(2.88)	4.30(1.19)	38.70(8.08)	27.25(14.3)	14.17(3.58)		

norality rates of inverses. eTable 2. Predictive means and standard deviations of age-standardized morality rates of liver cancer per 100,000 population for each gender and immigrant

status from 2022 to 2030.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Pre	Predictive mean of age-standardized morality rates of stomach cancer per 100,000						
	population						
	Female immigrants >10	Female immigrants ≤10	Female locals	Male immigrants >10	Male immigrants ≤10	Male locals	
Year	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	
2022	7.94(0.62)	7.36(1.55)	4.89(0.51)	13.89(0.96)	15.19(3.38)	8.06(0.99)	
2023	7.70(0.73)	7.32(1.69)	4.75(0.56)	13.33(1.20)	15.06(3.66)	7.73(1.02)	
2024	7.47(0.86)	7.29(1.84)	4.61(0.62)	12.80(1.45)	14.92(3.97)	7.41(1.07)	
2025	7.24(1.00)	7.28(2.01)	4.47(0.69)	12.30(1.72)	14.78(4.30)	7.09(1.12)	
2026	7.03(1.14)	7.27(2.19)	4.33(0.76)	11.83(1.99)	14.64(4.65)	6.79(1.19)	
2027	6.82(1.29)	7.27(2.39)	4.20(0.83)	11.38(2.25)	14.49(5.01)	6.50(1.25)	
2028	6.62(1.43)	7.28(2.61)	4.07(0.91)	10.95(2.51)	14.34(5.39)	6.23(1.32)	
2029	6.42(1.57)	7.30(2.84)	3.95(0.98)	10.53(2.76)	14.18(5.77)	5.96(1.39)	
2030	6.24(1.71)	7.33(3.08)	3.82(1.06)	10.14(3.00)	14.03(6.16)	5.71(1.46)	

eTable 3. Predictive means and standard deviations of age-standardized morality rates of stomach cancer per 100,000 population for each gender and

immigrant status from 2022 to 2030.

	Pre	dictive mean of age	e-standardized mor	ality rates of	
, ;)		Male immigrants >10	Male immigrants ≤10	Male locals	-
0	Year	(SD)	(SD)	(SD)	
1 2	2022	14.58(0.79)	8.77(3.10)	9.65(1.56)	-
3	2023	14.57(0.95)	8.58(3.29)	9.67(1.65)	
4	2024	14.55(1.14)	8.38(3.48)	9.69(1.76)	
5	2025	14.53(1.36)	8.19(3.68)	9.71(1.90)	
7	2026	14.51(1.60)	8.00(3.89)	9.74(2.05)	
8	2027	14.48(1.86)	7.81(4.09)	9.78(2.23)	
9	2028	14.45(2.13)	7.63(4.30)	9.81(2.43)	
20 21	2029	14.41(2.42)	7.44(4.51)	9.85(2.64)	
22	2030	14.37(2.71)	7.27(4.72)	9.89(2.87)	
25 26 27 28 29 30 31 32 33 34	eTable 4 . immigran	Predictive means a t status from 2022 to	nd standard deviatio	ns of age-standar	lized morality rates of prostate cancer per 100,000 population for each gender and

44 45 46

eFigure 1(a). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of male pancreatic cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(b). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of female pancreatic cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(c). Projections of pancreatic cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of blue represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(a). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of male colon cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

Figure 2(b). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of female colon cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 2(c). Projections of colon cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of blue represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(a). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of male liver cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 3(b). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of female liver cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 3(c). Projections of liver cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of blue represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(a). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of male stomach cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 4(b). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of female stomach cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 4(c). Projections of stomach cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of blue represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(a). Parameter estimates of age (a), period (b) and cohort (c) effects based on an age-period-cohort model of male prostate cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 5(b). Projections of prostate cancer mortality rates by immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of blue represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Reporting checklist for cohort study. Based on the STROBE cohort guidelines. **Instructions to authors** Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Page Reporting Item Number Title and abstract Title #1a Indicate the study's design with a commonly used term in the title or 1 the abstract Abstract Provide in the abstract an informative and balanced summary of what 2 #1b was done and what was found Introduction Background / #2 Explain the scientific background and rationale for the investigation 4 rationale being reported Objectives State specific objectives, including any prespecified hypotheses #3 4 Methods Study design #4 Present key elements of study design early in the paper 5 5 Setting #5 Describe the setting, locations, and relevant dates, including periods For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5
6 7 8	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	n/a
9 10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
15 16 17 18 19 20 21	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	5
22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Study size	<u>#10</u>	Explain how the study size was arrived at	5
	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5
	Statistical methods 5	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	5
	Statistical #1 methods		Explain how missing data were addressed	5
44 45 46 47	Statistical methods	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	n/a
48 49 50 51	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	
52 53	n/a			
54 55 56	Results			
57 58 59 60	Participants	<u>#13a</u> For	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

Page 41 of 41			BMJ Open	
1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	
5 6	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	5
7 8	Participants	<u>#13c</u>	Consider use of a flow diagram	
9 10 11	n/a			
12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	5
19 20 21 22	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	
23 24	n/a			
25 26	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	
27 28 20	n/a			
29 30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.	
35 36	n/a			
37 38 39 40 41 42 43	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	n/a
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
52 53	n/a			
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7
58 59 60	Discussion	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8
- 3 4 5 6 7	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	10
8 9 10 11 12	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	8
13 14 15	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	9
16	Other			
17 18	Information			
19 20	D 1'	1100		1.1
20 21	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present	11
22			study and, if applicable, for the original study on which the present	
23 24			article is based	
25	The STROPE aboa	Islict in	distributed under the terms of the Creative Commons Attribution License CC PV	
26 27			$\frac{1}{11} = \frac{1}{11} $	
27 28	This checklist was	complet	ted on 11. February 2023 using <u>https://www.goodreports.org/</u> , a tool made by the	
29	EQUATOR Netwo	rk in co	Ilaboration with <u>Penelope.ai</u>	
30				
31 32				
33				
34 25				
35 36				
37				
38				
39 40				
41				
42				
43 44				
45				
46				
47 19				
49				
50				
51				
52 53				
54				
55				
56 57				
58				
59		_		
60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

An age-period-cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-072751.R1
Article Type:	Original research
Date Submitted by the Author:	21-Jun-2023
Complete List of Authors:	Zhao, Yanji; The Hong Kong Polytechnic University, Department of Applied Mathematics Zhuang, Zian; The Hong Kong Polytechnic University, Department of Applied Mathematics; University of California Los Angeles, Department of Biostatistics Yang, Lin; The Hong Kong Polytechnic University, School of Nursing He, Daihai; The Hong Kong Polytechnic University, Department of Applied Mathematics; The Hong Kong Polytechnic University, Research Institute for Future Food
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Public health, Oncology
Keywords:	STATISTICS & RESEARCH METHODS, ONCOLOGY, Risk Factors

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
/ 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23
25
25
20
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40
48
<u>10</u>
79 50
50
51
52 52
55
54
55
56
57
58
50

An age-period-cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030 3

Yanji Zhao^{1, #}, Zian Zhuang^{1,2, #}, Lin Yang³ and Daihai He^{1,4*}

- 6 1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong,
- 7 China

4

5

- 8 2 Department of Biostatistics, University of California, Los Angeles, CA, United States
- 9 3 School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
- 10 4 Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong, China

12 # These authors contributed equally to this work.

- 13 * To whom correspondence should be addressed:
- 14 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong,
- 15 China

11

- 16 Tel: 852-27667864; daihai.he@polyu.edu.hk (DH).
- 17
 - 18 Email of all authors
 - 19 Yanji Zhao: <u>yan-ji.zhao@connect.polyu.hk;</u> Zian Zhuang: <u>zianzhuang@ucla.edu;</u>
 - 20Lin Yang: live Daihai He: daihai.he@polyu.edu.hk.
- 21
 - 22 Word count: 3263
- 23

2
2
3
4
5
6
7
/
8
9
10
11
11
12
13
14
15
16
10
17
18
19
20
∠∪ ว1
21
22
23
24
27
25
26
27
28
20
29
30
31
32
33
24
54
35
36
37
20
20
39
40
41
42
12
40
44
45
46
47
10
40 40
49
50
51
52
52
53
54
55
56
57
5/
58
59

24 Abstract

29

33

37

Objectives: Complicated population distribution and immigration status in Hong Kong have
 brought out intricate causes of diseases. This study was aimed to explore age, period, birth
 cohort effects and effects across genders and immigration groups on mortality rates of lung,
 pancreatic, colon, liver, prostate and stomach cancers and their projections.

30 Design, Setting, and Participants: Death registry data in Hong Kong between 1998 and 2021,
31 which were stratified by age, sex and immigration status. Immigration status was classified into
32 three groups: locals born in Hong Kong, long-stay immigrants and short-stay immigrants.

Methods: Age-period-cohort analysis was used to examine age, period, and birth cohort effects
for genders and immigration groups from 1998 to 2021. Bayesian age-period-cohort models
were applied to predict the mortality rates from 2022 to 2030.

38 **Results:** Short-stay immigrants revealed pronounced fluctuations of mortality rates by age and 39 of relative risks by cohort and period effects for six types of cancers than those of long-stay 40 immigrants and locals. Decreasing trends (p < 0.05) or plateau (p > 0.05) of forecasting mortality 41 rates of cancers occur for all immigration groups, except for increasing trends for short-stay 42 male immigrants with colon cancer (16.77 deaths to 18.50 deaths/100,000 p<0.05) and long-43 stay male immigrants with pancreatic cancer (17.87 deaths to 23.49 deaths/100,000 p<0.05). 44 Men will be at a higher risk of mortality from cancers than women in the future (excluding 45 prostate cancer). Immigrants for each type of cancer and gender will be at a higher mortality 46 risk than locals.

47

48 Conclusions: Findings underscore the effect of gender and immigration status in Hong Kong
49 on mortality risks of cancers that immigrants for each type of cancer and gender will be at a
50 higher mortality risk than locals.

51

54

Keywords: Age-period-cohort analysis, immigration, mortality, lung cancer, pancreatic cancer,
 colon cancer, liver cancer, prostate cancer, stomach cancer

 55 Strengths and limitations of this study

- This study provides new evidence regarding the relationship between immigration status
 and cancer mortality, given the effects of age, period, birth cohort and their predictions.
- 5960 The non-identifiability problem has not been interpreted in APC models
- The future perspective of cancer therapies and techniques have not been considered.

to perteries only

Page 5 of 54

64 Introduction

Several migration waves from mainland China to Hong Kong have occurred over the past
century. These migration waves included a large-scale migration inflow from 1945 to 1950 (the
Chinese Civil War) and a few small-scale inflows in the 1950s, 1970s, and 1990s [1-3]. In 2016,
immigrants from mainland China formed approximately 38% of the population of Hong Kong.
These inflows have led to a growing interest in research on the disparity of health conditions
between the locals and immigrants.

Cancer has been one of most common causes of death, as an estimated 19.3 million new cancer cases and 9.9 million new cancer-associated deaths occurred worldwide in 2020 [4]. In Hong Kong, lung cancer is one of the most common causes of cancer deaths [5, 6]. Previous studies suggested that the primary cause of lung cancer is cigarette smoking [7-11]. Genetic factors, asbestos, radon gas, second-hand smoke, and other forms of air pollution have been proven to influence the risk of lung cancer [12-18]. The overall daily smoking rate in mainland China was approximately 23.2% in 2018 [19], whereas the daily smoking rate in Hong Kong was only 10.2% in 2019 [20]. The leading causes of liver cancer include viral infection, drinking of alcohol and polluted water and food supplies which are also culprits for colon, stomach and pancreatic cancer [21]. Alcohol consumption per capita in Hong Kong has reached to 2.37 liters in 2021 [22], compared to 7.0 liters of per capita consumption of alcohol in mainland China in 2018 [23]. As approximately 99% of prostate cancer cases occur after age 50, factors of prostate cancer have been regarded as old age, race, family history and the diet of red meat consumption [24]. In addition to these risk factors, studies have suggested that cancer mortality rates vary depending on migrant status [25-28]. According to data from the Census and Statistics Department of Hong Kong, approximately 81% of immigrants in Hong Kong immigrated from China mainland, Macau, and Taiwan. Immigrants from mainland China account for a bulk of this population. Previous studies have shown that child immigrants in Hong Kong tend to suffer from a higher risk of wheezing disorders and cardiovascular diseases, and immigrant women have higher age-specific mortality rates of breast cancer than locally-born women in Hong Kong [29, 30]. However, to date, few studies have investigated the effect of length of stay in Hong Kong and birthplace on the risk of other types of cancer.

95 In this study, we compared the mortality rates of lung, pancreatic, colon, liver, prostate and 96 stomach cancers between locally born residents in Hong Kong and immigrants from mainland 97 China. Both populations are widely considered as ethnically homogeneous with similar cultures. 98 Nevertheless, due to different early life experiences, immigrants are exposed to more various 99 social economy and lifestyle than locals. Therefore, it's constructive to ascertain whether 100 immigrants from mainland China have a different mortality pattern of cancers with locals to verify the significance of migration status for this health outcome. As Age-period-cohort (APC)
analysis plays a vital role in studying time-specific phenomena in epidemiology, in this study,
we developed APC models specified by sex and migrant status to assess the effects of age,
period, birth cohort, and of the length of stay in Hong Kong on the mortality risks of cancers.
Additionally, we explore the projection of mortality rates for the locally born population and
immigrants in Hong Kong who were younger or older than 60 using a predictive model, taking
into account age, period, and birth cohort effects as well.

109 Methods

110 <u>Data</u>

We obtained the death registry data in Hong Kong between 1998 and 2021 from the Census and Statistics Department of Hong Kong, as the data in 2022 has not been available up to now. The data was extracted a routine census held by Hong Kong government as subjective errors caused by resampling can be neglected. The population data were stratified by age, sex, immigration status, and length of stay in Hong Kong. We retrieved six types of cancer cases from the death registry data using ICD codes, such as ICD-9 code 162 and ICD-10 codes C34.0–C34.3, C348, and C349 for lung cancer. To assure comparability among registries, deaths from the age group of 35–85 years were selected, since cases younger than 35 and older than 85 were relatively trivial for lack of statistical interpretability [31]. Immigration status was classified into three groups: locals born in Hong Kong, immigrants who have lived in Hong Kong for >10 years before death defined as long-stay immigrants, and immigrants who have lived in Hong Kong for ≤ 10 years before death defined as short-stay immigrants. Notably, much focus was placed on immigrants from mainland China, because approximately 81% of immigrants in Hong Kong came from mainland China, Macau, and Taiwan based on the data from the Census and Statistics Department of Hong Kong. Moreover, few cases recorded from Macau and Taiwan are statistically insignificant in the analysis. Demographics and population projections from 2022 to 2030 were retrieved from the Census and Statistics Department of Hong Kong and estimated with cubic smoothing spline as the prerequisite of the predictive model. Codes for APC and BAPC analysis are available in the GitHub repository (https://github.com/kshz2164313/APC-population-projections-for-immigration-HK).

133 <u>Statistical analysis</u>

We modeled cancer mortality rates in Hong Kong using APC analysis based on log-linear
Poisson regression models. The model aimed to disentangle age, period, and cohort effects of
time-varying phenomena simultaneously [32, 33], given that

$$\log(E_{ij}) = \alpha_i + \beta_j + \gamma_k + \mu + \log(\theta_{ij}) \tag{1}$$

BMJ Open

2		
3 4	138	where E_{ij} denotes expected mortality; $lpha_i$, eta_j , and γ_k denote age, period, and cohort
5	139	effect, respectively, for $i=1,,I$, $j=1,,J$, $k=1,,K$ with $k=I-i+j$.
6 7	140	$\log(\theta_{ij})$ is the offset. We mainly focused on the contributions of sex and immigration status
8	141	due to the non-identifiability problem that the effects of these three components are collinear
9	142	with each other (denoted as period – age = cohort) [34]. Birth cohort effect and period effect
10 11	143	were assessed with relative risks. The median date of birth among cases were regarded as the
12	144	reference cohort. Since cases aged at 35-85 years between 1998 and 2021 were selected, the
13	145	range of birth cohort from 1913 to 1986 covered observations and further projections until
14	146	2030. The second and penultimate period effects were constrained to the reference for period.
15 16	147	For sex and immigration status, maximum likelihood framework was applied to estimate the
17	148	relative risks and 95% confidence intervals (CIs) by age groups, calendar period, and birth
18	149	cohort.
19 20	150	
21	151	Several projection approaches for future cancer mortality have been developed, but a
22 23	152	Bayesian age-period-cohort (BAPC) model built upon integrated nested Laplace
24	153	approximations (INLA) [35] yields relatively higher coverage and better performance for all
25	154	evaluated parameter combinations [36]. To prevent some sampling problems caused by
26 27	155	Markov chain Monte Carlo (MCMC), this MCMC-free BAPC approach was applied to
28	156	predict future cancer mortality within a fully Bayesian inference setting and provide outputs
29 30	157	of interest simply, such as projected age-standardized and age-specific rates. Convergence
31 32	158	checks are not necessary for this technique [35]. The projections of age-standardized cancer
33	159	mortality rates for each sex, age group (younger or older than 60 years) and migrant status,
34 35	160	taking into account age, period, and birth cohort effects, were performed based on the weights
36	161	of population age groups from the WHO World Standard population [37], with 95%
37 38	162	prediction intervals. Mann-Kendall trend test was applied to verify the projection trend.
39	163	
40 41	164	All analyses were performed via R version 4.2.1 (R Core Team, R Foundation for Statistical
42	165	Computing, Vienna, Austria, 2013, http://www.R-project.org/). The APC models were
43 44	166	established using the Epi package, and the projections based on Bayesian APC models were
45	167	performed with the BAPC package.
46 47	168	
48	169	Patient and Public Involvement
49 50	170	None.
50 51	171	
52	172	
53 54	173	Results
55		
56 57	174	Figure 1 and eFigure 1(a-e) in Supplementary Material illustrate the estimates of age
58	175	(assessed by cancer mortality), cohort and period effects (assessed by relative risk) based on
59 60	176	APC models among three migrant groups for men and women with six types of cancers,

respectively. All the mortality rates for each gender and immigration status exhibit notable increasing trends with age. Age, cohort and period effects of six types of cancer for immigrants who stayed in Hong Kong for ≤10 years revealed relatively more pronounced fluctuations and deviations from those effects in other two immigration groups. Significant increasing trends of age effect occurred in all types of cancer, regardless of gender and immigration status. For example, while relatively insignificant differences in lung cancer mortality rates by immigration status among females, male immigrants who remained in Hong Kong for >10 years had higher lung cancer mortality rates at ages above 50 years and those who arrived ≤ 10 years had lower lung cancer mortality at ages below 62 years compared to local men Figure 1. In addition to compatible dynamics of period effect for locals and long-stay immigrants, similar change of relative risks by birth cohort for locals and long-stay immigrants in lung, colon, liver and stomach cancers occurred before 1945, whereas significant differences of relative risks by birth cohort between these two immigration groups occurred after 1960 (Figure 1 & eFigure 1(a,b,d)). Locals and long-stay immigrants in pancreatic and prostate cancer perform almost similar change of relative risks by birth cohort effects all the time (eFigure 1(c,e)). Short-stay immigrants who have stayed in Hong Kong for ≤ 10 years had more fluctuating relative risks affected by period effects before 2020 than those for locals and long-stay immigrants. Lack of young cases, especially young short-stay immigrants, of prostate cancer leads to significant deviations and variances in age and cohort effects.

Figure 2-4, eFigure 2-6 in Supplementary Material illustrate the age-standardized mortality rates of six types of cancer from 1998 to 2021 and their projections by sex, immigrant status and age groups from 2022 to 2030, taking into account age, period, and birth cohort effects. Means and standard deviations of predictive mortality rates are shown in eTable 1-6 in Supplementary Material. For all ages projection (Figure 2 & eFigure 2-6), monotone decreasing trends or plateau of forecasting occur for both genders and all immigration groups in cancers, except for increasing trends for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer (p-value < 0.05) and immigrants who have stayed in Hong Kong for > 10 years with pancreatic cancer (p-values < 0.05). Most of predictive trends for younger cases (≤ 60 years) and older cases (≥ 60 years) reach a consensus with those for all ages population, except for two phenomenon: 1.) mortality rates of lung cancer for men immigrants ≤ 10 that insignificant trend for all ages (p-value > 0.05) vs. decline for younger cases (p-value < 0.05) vs. increase for older cases (p-value < 0.05); 2.) mortality rates of liver cancer for men immigrants >10 that decline for all ages (p-value < 0.05) vs. decline for younger cases (p-value < 0.05) vs. insignificant trend for older cases (p-value > 0.05). Men will be at higher risk of mortality rates of cancers (excluding prostate cancer) than women in the future for all three age groups (all ages, young and older than 60 years). Given the future developing trends,

immigrants, especially the group of immigrant who have stayed in Hong Kong for >10 years with lung, liver, pancreatic, prostate and colon cancer, will have relatively higher mortality rates in each year for each gender compared with locals and pronounced decline in predictive means (all p-values < 0.05). Some particular cases occur in the projection of prostate cancer that young long-stay male immigrants (0.44 deaths/100,000) aged less than 60 will be at lower mortality rate than locals (0.69 deaths/100,000) in 2030 (eTable 6). Compared with other cancers and immigration groups, male immigrants who have stayed in Hong Kong for >10 years with lung cancer would perform the most significant decline in predictive mean from 100.18 to 79.55 deaths per 100,000 population (average 2.92 deaths/100,000 per annum) (eTable 1), while the same immigration group with pancreatic cancer would indicate the most significant uptrend in each year of 17.87 deaths and 23.49 deaths per 100,000 population in 2022 and 2030, respectively (average 0.62 deaths/100,000 per annum) (eTable 4).

Discussion

Early detection of cancer is positive and instructive for increasing chances of cure. Nevertheless, the high mortality rate of cancer results from late diagnosis among most patients after progression to more advanced or severe stages. Individuals at high risk of cancer, such as smokers, alcoholics or those who are frequently exposed to susceptible circumstances, should be screened for early detections to increase opportunities for cure [38]. Therefore, the differences in mortality rates among immigration groups are synonymous with detection means, therapies, and social history in disparate periods and areas.

While the changes in mortality rates by age for long-stay immigrants reached approximate harmony with those for locals, the changes in mortality rates by age for short-stay immigrants revealed clear differences with those for other two populations. The group of long-stay immigrants had a higher risk of death from lung, colon and liver cancers than the other two immigration groups after the age of 60 years. Short-stay male immigrants were less likely to die from lung cancer before the age of 65 years. The contrast in age effects among the immigration groups was partially consistent with studies [25, 39] that highlighted the age effects for locals and immigrants on breast cancer mortality in Hong Kong and lung cancer incidence in Sweden, as they both showed similar trends and magnitudes between locals and immigrants before the age of 60 years. They are also compatible with the results in [40] that diagnosis of liver cancer is the most frequent among populations at 55 to 65 years old. According to these trends, young individuals, especially new young immigrant men, who have benefited from all-rounded development in mainland China and Hong Kong, are more likely to seek early detection and be treated for cancers using more advanced treatments [41].

252 Differences in birth cohort effects among immigrant groups partially comply with the253 interpretation above.

We observed significant trends of cohort effects among locals and immigrants. These findings are partially consistent but subtly different from previous findings, regarding the effect of immigration status on cancers. Zhao et al. [25] described multiple peaks of cohort effects on breast cancer mortality between locals and immigrants in Hong Kong, as well as a significant decline of cohort effects after 1950. In contrast, Sung et al. [42] investigated the difference in breast cancer incidence between Chinese Americans and non-Hispanic whites in the U.S. and emphasized that Chinese Americans were at lower risk of breast cancer than non-Hispanic whites born in the same year. Here, we interpret the cohort-driven trends resulting from the intricacy of social history and lifestyle. Compared to a relatively stable social development in Hong Kong, representing downward trends of relative risks for locals, wars and social instability in mainland China resulted in several immigration waves from mainland China to Hong Kong before 1950. Additionally, remarkable increasing trends were recorded for new immigrants after 1950, which corresponded to the economic downturn after wars and famine between 1959 and 1961 during their youth [43]. The increasing trends for new immigrants and similar trends for locals and long-stay immigrants were consistent with the finding that nutrient deficiency contributes to higher risk of severe mortality rates of cancers [44]. Furthermore, we speculate that these trends, especially those for locals and long-stay immigrants, are most likely attributed to social development and personal behaviors, such as daily habits, occupational history, different diagnoses and treatments, and domestic environmental exposures. It's notable that short-stay immigrants suffered from lower risk of death from colon cancer for all ages (eFigure 1a in Supplementary Material). As locals and immigrants in Hong Kong transitioned to a more westernized lifestyles, higher consumption of meat was associated with a higher risk of these types of cancer, whereas consumptions of vegetables had a strong protective effect against pancreatic cancer, and moderate consumption of coffee appeared to be beneficial against lung cancer [45,46]. Further studies on potential risk factors are required. Short-stay immigrants had more fluctuating and non-stationary but inconspicuous relative

risks by period effects before 2021 than locals and long-stay immigrants. Cumulatively, an arch pattern and fluctuating curve depicting period effects externally resulted in an arch pattern of age-standardized mortality rates for short-stay immigrant women and irregular rates for short-stay immigrant men before 2021. The external performance of different period effects on mortality rates could be most likely attributed to the higher effect of different lifestyles and social development on new immigrants than on long-stay immigrants and locals in Hong Kong. With respect to the age-standardized mortality rates and projections,

consistent with previous findings [47,48], we predict that the mortality rates of cancer in Hong Kong after 2021 will continue to decline or remain relatively stable, consistent with the trends before 2020, except for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer. Men will be at higher risk of mortality rates of cancer than women, regardless of immigration status. They are also compatible with the results in [4] that men suffer from higher risk of these types of cancer than women, excluding prostate cancer. Furthermore, new immigrant women will be at lower risk than local women, even though long-stay immigrants will suffer from higher mortality rates than locals in the future. Potential interpretations could be consistent with those for birth cohort effects, as age and period effect are considered as confounders of cohort effect.

In the past few decades, spurred by an increasing burden of high incidence and mortality rates of cancer, several studies focused on the inherent identification dilemma of three effects in the APC model. Further, complicated population distribution and immigration status in Hong Kong, one of the areas with the highest population density and migration frequency in the world, have intricate causes and inherent dynamics of cancer and other diseases. To our knowledge, few studies have assessed the relationship between immigration status and cancer mortality. Therefore, this study is original to examine the effect of the length of stay in Hong Kong and origins of previous residence on cancer deaths, which is instructive for further immigration policy making and targeted strategies of disease detection and intervention. However, this study had several limitations. Given the non-identifiability problem in ageperiod-cohort models, we could only depict trends and variations among different immigration and sex groups, as illustrated in figures, and insufficiently perform the estimates of the contributions of three effects or subgroups to mortality rates. Furthermore, we adopted cubic smoothing spline to estimate populations of immigrants and locals due to the large proportion of unspecified immigration status from official demographic projections. A few acceptable cases resulted in a limited type of cancer so that some common cancers such as ovary and cervix, were discarded. Since the issue of quantification, the future perspective of cancer therapies and techniques have not been considered in the model of projection.

322 Conclusion

We conclude that immigrants, especially short-stay immigrants, had more pronounced
fluctuations of mortality rates by age and of relative risks by cohort and period effects for six
types of cancers than those of long-stay immigrants and locals. Men will be at a higher risk of
mortality rates of six types of cancer than women in the future. Male immigrants who have

stayed in Hong Kong for ≤10 years with colon cancer and male immigrants who have stayed

in Hong Kong for >10 years with pancreatic cancer would perform significant uptrend in the

future, while other immigration groups for each type of cancer would continue to decline or

remain relatively stable. Immigrants for each gender in Hong Kong would suffer from higher

to peet teriew only

mortality risks of cancers than locals in the future.

3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
27	
24 25	
25	
26	
27	
28	
29	
30	
31	
27	
5Z	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	

1 2

327

328

329

330

331

332

59 60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	333	Declaration
4 r	000	
5 6 7	334	Ethical approval and consent to participate
8 9	335	Ethical approval and consent to participate are not applicable. This study does not involve
10 11	336	human participants. Data was obtained from the Census and Statistics Department of Hong
12 13	337	Kong.
14 15	338	Consent for publication
16 17 18	339	Not applicable.
19 20	340	Data Availability Statement
21	341	Data are available upon reasonable request.
22 23	342	Author contributions
24	343	Yanii Zhao: Methodology, Formal analysis, Data Curation, Writing - Original Draft,
25 26	344	Visualization
20	3/5	7 ion 7 huong: Methodology Formal analysis Data Curation Writing Review & Editing
28	246	Lin Vang, Validation Writing Deview & Editing
29	340	Lin Yang: Validation, writing - Review & Editing
30	347	Daihai He: Conceptualization, Writing - Review & Editing, Supervision
31	348	
32 33 34	349	Funding
35 36	350	The work described in this paper was partially supported by a grant from the Research Grants
37 38	351	Council of the Hong Kong Special Administrative Region, China (HKU C7123-20G).
39 40	352	Conflict of interest
41 42	353	None declared.
43 44 45	354	Acknowledgements
45 46 47	355	None.
48 49 50 51	356	
52 53 54		
55 56		
57		
58		
59		
60		

358 <u>References</u>

359

6 7 8

9

5

- 360 1.Fan S-C. The population projection of Hong Kong. Southeast Asian Journal of Social Science.
 361 1974;2(1/2):105-17.
- 10
 362
 2.Department
 CaS.
 Hong
 Kong
 Statistics
 1947-1967
 (Report).

 11
 363
 https://www.statistics.gov.hk/pub/hist/1961_1970/B10100031967AN67E0100.pdf,
 12
 2010
 141.215
 2010
 - Accessed 4th May 2019.
- 13 365 3. Department CaS. Demographic Trends in Hong Kong 1981-2011 (Report). 14 15 http://www.statistics.gov.hk/pub/B1120017032012XXXXB0100.pdf, Accessed 4th May 2019. 366 16 367 4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer 17 368 Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers 18 19 369 in 185 Countries. CA: A Cancer Journal for Clinicians. 2021 2021/05/01;71(3):209-49. doi:
- 20 370 <u>https://doi.org/10.3322/caac.21660</u>.
- 371
 371
 371
 372
 372
 373
 373
 374
 374
 375
 375
 376
 376
 377
 378
 379
 379
 379
 370
 370
 370
 371
 371
 371
 372
 372
 373
 374
 374
 374
 375
 375
 376
 376
 377
 378
 378
 379
 379
 370
 370
 370
 371
 371
 371
 372
 372
 373
 374
 374
 374
 374
 375
 376
 376
 377
 378
 378
 378
 379
 379
 379
 370
 370
 370
 371
 371
 371
 372
 372
 373
 374
 374
 374
 374
 374
 374
 375
 376
 376
 377
 378
 378
 378
 379
 378
 379
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
 378
- 374 6. Chiu Y-L, Wang X-R, Qiu H, Yu IT-S. Risk factors for lung cancer: a case–control study in
 375 Hong Kong women. Cancer Causes & Control. 2010 2010/05/01;21(5):777-85. doi:
 376 10.1007/s10552-010-9506-9.
- 377 7. Office on S, Health. Publications and Reports of the Surgeon General. Women and
 378 Smoking: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and
 379 Prevention (US); 2001.
- 33
 380 8. Escobedo LG, Peddicord JP. Smoking prevalence in US birth cohorts: the influence of gender
 381 and education. American Journal of Public Health. 1996 1996/02/01;86(2):231-6. doi:
 362 382 10.2105/AJPH.86.2.231.
- 37 383 9. Husten CG, Shelton DM, Chrismon JH, Lin YC, Mowery P, Powell FA. Cigarette smoking
 38 384 and smoking cessation among older adults: United States, 1965-94. Tobacco Control.
 385 1997;6(3):175. doi: 10.1136/tc.6.3.175.
- 41
 386
 10. Bolego C, Poli A, Paoletti R. Smoking and gender. Cardiovascular Research.

 42
 387
 2002;53(3):568-76. doi: 10.1016/S0008-6363(01)00520-X.
- 388 11. Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary
 389 report. Br Med J. 1954;1(4877):1451-5. PMID: 13160495. doi: 10.1136/bmj.1.4877.1451.
- 46 390 12. Ramada Rodilla JM, Calvo Cerrada B, Serra Pujadas C, Delclos GL, Benavides FG. Fiber
- 391 burden and asbestos-related diseases: an umbrella review. Gaceta Sanitaria. 2021 2021/06/11/.
 392 doi: <u>https://doi.org/10.1016/j.gaceta.2021.04.001</u>.
- 393 13. Collishaw NE, Kirkbride J, Wigle DT. Tobacco smoke in the workplace: an occupational health hazard. Can Med Assoc J. 1984;131(10):1199-204. PMID: 6498670.
- 395 14. Dresler CM, Fratelli C, Babb J, Everley L, Evans AA, Clapper ML. Gender differences in genetic susceptibility for lung cancer. Lung Cancer. 2000 2000/12/01/;30(3):153-60. doi:
 397 <u>https://doi.org/10.1016/S0169-5002(00)00163-X</u>.
- 398 15. Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1
 399 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: comparison with
 400 aromatic/hydrophobic adduct formation. Carcinogenesis. 2002;23(12):1969-77. doi:

 401 10.1093/carcin/23.12.1969. 402 16. Samet JM. Radon and Lung Cancer. JNCI: Journal of the National Cancer Institute 403 1989;81(10):745-58. doi: 10.1093/jnci/81.10.745. 7 404 17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon 405 homes and risk of lung cancer: collaborative analysis of individual data from 13 European cass 406 control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the second sec
 401 10.1093/carcin/23.12.1969. 402 16. Samet JM. Radon and Lung Cancer. JNCI: Journal of the National Cancer Institute 403 1989;81(10):745-58. doi: 10.1093/jnci/81.10.745. 7 404 17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon 405 homes and risk of lung cancer: collaborative analysis of individual data from 13 European cass 406 control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 11 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the state of the state.
 402 16. Samet JM. Radon and Lung Cancer. JNCI: Journal of the National Cancer Institut 403 1989;81(10):745-58. doi: 10.1093/jnci/81.10.745. 404 17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon 405 homes and risk of lung cancer: collaborative analysis of individual data from 13 European cas 406 control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the second secon
 403 1989;81(10):745-58. doi: 10.1093/jnci/81.10.745. 404 17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon 405 homes and risk of lung cancer: collaborative analysis of individual data from 13 European cas 406 control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et a 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the
 404 17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon 405 homes and risk of lung cancer: collaborative analysis of individual data from 13 European cas 406 control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the second se
 405 homes and risk of lung cancer: collaborative analysis of individual data from 13 European cas 406 control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et a 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from t
 406 control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63. 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et a 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from t
 407 18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et a 408 408 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from t
407 13. Reasonal Line Control Sen O, Andersen ZJ, Deeren R, Santon E, Statoggia W, Weiningy O, et al. 12 13 Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from t
13 400 All politicol and lung cancel includence in 17 European conorts, prospective analyses from t
400 Europeon Study of Cohorts for Air Dollytion Efforts (ESCADE). The Longet Opeology 20
14 409 European Study of Conorts for An Follution Effects (ESCAFE). The Lancet Oncology. 20 15 $400 = 2012/09/01/(14/0) 012/02 = 1 \pm 1/4 = 1/11 \pm 1/10 101/(101470/2045(12)70270/1)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
411 19. 2018 Summary-20190/19. Retrieved August 26, 2022, from
18 412 https://www.who.int/docs/default-source/wprodocuments/countries/china/2018-gats-china
19 413 factsheet-cn-en.pdf?sfvrsn=3f4e2da9_2
20 414 20. Thematic household survey.Retrieved August 26, 2022, fro
415 https://www.censtatd.gov.hk/en/data/stat_report/product/B1130201/att/B11302702020XXX
23 416 B0100.pdf
24 417 21. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific a
418 cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analys
26 27 419 for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10:385(9963):117-71.
28 420 22 Estimated alcohol consumption per capita in Hong Kong Change4Health (n d)
29 421 Retrieved December 1 2022 from
30 421 https://www.change/health.gov.hk/en/alcohol_aware/figures/alcohol_consumption/index.ht
31 +22 https://www.enange+neanin.gov.nk/en/aconor_aware/ngures/aconor_consumption/index.nt.
32 425 1 33 424 22 Would Harlth Organization Chahalatatas report on shadhaland harlth 2010 Would
424 23. World Health Organization. Global status report on alcohol and health 2018. World
35 425 Health Organization; 2019 Feb 14.
426 426 24. Wild C. World cancer report 2014. Wild CP, Stewart BW, editors. Geneva, Switzerlan
427 World Health Organization; 2014.
30 428 39
40 429 25. Zhao S, Dong H, Qin J, Liu H, Li Y, Chen Y, et al. Breast cancer mortality in Chine
41 430 women: does migrant status play a role? Annals of Epidemiology. 2019 2019/12/01/;40:2
42 431 34.e2. doi: <u>https://doi.org/10.1016/j.annepidem.2019.10.006</u> .
43 43 432 26. Gomez SL, Yang J, Lin S-W, McCusker M, Sandler A, Cheng I, et al. Incidence trends
45 433 lung cancer by immigration status among Chinese Americans. Cancer Epidemiol Biomarke
⁴⁶ 434 Prev. 2015:24(8):1157-64. PMID: 25990553. doi: 10.1158/1055-9965.EPI-15-0123.
47 435 27 Hemminki K Li X Czene K Cancer risks in first-generation immigrants to Swede
48 436 International Journal of Cancer 2002 $2002/05/10.99(2):218-28$ d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
51 428 28 Vanthemme K. Beselverne M. De Schutter H. Vandenheede H. Lung concer inciden
52 136 28 . Value on the K, Kosskamp W, De Schutter H, Value meeter H. Lung cancel methem
53 439 differences in migrant men in Belgium, 2004–2013: histology-specific analyses. BMC Cance
54 440 2021 2021/03/30;21(1):328. doi: 10.1186/s12885-021-08038-6.
441 29. Schooling M, Leung GM, Janus ED, Ho SY, Hedley AJ, Lam TH. Childhood migration
57 442 and cardiovascular risk. International Journal of Epidemiology. 2004;33(6):1219-26. do
58 443 10.1093/ije/dyh221.
444 30. Leung JYY, Li AM, Leung GM, Schooling CM. Mode of delivery and childhout

hospitalizations for asthma and other wheezing disorders. Clinical & Experimental Allergy. 2015 2015/06/01;45(6):1109-17. doi: https://doi.org/10.1111/cea.12548. 31. Baker A, Bray I. Bayesian projections: what are the effects of excluding data from younger age groups?. American Journal of Epidemiology. 2005 Oct 15;162(8):798-805. 32. Rosenberg PS, Anderson WF. Age-Period-Cohort Models in Cancer Surveillance Research: Ready for Prime Time? APC Models. Cancer Epidemiology, Biomarkers & Prevention. 2011 Jul 1;20(7):1263-8. 33. Holford T. Analyzing the effects of age, period and cohort on incidence and mortality rates. Stat Meth Med Res. 1992;1:317-37. 34. Brookmeyer R, Stroup DF, editors. Monitoring the health of populations: statistical principles and methods for public health surveillance. Oxford University Press; 2004. 35. Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Biometrical Journal. 2017 May;59(3):531-49. 36. Knoll M, Furkel J, Debus J, Abdollahi A, Karch A, Stock C. An R package for an integrated evaluation of statistical approaches to cancer incidence projection. BMC medical research methodology. 2020 Dec;20(1):1-1. 37. Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates: a new WHO standard. Geneva: World Health Organization. 2001 Jan;9(10):1-4. 38. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021 May;71(3):209-49. 39. Mousavi SM, Fallah M, Sundquist K, Hemminki K. Age-and time-dependent changes in cancer incidence among immigrants to Sweden: colorectal, lung, breast and prostate cancers. International journal of cancer. 2012 Jul 15;131(2):E122-8. 40. National Cancer Institute. SEER stat fact sheets: liver and intrahepatic bile duct cancer. 41. Wu X, Chung VC, Hui EP, Ziea ET, Ng BF, Ho RS, Tsoi KK, Wong S, Wu JC. Effectiveness of acupuncture and related therapies for palliative care of cancer: overview of systematic reviews. Scientific reports. 2015 Nov 26;5(1):1-5. 42. Sung H, Rosenberg PS, Chen WQ, Hartman M, Lim WY, Chia KS, Wai-Kong Mang O, Tse L, Anderson WF, Yang XR. The impact of breast cancer-specific birth cohort effects among younger and older C hinese populations. International journal of cancer. 2016 Aug 1;139(3):527-34. 43. The world economy volume 1: a millennial perspective, 2, Historical statistics: Academic Foundation, Gurgaon, India (2007) 44. Elias SG, Peeters PH, Grobbee DE, van Noord PA. The 1944-1945 Dutch famine and subsequent overall cancer incidence. Cancer Epidemiology Biomarkers & Prevention. 2005 Aug;14(8):1981-5. 45. Chiu YL, Wang XR, Qiu H, Yu IT. Risk factors for lung cancer: a case-control study in Hong Kong women. Cancer Causes & Control. 2010 May;21(5):777-85. 46. Li J, Lam AS, Yau ST, Yiu KK, Tsoi KK. Antihypertensive treatments and risks of lung Cancer: A large population-based cohort study in Hong Kong. BMC cancer. 2021 Dec;21(1):1-9.

1 2		
3 4	489 400	47. Du J, Sun H, Sun Y, Du J, Cao W, Sun S. Assessment of age, period, and cohort effects of lung concern incidence in Hong Kong and prejection up to 2020 based on changing
5 6	490 491	demographics. American Journal of Cancer Research. 2021;11(12):5902.
7 8	492	48. Centre for Health Protection, Department of Health - Lung Cancer. Centre for Health
9 10	493 494	https://www.chp.gov.hk/en/healthtopics/content/25/49.html
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		
		16

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male and female lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands. For beer terien only

1 2 3 4 5 6 7 8	502 503 504 505 506 507	Figure 2. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.
9 10 11 12 13 14 15		
16 17 18 19 20 21		
22 23 24 25 26 27 28		
29 30 31 32 33 34 35		
36 37 38 39 40 41 42		
43 44 45 46 47 48		
49 50 51 52 53 54 55		
56 57 58 59 60		18

Figure 3. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant

status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95%

1 2 514 3 515 4 516 5 517 6 518 7 519 8	Figure 4. Projections of lung cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.
9 10 11 12 13 14 15 16 17 18	
19 20 21 22 23 24 25 26 27 28 20	
29 30 31 32 33 34 35 36 37 38 20	
40 41 42 43 44 45 46 47 48	
49 50 51 52 53 54 55 56 57 58 50	
59 60	20

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male and female lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

519x641mm (57 x 57 DPI)

Figure 2. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

519x343mm (57 x 57 DPI)

Figure 3. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

519x343mm (57 x 57 DPI)

Figure 4. Projections of lung cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

519x343mm (57 x 57 DPI)

Supplementary Material for

"An age-period-cohort analysis and projection of cancer mortality in

Hong Kong, 1998–2030"

APC Figures

eFigure 1(a) Colon cancer	3
eFigure 1(b) Liver cancer	4
eFigure 1(c) Pancreatic cancer	5
eFigure 1(d) Stomach cancer	6
eFigure 1(e) Prostate cancer	7
Projection Figures Colon cancer	
eFigure 2(a)Projection (all ages)	8
eFigure 2(b)Projection (<60 years)	9
eFigure 2(c)Projection (≥60 years)	
Liver cancer	
eFigure 3(a)Projection (all ages)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years)	11
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer	
 eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer eFigure 5(a)Projection (all ages) 	
 eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer eFigure 5(a)Projection (all ages) eFigure 5(b)Projection (<60 years) 	

2		
3 4	eFigure 5(c)Projection (\geq 60 years)	
5	Prostate cancer	
6		
7	eFigure 6 Projection (all ages, <60 years and \geq 60 years)	20
o 9		
10	Tables	
11 12	eTable 1 Lung cancer	21
13		
14	eTable 2 Colon cancer	22
15 16	eTable 3 Liver cancer	23
17	eTable 4 Pancreatic cancer	24
18		
20	eTable 5 Stomach cancer	25
21	eTable 6 Prostate cancer	
22		
23		
24		
25		
27		
28		
29		
30		
32		
33		
34		
35		
36		
38		
39		
40		
41		
42		
45 44		
45		
46		
47		

eFigure 1(a). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female colon cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(b). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female liver cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(c). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female pancreatic cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(d). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female stomach cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(e). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male prostate cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 2(a). Projections of colon cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(b). Projections of colon cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(c). Projections of colon cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(a). Projections of liver cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(b). Projections of liver cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(c). Projections of liver cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(a). Projections of pancreatic cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(b). Projections of pancreatic cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(c). Projections of pancreatic cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(a). Projections of stomach cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(b). Projections of stomach cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(c). Projections of stomach cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 6. Projections of prostate cancer mortality rates for males by immigrant status and age groups (less than, greater than or equal to 60 years old) from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

iez oniz

Predictive n	nean of ag	je-standar	dized mort	ality rates	of lung can	cer per 100),000 popu	Ilation	
Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
Female	41.34	40.58	39.87	39.19	38.53	37.89	37.26	36.65	36.04
immigrants >10	(1.86)	(2.27)	(2.75)	(3.28)	(3.86)	(4.46)	(5.09)	(5.74)	(6.4)
Female immigrants ≤	22.22	20.56	19.01	17.57	16.24	15.00	13.85	12.79	11.81
10	(4.67)	(5.38)	(6.10)	(6.80)	(7.45)	(8.04)	(8.56)	(9.01)	(9.39)
Fermela Jacob	30.22	30.63	31.05	31.48	31.9	32.32	32.73	33.15	33.55
Female locals	(3.54)	(4.77)	(6.38)	(8.29)	(10.47)	(12.87)	(15.48)	(18.31)	(21.33)
Molo immigrante >10	100.18	97.18	94.34	91.71	89.15	86.66	84.19	81.81	79.55
	(4.18)	(5.33)	(6.72)	(8.24)	(9.84)	(11.47)	(13.11)	(14.74)	(16.37)
Malo immigrants <10	79.90	79.81	79.72	79.62	79.50	79.32	79.08	78.78	78.41
	(10.41)	(11.82)	(13.42)	(15.19)	(17.09)	(19.09)	(21.18)	(23.32)	(25.53)
Male locals	52.27	50.83	49.56	48.18	46.64	45.13	43.83	42.67	41.43
Wale locals	(4.86)	(5.39)	(6.13)	(6.97)	(7.84)	(8.76)	(9.76)	(10.8)	(11.8)
Female	14.51	13.90	13.29	12.71	12.13	11.57	11.02	10.49	9 98(3 68)
immigrants>10(<60y)	(1.50)	(1.76)	(2.04)	(2.33)	(2.62)	(2.91)	(3.18)	(3.43)	5.50(5.00)
Female immigrants ≤	7.79	7 18(2 23)	6 62(2 53)	6 10(2 81)	5 63(3 08)	5 19(3 32)	4 79(3 53)	4 42(3 72)	4 09(3 88)
10(<60y)	(1.95)	1.10(2.20)	0.02(2.00)	0.10(2.01)	0.00(0.00)	0.10(0.02)	4.13(0.00)	4.42(0.12)	
Female locals(<60y)	9.48 (0.89)	9.17(1.02)	8.87(1.16)	8.57(1.32)	8.27(1.49)	7.97(1.65)	7.68(1.82)	7.38(1.98)	7.09(2.13)
Male	26.36	24.96	23.64	22.38	21.17	20.03	18.96	17.96	17.03
immigrants>10(<60y)	(3.58)	(3.94)	(4.35)	(4.79)	(5.23)	(5.67)	(6.10)	(6.51)	(6.90)
Male immigrants ≤	13.38	12.02	10.79	9.68	8.69	7.79	6.98	6.25	5.59
10(<60y)	(3.71)	(4.17)	(4.59)	(4.95)	(5.24)	(5.46)	(5.61)	(5.69)	(5.72)
	14.45	14.03	13.61	13.14	12.65	12.13	11.55	10.93	10.26
	(1.15)	(1.29)	(1.46)	(1.64)	(1.82)	(2.01)	(2.17)	(2.31)	(2.43)
Female	107 21	106.26	105 52	104.94	104 51	104 21	104.07	104.06	10/ 16
immigrants >10(≥	(5.17)	(6.24)	(7 54)	(9.04)	(10.72)	(12 57)	(14 61)	(16.78)	(19 14)
60y)	(0.11)	(0.24)	(1.04)	(3.04)	(10.72)	(12.07)	(14.01)	(10.70)	(10.14)
Female immigrants ≤	63.84	59.88	56.14	52.60	49.27	46.14	43.20	40.44	37.85
10(≥60y)	(15.72)	(17.50)	(19.31)	(21.03)	(22.66)	(24.16)	(25.52)	(26.74)	(27.81)
Female locals(≥60v)	76.53	76.22	75.94	75.69	75.49	75.32	75.19	75.10	75.03
	(10.11)	(10.85)	(11.79)	(12.94)	(14.28)	(15.80)	(17.48)	(19.33)	(21.32)
Male	289.8	286.6	284.28	282.78	281.99	281.88	282.31	283.37	285.03
immigrants>10(≥60y)	(11.7)	(15.19)	(19.51)	(24.49)	(30.07)	(36.31)	(43.15)	(50.66)	(58.86)
Male immigrants ≤	247.01	251.24	255.62	260.14	264.82	269.61	274.52	279.55	284.69
10(≥60y)	(36.85)	(42.94)	(50.06)	(58.14)	(67.14)	(77.01)	(87.75)	(99.34)	(111.81)
Male locals(≥60v)	146.29	143.54	141.84	140.07	138.14	136.65	136.49	137.24	138.26
	(18.46)	(20.58)	(23.97)	(28.24)	(33.39)	(39.82)	(47.87)	(57.47)	(68.52)

eTable 1. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of lung cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030.

Predictive	mean of	age-stan	dardized	mortality r	ates of colo	on cancer p	er 100,000	population	
Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
Female	18.95	18.77	18.59	18.42	18.27	18.12	17.98	17.85	17.73
immigrants >10	(1.13)	(1.37)	(1.66)	(1.98)	(2.33)	(2.71)	(3.11)	(3.53)	(3.96)
Female immigrants ≤	7.70	7.25	6.82	6.42	6.03	5.67	5.33	5.01	4.71
10	(2.51)	(2.81)	(3.11)	(3.37)	(3.61)	(3.83)	(4.01)	(4.17)	(4.31)
Fermela legela	13.47	13.24	13.01	12.77	12.53	12.29	12.06	11.82	11.59
Female locals	(1.61)	(1.72)	(1.87)	(2.04)	(2.24)	(2.46)	(2.68)	(2.92)	(3.16)
Mala immigranta > 10	29.82	29.66	29.52	29.41	29.30	29.21	29.14	29.06	28.98
Male immigrants >10	(1.46)	(1.79)	(2.19)	(2.63)	(3.11)	(3.64)	(4.19)	(4.78)	(5.39)
Mala imminuta (10	16.77	17.02	17.23	17.45	17.67	17.88	18.09	18.31	18.50
Male immigrants \$10	(3.77)	(4.18)	(4.64)	(5.14)	(5.69)	(6.27)	(6.91)	(7.56)	(8.26)
	19.81	19.39	18.97	18.57	18.18	17.81	17.43	17.06	16.71
Male locals	(2.07)	(2.22)	(2.42)	(2.61)	(2.85)	(3.12)	(3.40)	(3.71)	(4.03)
Female	7.36	7.46	7.56	7.65	7.74	7.83	7.92	8.01	8.09
immigrants >10(<60y)	(1.12)	(1.28)	(1.46)	(1.68)	(1.92)	(2.19)	(2.48)	(2.79)	(3.13)
Female immigrants ≤	2.82	2.65	2.51	2.36	2.22	2.08	1.95	1.83	1.72
10(<60y)	(0.86)	(0.91)	(0.97)	(1.02)	(1.07)	(1.11)	(1.14)	(1.18)	(1.22)
Female locals(<60y)	3.87	3.73	3.61	3.47	3.34	3.22	3.11	2.99	2.88
	(0.50)	(0.54)	(0.59)	(0.65)	(0.70)	(0.76)	(0.82)	(0.88)	(0.94)
Male	7.9	7.85	7.71	7 54(1 02)	7 26(2.09)	7 17(2 22)	6.07(2.67)	6 76(2 01)	6 EE(2 OE)
immigrants >10(<60y)	8(1.17)	(1.38)	(1.60)	7.34(1.83)	7.30(2.06)	1.11(2.32)	0.97(2.57)	0.70(2.01)	0.00(0.00)
Male immigrants ≤	5.18	5.22	5.26	E 20(2 14)	E 24(2.26)	E 29(2 E0)	5 43(2 84)	5 47(2 11)	E E1(2 20)
10(<60y)	(1.58)	(1.75)	(1.93)	5.50(2.14)	5.34(2.30)	5.56(2.59)	5.43(2.04)	5.47(5.11)	5.51(5.56)
	4.88	4.66	4.46	4 26(1 12)	4.09(1.21)	2 01/1 49)	2 72(1 GE)	2 E7(1 02)	2 42/1 07)
	(0.63)	(0.79)	(0.96)	4.20(1.13)	4.08(1.31)	5.91(1.40)	3.73(1.05)	3.37(1.02)	5.42(1.97)
Female	49.21	48.70	48.26	47.87	47.54	47.26	47.05	46.91	46.81
immigrants >10(≥60y)	(2.99)	(3.56)	(4.26)	(5.05)	(5.94)	(6.90)	(7.94)	(9.06)	(10.26)
Female immigrants ≤	22.44	21.69	20.95	20.23	19.52	18.84	18.17	17.51	16.86
10(≥60y)	(6.56)	(6.96)	(7.38)	(7.80)	(8.23)	(8.66)	(9.08)	(9.49)	(9.90)
Female locals(>60v)	36.69	36.29	35.87	35.46	25 04(7 5)	34.61	34.19	33.77	33.34
	(5.74)	(6.06)	(6.46)	(6.95)	33.04(7.5)	(8.12)	(8.79)	(9.51)	(10.27)
Male	82.72	82.16	81.64	81.19	80.81	80.47	80.15	79.85	79.56
immigrants >10(≥60y)	(4.09)	(4.95)	(5.97)	(7.12)	(8.39)	(9.77)	(11.24)	(12.81)	(14.45)
Male immigrants ≤	44.93	45.62	46.30	46.96	47.61	48.25	48.88	49.51	50.13
10(≥60y)	(13.09)	(14.52)	(16.09)	(17.80)	(19.64)	(21.62)	(23.73)	(25.97)	(28.34)
	54.89	53.75	52.63	51.54	50.47	49.43	48.42	47.42	46.44
	(7.65)	(8.03)	(8.52)	(9.12)	(9.8)	(10.55)	(11.37)	(12.25)	(13.16)

eTable 2. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of colon cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030.

Predictive m	Predictive mean of age-standardized mortality rates of liver cancer per 100,000 population										
Year	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Formala imminuanta > 10	10.68	10.09	9.54	9.01	8.50	0.02(1.45)	7 57/1 50)	7 1 4/1 70)	6 74/1 02)		
Female immigrants >10	(0.71)	(0.85)	(1.01)	(1.16)	(1.31)	8.02(1.45)	7.57(1.59)	7.14(1.72)	6.74(1.83)		
Fomolo immigrante <10	8.66	8.38	8.11	7.84	7.58	7 22/2 40)	7 07(2 62)	6 92(2 76)	6 60(2 00)		
	(1.82)	(1.95)	(2.08)	(2.22)	(2.36)	1.32(2.49)	1.01(2.03)	0.02(2.70)	0.30(2.00)		
Fomalo locals	6.36	6.08	5.81	5.53	5.26	E 01(1 06)	4 77(1 11)	4 52(1 15)	4 2(1 21)		
	(0.88)	(0.90)	(0.93)	(0.97)	(1.01)	5.01(1.00)	4.77(1.11)	4.55(1.15)	4.3(1.21)		
Male immigrants >10	49.22	47.76	46.35	45.01	43.67	42.37	41 1(6 56)	39.89	38.71		
	(2.36)	(2.93)	(3.59)	(4.31)	(5.05)	(5.81)	41.1(0.50)	(7.33)	(8.08)		
Male immigrants <10	39.03	37.39	35.81	34.26	32.76	31.31	29.91	28.56	27.25		
	(6.49)	(7.47)	(8.51)	(9.58)	(10.63)	(11.65)	(12.62)	(13.54)	(14.40)		
Male locals	22.16	21.02	19.91	18.85	17.83	16.85	15.92	15.03	14.18		
	(2.09)	(2.22)	(2.39)	(2.58)	(2.79)	(3.03)	(3.21)	(3.40)	(3.59)		
Female	3.39	3.29	3.20	3.12	3.04	2 96(0 82)	2 80(0 80)	2 82(0 96)	2 75(1 03)		
immigrants >10(<60y)	(0.52)	(0.57)	(0.63)	(0.69)	(0.75)	2.30(0.02)	2.03(0.03)	2.02(0.30)	2.73(1.03)		
Female immigrants ≤	3.81	3.69	3.57	3.46	3.36	3 25(1 22)	3 15(1 20)	3 06(1 36)	2 07(1 /13)		
10(<60y)	(0.91)	(0.96)	(1.02)	(1.08)	(1.15)	5.23(1.22)	5.15(1.25)	3.00(1.30)	2.07(1.40)		
Female locals(<60y)	1.37	1.29	1.22	1.16	1.10	1 04(0 27)	0 99(0 29)	0.94(0.30)	0.80(0.31)		
	(0.2)	(0.21)	(0.23)	(0.24)	(0.26)	1.04(0.27)	,,	0.04(0.00)	0.00(0.01)		
Male	24.04	23.02	22.05	21.13	20.25	19.41	18.62	17.86	17.14		
immigrants >10(<60y)	(2.35)	(2.63)	(2.94)	(3.27)	(3.61)	(3.95)	(4.30)	(4.64)	(4.98)		
Male immigrants ≤	22.56	21.71	20.87	20.04	19.22	18.42	17.63	16.86	16.11		
10(<60y)	(3.96)	(4.44)	(4.94)	(5.45)	(5.95)	(6.45)	(6.91)	(7.36)	(7.78)		
Male locals(<60v)	7.47	6.97	6.52	6.11	5.73	5,38(1,08)	5 ()4(1 15)	4 73(1 21)	4 44(1 27)		
	(0.74)	(0.79)	(0.86)	(0.93)	(1.01)	0.00(1.00)	0.0 (1.10)				
Female immigrants >10(≥	29.63	27.99	26.42	24.92	23.49	22.13	20.85	19.64	18.50		
60y)	(2.01)	(2.36)	(2.75)	(3.14)	(3.52)	(3.88)	(4.23)	(4.55)	(4.85)		
Female immigrants ≤10(≥	19.08	18.38	17.71	17.03	16.39	15.76	15.16	14.57	14.01		
60y)	(5.81)	(6.14)	(6.48)	(6.83)	(7.16)	(7.49)	(7.80)	(8.11)	(8.39)		
Female locals(≥60v)	18.41	17.55	16.72	15.91	15.11	14.34	13.59	12.87	12.17		
	(3.23)	(3.26)	(3.32)	(3.40)	(3.49)	(3.59)	(3.69)	(3.81)	(3.93)		
Male immigrants >10(≥	113.96	113.43	113.17	113.16	113.37	113.79	114.39	115.19	116.17		
60y)	(5.95)	(7.65)	(9.70)	(12.04)	(14.66)	(17.56)	(20.73)	(24.18)	(27.91)		
Male immigrants ≤10(≥	85.14	82.59	80.02	77.42	74.83	72.23	69.64	67.07	64.52		
60y)	(18.85)	(20.6)	(22.44)	(24.34)	(26.24)	(28.12)	(29.94)	(31.70)	(33.38)		
Male locals(>60v)	58.95	56.51	54.14	51.84	49.61	47.46	45.38	43.38	41.45(12.3		
Male locals(≥60y)	(7.91)	(8.20)	(8.61)	(9.12)	(9.70)	(10.33)	(11.01)	(11.68)	6)		

eTable 3. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of liver cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030.

BMJ Open

Predictive m	Predictive mean of age-standardized mortality rates of pancreatic cancer per 100,000 population								
Year	2022	2023	2024	2025	2026	2027	2028	2029	2030
Female	11.11	11.36	11.61	11.87	12.14	12.42	12.71	13.01	10.0/0.05)
immigrants >10	(0.75)	(0.91)	(1.09)	(1.31)	(1.56)	(1.84)	(2.15)	(2.48)	13.3(2.85)
Female immigrants ≤	5.44	5.44	F 42(1.0.4)	F 42(1.00)	E 41/0 1E)	F 20(2 22)	F 20(2 40)	F 24(2.00)	F 21(2.0.4)
10	(1.56)	(1.69)	5.43(1.84)	5.42(1.99)	5.41(2.15)	5.39(2.32)	5.36(2.49)	5.34(2.66)	5.31(2.84)
Formala logala	9.01	9.15	0.00(1.40)	0.42(1.64)	0 57(1 92)	0.71(2.0E)	0.05(2.20)	0.00(2.5.4)	10.14
Female locals	(1.22)	(1.34)	9.29(1.48)	9.43(1.04)	9.57(1.83)	9.71(2.05)	9.85(2.28)	9.99(2.54)	(2.83)
Mala immigranta >10	17.87	18.48	19.11	19.78	20.47	21.18	21.92	22.69	23.49
Male Immigrants >10	(1.19)	(1.49)	(1.87)	(2.32)	(2.83)	(3.42)	(4.07)	(4.81)	(5.61)
Mala immigranta <10	7.87	7.76	7 64(2 70)	7 E1(2 07)	7 20(2 OE)	7 24(2 22)	7 00(2 41)	6 0E(2 EQ)	6 01(2 7E)
	(2.37)	(2.53)	7.04(2.70)	7.51(2.07)	7.30(3.05)	1.27(0.20)	7.09(3.41)	0.95(3.56)	0.01(3.75)
Mala Jacob	12.29	12.49	12.69	12.91	13.11	13.33	13.55	13.78	14.02
	(1.49)	(1.64)	(1.83)	(2.06)	(2.33)	(2.63)	(2.97)	(3.34)	(3.74)
Female	3.62	3.74	2 07(0 77)	4.01(0.90)	4 14(1 02)	4 20(1 10)	4 40(1 04)	4 67(1 62)	4 70(1 70)
immigrants >10(<60y)	(0.57)	(0.66)	3.87(0.77)	4.01(0.69)	4.14(1.02)	4.20(1.10)	4.42(1.34)	4.57(1.55)	4.72(1.73)
Female immigrants ≤	1.21	1.22	1 22(0 56)	1 24(0 61)	1.25(0.66)	1 26(0 71)	1 26(0 77)	1 27(0 92)	1 29(0 90)
10(<60y)	(0.48)	(0.52)	1.23(0.30)	1.24(0.01)	1.25(0.00)	1.20(0.71)	1.20(0.77)	1.27(0.63)	1.20(0.09)
Female locals(<60y)	2.88	2.91	2.93(0.48)	2 96(0 55)	2 99(0 63)	3 02(0 71)	3.04(0.81)	3 07(0 90)	3 10(1 01)
	(0.36)	(0.41)		2.30(0.33)	2.00(0.00)	3.02(0.71)	3.04(0.01)		, <i>,</i>
Male	7.05	7.24	7 43(1 56)	7 62(1 84)	7 82(2 16)	8 01(2 50)	8 21(2 88)	8 40(3 30)	8 61(3 75)
immigrants >10(<60y)	(1.11)	(1.32)	1.10(1.00)	1.02(1.01)	1.02(2.10)	0.01(2.00)	0.21(2.00)	0.10(0.00)	0.01(0.10)
Male immigrants ≤	2.01	1.95	1 9(0 94)	1 84(0 99)	1 79(1 04)	1 74(1 09)	1 69(1 14)	1 64(1 19)	1 60(1 24)
10(<60y)	(0.85)	(0.91)	1.0(0.01)	1.0 1(0.00)	1.10(1.01)	1.1 (1.00)	1.00(1.1.1)	1.0 ((1.10)	1.00(1.2.1)
Male locals(<60v)	4.33	4.41	4 46(0 68)	4 53(0 81)	4 61(0 94)	4 69(1 09)	4 77(1 26)	4 85(1 44)	4 93(1 63)
	(0.48)	(0.57)	1.10(0.00)	1.00(0.01)	1.01(0.01)	4.09(1.09)	4.77(1.20)	4.85(1.44)	1.00(1.00)
Female	29.45	29.91	30.38	30.85	31.33	31.81	32.29	32.78	33.27
immigrants >10(≥60y)	(2.11)	(2.54)	(3.06)	(3.66)	(4.33)	(5.08)	(5.91)	(6.79)	(7.74)
Female immigrants ≤	15.65	15.49	15.33	15.16	14.97	14.79	14.59	14.39	14.19
10(≥60y)	(6.08)	(6.71)	(7.36)	(8.03)	(8.73)	(9.43)	(10.14)	(10.86)	(11.58)
Female locals(>60v)	23.85	24.21	24.56	24.91	25.25	25.58	25.90	26.22	26.54
Ternale locals(=00y)	(4.46)	(4.81)	(5.23)	(5.73)	(6.30)	(6.95)	(7.67)	(8.47)	(9.34)
Male	44.36	45.85	47.41	49.04	50.73	52.48	54.28	56.16	58.11
immigrants >10(≥60y)	(3.02)	(3.76)	(4.69)	(5.78)	(7.05)	(8.50)	(10.13)	(11.95)	(13.98)
Male immigrants ≤	23.96	23.87	23.75	23.61	23.45	23.28	23.09	22.89	22.68
10(≥60y)	(9.01)	(9.74)	(10.52)	(11.33)	(12.17)	(13.04)	(13.93)	(14.83)	(15.75)
Male locals(>60v)	31.17	31.55	31.93	32.30	32.66	33.01	33.35	33.69	34.03
	(5.22)	(5.63)	(6.14)	(6.75)	(7.45)	(8.23)	(9.11)	(10.08)	(11.12)

eTable 4. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of pancreatic cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030.

Predictive mea	Predictive mean of age-standardized mortality rates of stomach cancer per 100,000 population										
Year	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Formala immigrates 10	7.95	7.71	7.47	7.25	7.03	6.83	6.62	6.43	6.24		
Female immigrants >10	(0.62)	(0.74)	(0.87)	(1.01)	(1.15)	(1.29)	(1.43)	(1.57)	(1.71)		
Fomala immigranta <10	7.36	7.33	7.30	7.28	7.27	7.27	7.28	7.31	7.33		
	(1.56)	(1.69)	(1.85)	(2.01)	(2.20)	(2.40)	(2.61)	(2.84)	(3.09)		
Female locals	4.91	4.75	4.61	4.47	4.34	4.21	4.08	3.95	3.83		
	(0.52)	(0.57)	(0.63)	(0.71)	(0.77)	(0.84)	(0.91)	(0.99)	(1.06)		
Male immigrants >10	13.89	13 34(1 21)	12.81	12.31	11.83	11.38	10.95	10.54	10.15		
	(0.97)	10.04(1.21)	(1.46)	(1.73)	(1.99)	(2.26)	(2.51)	(2.76)	(3.01)		
Male immigrants <10	15.21	15.07	14.93	14.79	14.64	14.51	14.35	14.19	14.03		
	(3.38)	(3.67)	(3.98)	(4.31)	(4.65)	(5.02)	(5.39)	(5.78)	(6.17)		
Male locals	8.07	7.73	7 /1(1 07)	7.10	6.81	6.51	6.23	5.97	5.71		
	(0.99)	(1.03)	7.41(1.07)	(1.13)	(1.19)	(1.26)	(1.33)	(1.39)	(1.46)		
Female	4.69	4.62	4.55	4.47	4.39	4.31	4.22	4.13	4.03		
immigrants >10(<60y)	(0.79)	(0.87)	(0.96)	(1.07)	(1.17)	(1.29)	(1.41)	(1.52)	(1.64)		
Female immigrants ≤	4.08	4.10	4.13	4.17	4.21	4.24	4.28	4.32	4.36		
10(<60y)	(0.93)	(1.03)	(1.14)	(1.27)	(1.41)	(1.55)	(1.70)	(1.87)	(2.05)		
Female locals(<60y)	2.08	1.98	1.88	1.79	1.71	1.61	1.53	1.44	1.37		
	(0.27)	(0.29)	(0.32)	(0.35)	(0.37)	(0.41)	(0.43)	(0.45)	(0.47)		
Male	4.71	4.55	4.41	4.25	4.12	3.98	3.86	3.74	3.63		
immigrants >10(<60y)	(0.79)	(0.89)	(0.99)	(1.10)	(1.21)	(1.32)	(1.43)	(1.54)	(1.65)		
Male immigrants ≤	4.70	4.66	4.63	4.59	4.55	4.52	4.48	4.44	4.41		
10(<60y)	(1.42)	(1.55)	(1.69)	(1.83)	(1.99)	(2.15)	(2.32)	(2.50)	(2.68)		
Male locals(<60v)	2.37	2.28	2.21	2.12	2.04	1.97	1.91	1.83	1 77(0 55)		
	(0.29)	(0.32)	(0.35)	(0.38)	(0.42)	(0.45)	(0.49)	(0.52)	1.17(0.55)		
Female	16.23	15.65	15.08	14.55	14.03	13.54	13.07	12.62	12.19		
immigrants >10(≥60y)	(1.26)	(1.47)	(1.70)	(1.94)	(2.18)	(2.43)	(2.68)	(2.92)	(3.16)		
Female immigrants ≤	13.01	12.52	12.03	11.55	11.08	10.63	10.19	9 76(6 56)	9.34		
10(≥60y)	(4.83)	(5.11)	(5.37)	(5.63)	(5.88)	(6.12)	(6.35)	3.70(0.30)	(6.75)		
Female locals(>60v)	11.86	11.67	11.49	11.33	11.18	11.04	10.91	10 79(3 4)	10.68		
	(1.84)	(1.98)	(2.15)	(2.35)	(2.58)	(2.84)	(3.11)	10.75(0.4)	(3.71)		
Male immigrants >10(≥	36.59	35 17(3 18)	33.82	32.55	31.34	30.19	29.08	28.02	27.01		
60y)	(2.56)	55.17(5.10)	(3.86)	(4.57)	(5.28)	(6.01)	(6.70)	(7.40)	(8.07)		
Male immigrants ≤10(≥	41.43	41.03	40.61	40.17	39.71	39.24	38.75	38.23	37.71		
60y)	(11.78)	(12.71)	(13.70)	(14.75)	(15.85)	(16.99)	(18.16)	(19.35)	(20.57)		
	22.69	22 37/1 071	22 16/4 94)	21.89	21.61	21.52	21.74	22.17	22.73		
	(3.56)	22.31(4.01)	22.10(4.04)	(5.86)	(7.22)	(9.02)	(11.29)	(14.03)	(17.28)		

eTable 5. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of stomach cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030.

Predictive	Predictive mean of age-standardized mortality rates of prostate cancer per 100,000 population									
Year	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Mala imminuanta > 10	14.59	14.57	14.56	14.54	14.51	14.48	14.45	14.42	14.38	
Male Immigrants >10	(0.79)	(0.96)	(1.15)	(1.37)	(1.61)	(1.86)	(2.13)	(2.42)	(2.72)	
Male immigrants ≤	8.78	0.50/2.20)	8.39	0.10/2.00)	0.10(2.00)	7.00(4.11)	7 (2(4.01)		7.07(4.70)	
10	(3.11)	8.58(3.29)	(3.49)	8.19(3.69)	8.10(3.89)	7.82(4.11)	7.63(4.31)	7.45(4.51)	1.27(4.72)	
	9.66	0.07/1.00	9.69	0.70(4.04)	0.75(0.00)	0.70(0.00)	0.00/0.40	0.00(0.04)	0.0(0.00)	
Male locals	(1.57)	9.67(1.66)	(1.77)	9.72(1.91)	9.75(2.06)	9.78(2.23)	9.82(2.43)	9.86(2.64)	9.9(2.88)	
Male	0.50		0.50				0.46(0.27)	0.45(0.29)	0.44(0.31)	
immigrants >10(<60	0.52	0.51(0.19)	(0.21)	0.49(0.22)	0.48(0.24)	0.47(0.25)				
у)	(0.17)		(0.21)							
Male immigrants ≤	0.73	0.91(0.02)	0.87	0.04(1.21)	1 01/1 51)	1 00(1 75)	1 16(2 02)	1 24(2 22)	1 22(2 64)	
10(<60y)	(0.77)	0.61(0.93)	(1.10)	0.94(1.51)	14(1.31) 1.01(1.51)	1.09(1.75)	1.10(2.02)	1.24(2.32)	1.00(2.04)	
	0.66	0.66(0.16)	0.66	0.67(0.21)	0.67(0.24)	0.67(0.27)	0.69(0.21)	0.69(0.22)	0.60(0.27)	
	(0.14)	0.00(0.10)	(0.19)	0.07(0.21)	0.07(0.24)	0.07(0.27)	0.00(0.31)	0.00(0.33)	0.09(0.37)	
Male	49.61	40.63	10.64	10.64	10.64	10.63	40.62	40.61		
immigrants >10(≥	(2.72)	(2.20)	(2.04)	(4.69)	(5.51)	(6.20)	49.02	(0.22)	49.58(9.37)	
60y)	(2.73)	(3.29)	(3.94)	(4.00)	(5.51)	(0.36)	(1.32)	(0.32)		
Male immigrants ≤	27.66	26.53	25.4	24.28	23.16	22.07	21.01	19.96	19 05/12 62)	
10(≥60y)	(9.78)	(10.21)	(10.63)	(11.03)	(11.41)	(11.76)	(12.09)	(12.38)	10.93(12.03)	
	31.48	31.40	31.32	31.24	31.15	31.06	30.96	30.86	20 74/0 26)	
Male locals(≥60y)	(5.49)	(5.76)	(6.09)	(6.48)	(6.94)	(7.44)	(8.01)	(8.61)	30.74(9.20)	

eTable 6. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of prostate cancer per 100,000 population for each age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030.

, ensure or equal to 60 years old

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract		°Z	
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	4
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	5
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5

Page 53 of 54

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5
6 7 8 9	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	n/a
10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
15 16 17 18 19 20 21	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	5
22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5
24 25	Study size	<u>#10</u>	Explain how the study size was arrived at	5
26 27 28 29	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5
30 31 32 33 34	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
35 36	5			
37 38 39	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	5
40 41 42 43	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	5
44 45 46 47	Statistical methods	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	n/a
48 49 50 51	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	
52 53	n/a			
54 55	Results			
56 57 58 59 60	Participants	<u>#13a</u> For j	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	
5 6	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	5
/ 8 9	Participants	<u>#13c</u>	Consider use of a flow diagram	
10 11	n/a			
12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	5
19 20 21 22	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	
23 24	n/a			
25 26 27	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	
27 28 29	n/a			
30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.	
35 36	n/a			
37 38 39 40 41 42 43	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	n/a
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
52 53	n/a			
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7
58 59 60	Discussion	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 55 of 54

1 2	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8
3 4 5 6 7	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	10
8 9 10 11 12	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	8
13 14 15	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	9
16 17 18 19	Other Information			
20 21 22 23 24	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	This checklist was a EQUATOR Netwo	complet rk in co	near review only - http://broingen.broi.com/site/about/ouidelings.yhtml	
60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

BMJ Open

An age-period-cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-072751.R2
Article Type:	Original research
Date Submitted by the Author:	04-Aug-2023
Complete List of Authors:	Zhao, Yanji; The Hong Kong Polytechnic University, Department of Applied Mathematics Zhuang, Zian; The Hong Kong Polytechnic University, Department of Applied Mathematics; University of California Los Angeles, Department of Biostatistics Yang, Lin; The Hong Kong Polytechnic University, School of Nursing He, Daihai; The Hong Kong Polytechnic University, Department of Applied Mathematics; The Hong Kong Polytechnic University, Research Institute for Future Food
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Public health, Oncology
Keywords:	STATISTICS & RESEARCH METHODS, ONCOLOGY, Risk Factors

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
З	
1	
4	
5	
6	
7	
, 0	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
24	
54	
35	
36	
37	
20	
20	
39	
40	
41	
42	
12	
43	
44	
45	
46	
10	
+/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
55	
50	
57	
58	
50	

1	An age-period-cohort analysis and projection of
2	cancer mortality in Hong Kong, 1998–2030
3	
4	Yanji Zhao ^{1, #} , Zian Zhuang ^{1,2, #} , Lin Yang ³ and Daihai He ^{1,4*}
5	
6	1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong,

- 7 China
- 8 2 Department of Biostatistics, University of California, Los Angeles, CA, United States
- 9 3 School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
- 10 4 Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong, China

12 # These authors contributed equally to this work.

- 13 * To whom correspondence should be addressed:
- 14 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong,
- 15 China

11

- 16 Tel: 852-27667864; daihai.he@polyu.edu.hk (DH).
- 17
 - 18 Email of all authors
- 19 Yanji Zhao: <u>yan-ji.zhao@connect.polyu.hk;</u> Zian Zhuang: <u>zianzhuang@ucla.edu;</u>
- 20Lin Yang: live live daihai.he@polyu.edu.hk;Daihai He: daihai.he@polyu.edu.hk;
- 21
 - **22** *Word count:3342*
- 23

24 Abstract

Objectives: To explore the relationship between immigration groups and cancer mortality, this study aimed to explore age, period, birth cohort effects and effects across genders and immigration groups on mortality rates of lung, pancreatic, colon, liver, prostate and stomach cancers and their projections.

30 Design, Setting, and Participants: Death registry data in Hong Kong between 1998 and 2021,
31 which were stratified by age, sex and immigration status. Immigration status was classified into
32 three groups: locals born in Hong Kong, long-stay immigrants and short-stay immigrants.

Methods: Age-period-cohort analysis was used to examine age, period, and birth cohort effects
for genders and immigration groups from 1998 to 2021. Bayesian age-period-cohort models
were applied to predict the mortality rates from 2022 to 2030.

Results: Short-stay immigrants revealed pronounced fluctuations of mortality rates by age and of relative risks by cohort and period effects for six types of cancers than those of long-stay immigrants and locals. Immigrants for each type of cancer and gender will be at a higher mortality risk than locals, as men will be at a higher risk of mortality from cancers than women in the future (excluding prostate cancer). After 2021, decreasing trends (p < 0.05) or plateau (p>0.05) of forecasting mortality rates of cancers occur for all immigration groups, except for increasing trends for short-stay male immigrants with colon cancer (p<0.05, Avg +0.30 deaths/100,000 per annum from 15.47 to 18.50 deaths/100,000) and long-stay male immigrants with pancreatic cancer (p<0.05, Avg +0.72 deaths/100,000 per annum from 16.30 to 23.49 deaths/100,000).,

49 Conclusions: Findings underscore the effect of gender and immigration status in Hong Kong
50 on mortality risks of cancers that immigrants for each type of cancer and gender will be at a
51 higher mortality risk than locals.

Keywords: Age-period-cohort analysis, immigration, mortality, lung cancer, pancreatic cancer,
colon cancer, liver cancer, prostate cancer, stomach cancer

55 Strengths and limitations of this study

- This study provides new evidence regarding the relationship between immigration status
 and cancer mortality, given the effects of age, period, birth cohort and their predictions.
- and cancer mortality, given the effects of age, period, birth cohort and their predictions.
- 60 The non-identifiability problem has not been interpreted in APC models
- 62 The future perspective of cancer therapies and techniques have not been considered.

to perteries only

Page 5 of 56

64 Introduction

Several migration waves from mainland China to Hong Kong have occurred over the past
century. These migration waves included a large-scale migration inflow from 1945 to 1950 (the
Chinese Civil War) and a few small-scale inflows in the 1950s, 1970s, and 1990s [1-3]. In 2016,
immigrants from mainland China formed approximately 38% of the population of Hong Kong.
These inflows have led to a growing interest in research on the disparity of health conditions
between the locals and immigrants.

Cancer has been one of the most common causes of death, as an estimated 19.3 million new cancer cases and 9.9 million new cancer-associated deaths occurred worldwide in 2020 [4]. In Hong Kong, lung cancer is one of the most common causes of cancer deaths [5, 6]. Previous studies suggested that the primary cause of lung cancer is cigarette smoking [7-11]. Genetic factors, asbestos, radon gas, second-hand smoke, and other forms of air pollution have been proven to influence the risk of lung cancer [12-18]. The overall daily smoking rate in mainland China was approximately 23.2% in 2018 [19], whereas the daily smoking rate in Hong Kong was only 10.2% in 2019 [20]. The leading causes of liver cancer include viral infection, drinking of alcohol and polluted water and food supplies which are also culprits for colon, stomach and pancreatic cancer [21]. Alcohol consumption per capita in Hong Kong has reached 2.37 liters in 2021 [22], compared to 7.0 liters of per capita consumption of alcohol in mainland China in 2018 [23]. As approximately 99% of prostate cancer cases occur after age 50, factors of prostate cancer have been regarded as old age, race, family history and the diet of red meat consumption [24]. In addition to these risk factors, studies have suggested that cancer mortality rates vary depending on migrant status [25-28]. According to data from the Census and Statistics Department of Hong Kong, approximately 81% of immigrants in Hong Kong immigrated from mainland China, Macau, and Taiwan. Immigrants from mainland China account for the bulk of this population. Previous studies have shown that child immigrants in Hong Kong tend to suffer from a higher risk of wheezing disorders and cardiovascular diseases, and immigrant women have higher age-specific mortality rates of breast cancer than locally-born women in Hong Kong [29, 30]. However, to date, few studies have investigated the effect of length of stay in Hong Kong and birthplace on the risk of other types of cancer.

95 In this study, we compared the mortality rates of lung, pancreatic, colon, liver, prostate and 96 stomach cancers between locally born residents in Hong Kong and immigrants from mainland 97 China. Both populations are widely considered as ethnically homogeneous with similar cultures. 98 Nevertheless, due to different early life experiences, immigrants are exposed to more various 99 social economy and lifestyles than locals. Therefore, it's constructive to ascertain whether 100 immigrants from mainland China have a different mortality pattern of cancers from locals to verify the significance of migration status for this health outcome. As Age-period-cohort (APC) analysis plays a vital role in studying time-specific phenomena in epidemiology, in this study, to evaluate the effect of immigration on cancer mortality in the past and future, we developed APC models specified by sex and migrant status to assess the effects of age, period, birth cohort, and of the length of stay in Hong Kong on the mortality risks of cancers. Additionally, we explore the projection of mortality rates for the locally born population and immigrants in Hong Kong who were younger or older than 60 using a predictive model, taking into account age, period, and birth cohort effects as well.

110 Methods

Data

We obtained the death registry data in Hong Kong between 1998 and 2021 from the Census and Statistics Department of Hong Kong, as the data in 2022 has not been available up to now. The data was extracted from a routine census held by the Hong Kong government as subjective errors caused by resampling can be neglected. The population data were stratified by age, sex, immigration status, and length of stay in Hong Kong. We retrieved six types of cancer cases from the death registry data using ICD codes, such as ICD-9 code 162 and ICD-10 codes C34.0–C34.3, C348, and C349 for Jung cancer. To assure comparability among registries, deaths from the age group of 35–85 years were selected, since cases younger than 35 and older than 85 were relatively trivial for lack of statistical interpretability [31]. Immigration status was classified into three groups: locals born in Hong Kong, immigrants who have lived in Hong Kong for >10 years before death defined as long-stay immigrants, and immigrants who have lived in Hong Kong for ≤ 10 years before death defined as short-stay immigrants. Notably, much focus was placed on immigrants from mainland China, because approximately 81% of immigrants in Hong Kong came from mainland China, Macau, and Taiwan based on the data from the Census and Statistics Department of Hong Kong. Moreover, few cases recorded from Macau and Taiwan are statistically insignificant in the analysis. Demographics and population projections from 2022 to 2030 were retrieved from the Census and Statistics Department of Hong Kong and estimated with cubic smoothing spline as the prerequisite of the predictive model. Codes for APC and BAPC analysis are available in the GitHub repository (https://github.com/kshz2164313/APC-population-projections-for-immigration-HK).

53 133

134 <u>Statistical analysis</u>

We modeled cancer mortality rates in Hong Kong using APC analysis based on log-linear
Poisson regression models. The model aimed to disentangle age, period, and cohort effects of
time-varying phenomena simultaneously [32, 33], given that

2		
3 4	138	$\log(E_{ij}) = \alpha_i + \beta_j + \gamma_k + \mu + \log(\theta_{ij}) $ (1)
5 6	139	where E_{ij} denotes expected mortality; α_i , β_j , and γ_k denote age, period, and cohort
7 8	140	effect, respectively, for $i=1,,I$, $j=1,,J$, $k=1,,K$ with $k=I-i+j$.
9	141	$\log(\theta_{ii})$ is the offset. We mainly focused on the contributions of sex and immigration status
10	142	due to the non-identifiability problem that the effects of these three components are collinear
12	143	with each other (denoted as period – age = cohort) [34]. Birth cohort effect and period effect
13	144	were assessed with relative risks to evaluate the effect of three components. The median year
14	145	of birth among cases was regarded as the reference cohort [35,36]. Since death cases aged at
15 16	146	35–85 years between 1998 and 2021 were selected, the range of birth cohort from 1913 to
17	147	1986 covered observations and further projections until 2030. The second and penultimate
18	148	period effects were constrained to the reference for period. For sex and immigration status,
19	149	maximum likelihood framework was applied to estimate the relative risks and 95%
20	150	confidence intervals (CIs) by age groups, calendar period, and birth cohort.
22	151	
23 24	152	Several projection approaches for future cancer mortality have been developed, but a
25	153	Bayesian age-period-cohort (BAPC) model built upon integrated nested Laplace
26 27	154	approximations (INLA) [37] yields relatively higher coverage and better performance for all
28	155	evaluated parameter combinations [38]. To prevent some sampling problems caused by
29 30	156	Markov chain Monte Carlo (MCMC), this MCMC-free BAPC approach was applied to
31	157	predict future cancer mortality within a fully Bayesian inference setting and provide outputs
32 33	158	of interest simply, such as projected age-standardized and age-specific rates. Convergence
34	159	checks are not necessary for this technique [37]. The projections of age-standardized cancer
35 36	160	mortality rates for each sex, age group (younger or older than 60 years) and migrant status,
37	161	taking into account age, period, and birth cohort effects, were performed based on the weights
38 39	162	of population age groups from the WHO World Standard population [39], with 95%
40 41	163	prediction intervals. Mann-Kendall trend test was applied to verify the projection trend.
42	164	
43	165	All analyses were performed via R version 4.2.1 (R Core Team, R Foundation for Statistical
44 45	166	Computing, Vienna, Austria, 2013, http://www.R-project.org/). The APC models were
46	167	established using the Epi package, and the projections based on Bayesian APC models were
47 48	168	performed with the BAPC package.
49	169	
50 51	170	Patient and Public Involvement
52	171	None.
53	172	
54 55	173	
50 57	174	Results
58 59 60	175	Figure 1 & 2 and eFigure 1(a-e) in Supplementary Material illustrate the estimates of age
(assessed by cancer mortality), cohort and period effects (assessed by relative risk) based on APC models among three migrant groups for men and women with six types of cancers, respectively. All the mortality rates for each gender and immigration status exhibit notable increasing trends with age. Age, cohort and period effects of six types of cancer for immigrants who stayed in Hong Kong for ≤ 10 years revealed relatively more pronounced fluctuations and deviations from those effects in the other two immigration groups. Significant increasing trends of age effect occurred in all types of cancer, regardless of gender and immigration status. For example, while relatively insignificant differences in lung cancer mortality rates by immigration status among females have performed, male immigrants who remained in Hong Kong for >10 years had higher lung cancer mortality rates at ages above 50 years and those who arrived ≤ 10 years had lower lung cancer mortality at ages below 62 years compared to local men Figure 1. In addition to compatible dynamics of period effect for locals and long-stay immigrants, similar changes of relative risks by birth cohort for locals and long-stay immigrants in lung, colon, liver and stomach cancers occurred before 1945, whereas significant differences of relative risks by birth cohort between these two immigration groups occurred after 1960 (Figure 1 & eFigure 1(a,b,d)). Locals and long-stay immigrants in pancreatic and prostate cancer perform almost similar changes of relative risks by birth cohort effects all the time (eFigure 1(c,e)). Short-stay immigrants who have stayed in Hong Kong for ≤ 10 years had more fluctuating relative risks affected by period effects before 2020 than those for locals and long-stay immigrants. Lack of young cases, especially young short-stay immigrants, of prostate cancer leads to significant deviations and variances in age and cohort effects.

Figure 3-5, eFigure 2-6 in Supplementary Material illustrate the age-standardized mortality rates of six types of cancer from 1998 to 2021 and their projections by sex, immigrant status and age groups from 2022 to 2030, taking into account age, period, and birth cohort effects. Means and standard deviations of predictive mortality rates are shown in eTable 1-6 in Supplementary Material. For all ages projection (Figure 2 & eFigure 2-6), as men will be at higher risk of mortality rates of cancers (excluding prostate cancer) than women in the future for all three age groups (all ages, young and older than 60 years), given the projected trends, immigrants for each gender, especially who have stayed in Hong Kong for > 10 years will suffer from higher mortality rates of cancer in each year than locals. Monotone decreasing trends or plateau of forecasting occur for both genders and all immigration groups in cancers, except for increasing trends for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer (p < 0.05, Avg +0.30 deaths/100,000 per annum) from 15.47 deaths/100,000 (95% CI: 11.28, 19.66) in 2021 to 18.50 deaths/100,000 (95% CI: 2.31, 34.69) in 2030, and male immigrants who have stayed in Hong Kong for > 10 years with pancreatic cancer (p < 0.05, Avg +0.72 deaths/100,000 per annum) from 16.30 deaths/100,000 (95% CI: 14.38,17.26) in 2021 to 23.49 deaths/100,000 (95% CI: 12.49, 34.49) in 2030. Most of predictive trends for

younger cases (<60 years) and older cases (≥60 years) reach a consensus with those for all ages population, except for two phenomena: 1.) mortality rates of lung cancer for men immigrants ≤ 10 that insignificant trend for all ages (p > 0.05) vs. decline for younger cases (p < 0.05) vs. increase for older cases (p < 0.05); 2.) mortality rates of liver cancer for men immigrants >10 that decline for all ages (p < 0.05) vs. decline for younger cases (p < 0.05) vs. insignificant trend for older cases (p > 0.05). Some particular cases occur in the projection of prostate cancer that young long-stay male immigrants (0.44 deaths/100,000, 95% CI: 0, 1.05) aged less than 60 will be at lower mortality rate than locals (0.69 deaths/100,000, 95% CI: 0, 1.42) in 2030 (eTable 6). Compared with other cancers and immigration groups, male immigrants who have stayed in Hong Kong for >10 years with lung cancer would perform the most significant decline in predictive mean from 102.90 (95% CI: 98.14, 107.66) to 79.55 (95% CI: 47.46, 111.64) deaths per 100,000 population (Avg -2.34 deaths/100,000 per annum) (eTable 1), while the same immigration group with pancreatic cancer would indicate the most significant uptrend in each year of 16.30 (95% CI: 14.38,17.26) and 23.49 (95% CI: 12.49, 34.49) deaths per 100,000 population in 2021 and 2030, respectively (Avg +0.72 deaths/100,000 per annum) (eTable 4).

Discussion

Early detection of cancer is positive and instructive for increasing chances of cure. Nevertheless, the high mortality rate of cancer results from late diagnosis among most patients after progression to more advanced or severe stages. Individuals at high risk of cancer, such as smokers, alcoholics or those who are frequently exposed to susceptible circumstances, should be screened for early detections to increase opportunities for cure [40]. Therefore, the differences in mortality rates among immigration groups are synonymous with detection means, therapies, and social history in disparate periods and areas.

While the changes in mortality rates by age for long-stay immigrants reached approximate harmony with those for locals, the changes in mortality rates by age for short-stay immigrants revealed clear differences with those for the other two populations. The group of long-stay immigrants had a higher risk of death from lung, colon and liver cancers than the other two immigration groups after the age of 60 years. Short-stay male immigrants were less likely to die from lung cancer before the age of 65 years. The contrast in age effects among the immigration groups was partially consistent with studies [25, 41] that highlighted the age effects for locals and immigrants on breast cancer mortality in Hong Kong and lung cancer incidence in Sweden, as they both showed similar trends and magnitudes between locals and immigrants before the age of 60 years. They are also compatible with the results in [42] that

diagnosis of liver cancer is the most frequent among populations at 55 to 65 years old.
According to these trends, young individuals, especially new young immigrant men, who
have benefited from all-rounded development in mainland China and Hong Kong, are more
likely to seek early detection and be treated for cancers using more advanced treatments [43].
Differences in birth cohort effects among immigrant groups partially comply with the
interpretation above.

We observed significant trends of cohort effects among locals and immigrants. These findings are partially consistent but subtly different from previous findings, regarding the effect of immigration status on cancers. Zhao et al. [25] described multiple peaks of cohort effects on breast cancer mortality between locals and immigrants in Hong Kong, as well as a significant decline in cohort effects after 1950. In contrast, Sung et al. [44] investigated the difference in breast cancer incidence between Chinese Americans and non-Hispanic whites in the U.S. and emphasized that Chinese Americans were at lower risk of breast cancer than non-Hispanic whites born in the same year. Here, we interpret the cohort-driven trends resulting from the intricacy of social history and lifestyle. Compared to a relatively stable social development in Hong Kong, representing downward trends of relative risks for locals, wars and social instability in mainland China resulted in several immigration waves from mainland China to Hong Kong before 1950. Additionally, remarkable increasing trends were recorded for new immigrants after 1950, which corresponded to the economic downturn after wars and famine between 1959 and 1961 during their youth [45]. The increasing trends for new immigrants and similar trends for locals and long-stay immigrants were consistent with the finding that nutrient deficiency contributes to a higher risk of severe mortality rates of cancers [46]. Furthermore, we speculate that these trends, especially those for locals and long-stay immigrants, are most likely attributed to social development and personal behaviors, such as daily habits, occupational history, different diagnoses and treatments, and domestic environmental exposures. Notably, short-stay immigrants suffered from a lower risk of death from colon cancer for all ages (eFigure 1a in Supplementary Material). As locals and immigrants in Hong Kong transitioned to more westernized lifestyles, higher consumption of meat was associated with a higher risk of these types of cancer, whereas consumption of vegetables had a strong protective effect against pancreatic cancer, and moderate consumption of coffee appeared to be beneficial against lung cancer [47,48]. Further studies on potential risk factors are required.

Short-stay immigrants had more fluctuating and non-stationary but inconspicuous relative
risks by period effects before 2021 than locals and long-stay immigrants. Cumulatively, an
arch pattern and fluctuating curve depicting period effects externally resulted in an arch
pattern of age-standardized mortality rates for short-stay immigrant women and irregular rates

for short-stay immigrant men before 2021. The external performance of different period effects on mortality rates could be most likely attributed to the higher effect of different lifestyles and social development on new immigrants than on long-stay immigrants and locals in Hong Kong. For the age-standardized mortality rates and projections, consistent with previous findings [49,50], we predict that the mortality rates of cancer in Hong Kong after 2021 will continue to decline or remain relatively stable, consistent with the trends before 2020, except for male immigrants who have stayed in Hong Kong for ≤10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer. Men will be at higher risk of mortality rates of cancer than women, regardless of immigration status. They are also compatible with the results in [4] that men suffer from a higher risk of these types of cancer than women, excluding prostate cancer. Furthermore, new immigrant women will be at lower risk than local women, even though long-stay immigrants will suffer from higher mortality rates than locals in the future. Potential interpretations could be consistent with those for birth cohort effects, as age and period effects are considered as confounders of cohort effect.

In the past few decades, spurred by an increasing burden of high incidence and mortality rates of cancer, several studies focused on the inherent identification dilemma of three effects in the APC model. Further, complicated population distribution and immigration status in Hong Kong, one of the areas with the highest population density and migration frequency in the world, have intricate causes and inherent dynamics of cancer and other diseases. To our knowledge, few studies have assessed the relationship between immigration status and cancer mortality. Therefore, this study is original to examine the effect of the length of stay in Hong Kong and origins of previous residence on cancer deaths, which is instructive for further immigration policy-making and targeted strategies of disease detection and intervention. However, this study had several limitations. Given the non-identifiability problem in age-period-cohort models, we could only depict trends and variations among different immigration and sex groups, as illustrated in figures, and insufficiently perform the estimates of the contributions of three effects or subgroups to mortality rates. Furthermore, we adopted a cubic smoothing spline to estimate populations of immigrants and locals due to the large proportion of unspecified immigration status from official demographic projections. A few acceptable cases resulted in a limited type of cancer so that some common cancers, such as the ovary and cervix, were discarded. Since the issue of quantification, the future perspective of cancer therapies and techniques have not been considered in the model of projection.

325 Conclusion

We conclude that immigrants, especially short-stay immigrants, had more pronounced fluctuations of mortality rates by age and of relative risks by cohort and period effects for six types of cancers than those of long-stay immigrants and locals. Men will be at a higher risk of mortality rates of six types of cancer than women in the future. Male immigrants who have stayed in Hong Kong for ≤10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer would perform significant uptrend in the future, while other immigration groups for each type of cancer would continue to decline or remain relatively stable. Immigrants for each gender in Hong Kong would suffer from higher mortality risks of cancers than locals in the future.

<text>

1		
2		
3 4	335	Declaration
5		
6 7	336	Ethical approval and consent to participate
7 8 9	337	Ethical approval and consent to participate are not applicable. This study does not involve
10 11	338	human participants. Data was obtained from the Census and Statistics Department of Hong
12 13	339	Kong.
14 15	340	Consent for publication
16 17 18	341	Not applicable.
19 20	342	Data Availability Statement
21	343	Data are available upon reasonable request.
22 23	344	Author contributions
24 25	345	Yanji Zhao: Methodology, Formal analysis, Data Curation, Writing - Original Draft,
26	346	Visualization
27	347	Zian Zhuang: Methodology, Formal analysis, Data Curation, Writing - Review & Editing
28	348	Lin Yang: Validation, Writing - Review & Editing
29 30	349	Daihai He: Conceptualization, Writing - Review & Editing, Supervision
31	350	
32 33	351	Funding
34 35 36	352	The work described in this paper was partially supported by a grant from the Research Grants
37 38	353	Council of the Hong Kong Special Administrative Region, China (HKU C7123-20G).
39 40	354	Conflict of interest
41 42	355	None declared.
43 44 45	356	Acknowledgements
46 47	357	None.
48 49 50 51 52 53 54 55 56 57 58 59	358	
60		

360 **<u>References</u>**

361

9

- 362 1.Fan S-C. The population projection of Hong Kong. Southeast Asian Journal of Social Science.
 363 1974;2(1/2):105-17.
- 10
 364
 2.Department
 CaS.
 Hong
 Kong
 Statistics
 1947-1967
 (Report).

 11
 365
 https://www.statistics.gov.hk/pub/hist/1961_1970/B10100031967AN67E0100.pdf,
 12
 202
 141.24
 2010
- 366 Accessed 4th May 2019. 13 367 3. Department CaS. Demographic Trends in Hong Kong 1981-2011 (Report). 14 15 http://www.statistics.gov.hk/pub/B1120017032012XXXXB0100.pdf, Accessed 4th May 2019. 368 16 369 4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer 17 370 Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers 18 19 371 in 185 Countries. CA: A Cancer Journal for Clinicians. 2021 2021/05/01;71(3):209-49. doi:
- 20 372 https://doi.org/10.3322/caac.21660.
- 373
 373
 373
 374
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
 375
 374
- 376 6. Chiu Y-L, Wang X-R, Qiu H, Yu IT-S. Risk factors for lung cancer: a case–control study in
 377 Hong Kong women. Cancer Causes & Control. 2010 2010/05/01;21(5):777-85. doi:
 378 10.1007/s10552-010-9506-9.
- 379
 379
 379
 379
 379
 379
 379
 370
 370
 370
 370
 370
 370
 371
 371
 371
 372
 373
 373
 374
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 376
 376
 377
 378
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 379
 380
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
 381
- 33
 382
 382
 383
 384
 383
 383
 383
 384
 384
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 385
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 384
 <
- 37 385 9. Husten CG, Shelton DM, Chrismon JH, Lin YC, Mowery P, Powell FA. Cigarette smoking
 38 386 and smoking cessation among older adults: United States, 1965-94. Tobacco Control.
 40 387 1997;6(3):175. doi: 10.1136/tc.6.3.175.
- 41
 388
 10. Bolego C, Poli A, Paoletti R. Smoking and gender. Cardiovascular Research.

 42
 389
 2002;53(3):568-76. doi: 10.1016/S0008-6363(01)00520-X.
- 390 11. Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary
 391 report. Br Med J. 1954;1(4877):1451-5. PMID: 13160495. doi: 10.1136/bmj.1.4877.1451.
- 46 392 12. Ramada Rodilla JM, Calvo Cerrada B, Serra Pujadas C, Delclos GL, Benavides FG. Fiber
 47 and a control of the second sec
- 393 burden and asbestos-related diseases: an umbrella review. Gaceta Sanitaria. 2021 2021/06/11/.
 394 doi: <u>https://doi.org/10.1016/j.gaceta.2021.04.001</u>.
- 395 13. Collishaw NE, Kirkbride J, Wigle DT. Tobacco smoke in the workplace: an occupational health hazard. Can Med Assoc J. 1984;131(10):1199-204. PMID: 6498670.
- 397 14. Dresler CM, Fratelli C, Babb J, Everley L, Evans AA, Clapper ML. Gender differences in genetic susceptibility for lung cancer. Lung Cancer. 2000 2000/12/01/;30(3):153-60. doi:
 398 https://doi.org/10.1016/S0169-5002(00)00163-X.
- 400 15. Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1
 401 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: comparison with
 402 aromatic/hydrophobic adduct formation. Carcinogenesis. 2002;23(12):1969-77. doi:

1		
2		
3	403	10.1093/carcin/23.12.1969.
4 5	404	16. Samet JM. Radon and Lung Cancer. JNCI: Journal of the National Cancer Institute.
6	405	1989;81(10):745-58. doi: 10.1093/jnci/81.10.745.
7	406	17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in
8	407	homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-
9 10	408	control studies BMJ 2005:330(7485):223 doi: 10.1136/bmi.38308.477650.63
11	409	18 Raaschou-Nielsen O Andersen ZI Beelen R Samoli F Stafoggia M Weinmayr G et al
12	400	Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the
13	410 /11	Furghean Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology 2013
14 15	410	2012/08/01/:14(0):812 22 doi: https://doi.org/10.1016/S1470.2045(12)70270.1
15	412	2013/08/01/(14(9))(813-22) doi: <u>nups://doi.org/10.1016/S14/0-2045(13)/02/9-1</u> .
17	413	19. 2018 Summary-20190/19. Retrieved August 26, 2022, from
18	414	https://www.who.int/docs/default-source/wprodocuments/countries/china/2018-gats-china-
19 20	415	factsheet-cn-en.pdf?sfvrsn=3f4e2da9_2
20 21	416	20. Thematic household survey.Retrieved August 26, 2022, from
22	417	https://www.censtatd.gov.hk/en/data/stat_report/product/B1130201/att/B11302702020XXXX
23	418	B0100.pdf
24	419	21. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-
25 26	420	cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis
20	421	for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71.
28	422	22. Estimated alcohol consumption per capita in Hong Kong. Change4Health. (n.d.).
29	423	Retrieved December 1, 2022, from
30 21	424	https://www.change4health.gov.hk/en/alcohol_aware/figures/alcohol_consumption/index.htm
32	425	
33	426	23 World Health Organization Global status report on alcohol and health 2018 World
34	427	Health Organization: 2019 Feb 14
35	128	24 Wild C World cancer report 2014 Wild CP Stewart BW editors Geneva Switzerland:
30 37	420	24. who C. wond cancer report 2014. who Cr, Stewart Dw, editors. Geneva, Switzenand.
38	429	world Health Organization, 2014.
39	430	
40	431	25. Zhao S, Dong H, Qin J, Liu H, Li Y, Chen Y, et al. Breast cancer mortality in Chinese
41 42	432	women: does migrant status play a role? Annals of Epidemiology. 2019 2019/12/01/;40:28-
43	433	34.e2. doi: <u>https://doi.org/10.1016/j.annepidem.2019.10.006</u> .
44	434	26. Gomez SL, Yang J, Lin S-W, McCusker M, Sandler A, Cheng I, et al. Incidence trends of
45	435	lung cancer by immigration status among Chinese Americans. Cancer Epidemiol Biomarkers
46 47	436	Prev. 2015;24(8):1157-64. PMID: 25990553. doi: 10.1158/1055-9965.EPI-15-0123.
47 48	437	27.Hemminki K, Li X, Czene K. Cancer risks in first-generation immigrants to Sweden.
49	438	International Journal of Cancer. 2002 2002/05/10;99(2):218-28. doi:
50	439	https://doi.org/10.1002/ijc.10322.
51 52	440	28. Vanthomme K, Rosskamp M, De Schutter H, Vandenheede H. Lung cancer incidence
52 53	441	differences in migrant men in Belgium, 2004–2013: histology-specific analyses. BMC Cancer.
54	442	2021 2021/03/30:21(1):328. doi: 10.1186/s12885-021-08038-6.
55	443	29. Schooling M. Leung GM, Janus ED, Ho SY, Hedley AJ, Lam TH, Childhood migration
56	444	and cardiovascular risk International Journal of Enidemiology 2004.33(6):1219-26 doi:
57 58	445	10 1093/ije/dvh221
59	116	30 Lenna IVV Li AM Lenna GM Schooling CM Mode of delivery and shildhood
60	440	Jo. Loung JTT, LI AWI, Loung OWI, Schooling CWI. Woode Of delivery and childhood

hospitalizations for asthma and other wheezing disorders. Clinical & Experimental Allergy. 2015 2015/06/01;45(6):1109-17. doi: https://doi.org/10.1111/cea.12548. 31. Baker A, Bray I. Bayesian projections: what are the effects of excluding data from younger age groups?. American Journal of Epidemiology. 2005 Oct 15;162(8):798-805. 32. Rosenberg PS, Anderson WF. Age-Period-Cohort Models in Cancer Surveillance Research: Ready for Prime Time? APC Models. Cancer Epidemiology, Biomarkers & Prevention. 2011 Jul 1;20(7):1263-8. 33. Holford T. Analyzing the effects of age, period and cohort on incidence and mortality rates. Stat Meth Med Res. 1992;1:317-37. 34. Brookmeyer R, Stroup DF, editors. Monitoring the health of populations: statistical principles and methods for public health surveillance. Oxford University Press; 2004. 35. Yang Y, Land KC. Age-period-cohort analysis: New models, methods, and empirical applications. Taylor & Francis; 2013. 36. Robertson C, Gandini S, Boyle P. Age-period-cohort models: a comparative study of available methodologies. Journal of clinical epidemiology. 1999 Jun 1;52(6):569-83. 37. Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Biometrical Journal. 2017 May:59(3):531-49. 38. Knoll M, Furkel J, Debus J, Abdollahi A, Karch A, Stock C. An R package for an integrated evaluation of statistical approaches to cancer incidence projection. BMC medical research methodology. 2020 Dec;20(1):1-1. 39. Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates; a new WHO standard. Geneva: World Health Organization. 2001 Jan;9(10):1-4. 40. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021 May;71(3):209-49. 41. Mousavi SM, Fallah M, Sundquist K, Hemminki K. Age-and time-dependent changes in cancer incidence among immigrants to Sweden: colorectal, lung, breast and prostate cancers. International journal of cancer. 2012 Jul 15;131(2):E122-8. 42. National Cancer Institute. SEER stat fact sheets: liver and intrahepatic bile duct cancer. 43. Wu X, Chung VC, Hui EP, Ziea ET, Ng BF, Ho RS, Tsoi KK, Wong S, Wu JC. Effectiveness of acupuncture and related therapies for palliative care of cancer: overview of systematic reviews. Scientific reports. 2015 Nov 26;5(1):1-5. 44. Sung H, Rosenberg PS, Chen WQ, Hartman M, Lim WY, Chia KS, Wai-Kong Mang O, Tse L, Anderson WF, Yang XR. The impact of breast cancer-specific birth cohort effects among younger and older C hinese populations. International journal of cancer. 2016 Aug 1;139(3):527-34. 45. The world economy volume 1: a millennial perspective, 2, Historical statistics: Academic Foundation, Gurgaon, India (2007) 46. Elias SG, Peeters PH, Grobbee DE, van Noord PA. The 1944-1945 Dutch famine and subsequent overall cancer incidence. Cancer Epidemiology Biomarkers & Prevention. 2005 Aug;14(8):1981-5. 47. Chiu YL, Wang XR, Qiu H, Yu IT. Risk factors for lung cancer: a case-control study in

1 2		
3	491	Hong Kong women, Cancer Causes & Control 2010 May:21(5):777-85
4	492	48 Li I Lam AS Yau ST Yiu KK Tsoi KK Antihypertensive treatments and risks of lung
5	493	Cancer: A large nonulation-based cohort study in Hong Kong BMC cancer 2021 Dec:21(1):1-
7	100	0
8	404 105	7. 40 Du I Sun H Sun V Du I Cao W Sun S Assessment of age period and cohort affects of
9	495	lung cancer incidence in Hong Kong and projection up to 2030 based on changing
10	430 107	demographics American Journal of Cancer Research 2021:11(12):5902
12	497	50 Contro for Health Protection Department of Health Lung Cancer Contro for Health
13	490	So. Centre for Health Protection, Department of Health - Lung Cancer. Centre for Health
14 15	499	Protection. Retrieved August 10, 2022, from
15 16	500	https://www.chp.gov.hk/en/healthtopics/content/25/49.html
17		
18		
19 20		
20 21		
22		
23		
24		
25 26		
27		
28		
29		
30 31		
32		
33		
34		
35 36		
37		
38		
39		
40 41		
42		
43		
44 45		
45 46		
10		

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

For beer terien only

1 2 3 4	508 509	Figure 2 . Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of female lung cancer mortality rates by immigrant groups: locals immigrants stay in Hong Kong for more than 10 years
5 6 7 8 9	510 511 512 513 514	and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.
10 11 12 13 14 15		
16 17 18 19 20		
21 22 23 24 25 26		
27 28 29 30 31		
32 33 34 35 36 37		
38 39 40 41 42 43		
43 44 45 46 47 48		
49 50 51 52 53		
54 55 56 57 58 59		
60		

Figure 3. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations

are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

1 2 3 4 5 6 7 8 9 10	521 522 523 524 525 526	Figure 4. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.
11 12 13 14 15 16 17 18 19 20 21		
22 23 24 25 26 27 28 29 30 31		
32 33 34 35 36 37 38 39 40 41 42		
43 44 45 46 47 48 49 50 51 52 53 54		

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	527 528 529 530 531 532	Figure 5. Projections of lung cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.
30 31		
32 33 24		
34 35 36		
37 38		
39 40		
41 42 43		
44 45		
46 47		
48 49		
50 51		
52 53 54		
55 56		
57 58		
59 60		
00		21
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

Figure 2. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of female lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

519x343mm (57 x 57 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 3. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 4. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 5. Projections of lung cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Supplementary Material for

"An age-period-cohort analysis and projection of cancer mortality in

Hong Kong, 1998–2030"

APC Figures

	3
eFigure 1(b) Liver cancer	4
eFigure 1(c) Pancreatic cancer	5
eFigure 1(d) Stomach cancer	6
eFigure 1(e) Prostate cancer	7
Projection Figures Colon cancer	
eFigure 2(a)Projection (all ages)	8
eFigure 2(b)Projection (<60 years)	9
eFigure 2(c)Projection (≥60 years)	
Liver cancer	
eFigure 3(a)Projection (all ages)	11
	····· ⊥⊥
eFigure 3(b)Projection (<60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer	
 eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer eFigure 5(a)Projection (all ages) 	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer eFigure 5(a)Projection (all ages) eFigure 5(b)Projection (<60 years)	

2		
3	eFigure 5(c)Projection (\geq 60 years)	
4 5		
6	Prostate cancer	
7	eFigure 6 Projection (all ages, <60 years and \geq 60 years)	
8		
9		
10	Tables	
12	eTable 1 Lung cancer	21
13		
14	eTable 2 Colon cancer	22
15	eTable 3 Liver cancer	23
16		
17 18	eTable 4 Pancreatic cancer	24
10	aTabla E Stomach concer	25
20		
21	eTable 6 Prostate cancer	
22		
23		
24 25		
26		
27		
28		
29		
30		
31 22		
32 33		
34		
35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45		
16		

eFigure 1(a). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female colon cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(b). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female liver cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(c). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female pancreatic cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(d). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female stomach cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(e). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male prostate cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 2(a). Projections of colon cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

iczonij

eFigure 2(b). Projections of colon cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(c). Projections of colon cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(a). Projections of liver cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(b). Projections of liver cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(c). Projections of liver cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(a). Projections of pancreatic cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(b). Projections of pancreatic cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(c). Projections of pancreatic cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(a). Projections of stomach cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(b). Projections of stomach cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(c). Projections of stomach cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 6. Projections of prostate cancer mortality rates for males by immigrant status and age groups (less than, greater than or equal to 60 years old) from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

iez oniz

Predict	Predictive mean of age-standardized mortality rates of lung cancer per 100,000 population												
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030			
Female	41.80	41.34	40.58	39.87	39.19	38.53	37.89	37.26	36.65	36.04			
immigrants >10	(1.27)	(1.86)	(2.27)	(2.75)	(3.28)	(3.86)	(4.46)	(5.09)	(5.74)	(6.4)			
Female immigrants ≤	23.92	22.22	20.56	19.01	17.57	16.24	15.00	13.85	12.79	11.81			
10	(4.00)	(4.67)	(5.38)	(6.10)	(6.80)	(7.45)	(8.04)	(8.56)	(9.01)	(9.39)			
Female locals	34.67	30.22	30.63	31.05	31.48	31.9	32.32	32.73	33.15	33.55			
	(1.76)	(3.54)	(4.77)	(6.38)	(8.29)	(10.47)	(12.87)	(15.48)	(18.31)	(21.33)			
Male immigrants >10	102.90	100.18	97.18	94.34	91.71	89.15	86.66	84.19	81.81	79.55			
	(2.43)	(4.18)	(5.33)	(6.72)	(8.24)	(9.84)	(11.47)	(13.11)	(14.74)	(16.37)			
Male immigrants ≤10	81.26	79.90	79.81	79.72	79.62	79.50	79.32	79.08	78.78	78.41			
	(9.21)	(10.41)	(11.82)	(13.42)	(15.19)	(17.09)	(19.09)	(21.18)	(23.32)	(25.53)			
Male locals	60.96	52.27	50.83	49.56	48.18	46.64	45.13	43.83	42.67	41.43			
	(2.82)	(4.86)	(5.39)	(6.13)	(6.97)	(7.84)	(8.76)	(9.76)	(10.8)	(11.8)			
Female	15.51	14.51	13.90	13.29	12.71	12.13	11.57	11.02	10.49	9.98			
immigrants>10(<60y)	(1.12)	(1.50)	(1.76)	(2.04)	(2.33)	(2.62)	(2.91)	(3.18)	(3.43)	(3.68)			
Female immigrants ≤ 10(<60y)	8.14 (1.91)	7.79 (1.95)	7.18(2.23)	6.62(2.53)	6.10(2.81)	5.63(3.08)	5.19(3.32)	4.79 (3.53)	4.42 (3.72)	4.09 (3.88)			
Female locals(<60y)	10.25 (0.77)	9.48 (0.89)	9.17(1.02)	8.87(1.16)	8.57(1.32)	8.27(1.49)	7.97(1.65)	7.68 (1.82)	7.38 (1.98)	7.09 (2.13)			
Male	27.81	26.36	24.96	23.64	22.38	21.17	20.03	18.96	17.96	17.03			
immigrants>10(<60y)	(2.10)	(3.58)	(3.94)	(4.35)	(4.79)	(5.23)	(5.67)	(6.10)	(6.51)	(6.90)			
Male immigrants ≤	15.01	13.38	12.02	10.79	9.68	8.69	7.79	6.98	6.25	5.59			
10(<60y)	(2.98)	(3.71)	(4.17)	(4.59)	(4.95)	(5.24)	(5.46)	(5.61)	(5.69)	(5.72)			
Male locals(<60y)	15.19	14.45	14.03	13.61	13.14	12.65	12.13	11.55	10.93	10.26			
	(0.78)	(1.15)	(1.29)	(1.46)	(1.64)	(1.82)	(2.01)	(2.17)	(2.31)	(2.43)			
Female immigrants >10(≥ 60y)	108.85 (4.80)	107.21 (5.17)	106.26 (6.24)	105.52 (7.54)	104.94 (9.04)	104.51 (10.72)	104.21 (12.57)	104.07 (14.61)	104.06 (16.78)	104.16 (19.14)			
Female immigrants ≤	66.16	63.84	59.88	56.14	52.60	49.27	46.14	43.20	40.44	37.85			
10(≥60y)	(13.25)	(15.72)	(17.50)	(19.31)	(21.03)	(22.66)	(24.16)	(25.52)	(26.74)	(27.81)			
Female locals(≥60y)	77.33	76.53	76.22	75.94	75.69	75.49	75.32	75.19	75.10	75.03			
	(9.40)	(10.11)	(10.85)	(11.79)	(12.94)	(14.28)	(15.80)	(17.48)	(19.33)	(21.32)			
Male	293.56	289.8	286.6	284.28	282.78	281.99	281.88	282.31	283.37	285.03			
immigrants>10(≥60y)	(9.13)	(11.7)	(15.19)	(19.51)	(24.49)	(30.07)	(36.31)	(43.15)	(50.66)	(58.86)			
Male immigrants ≤	244.88	247.01	251.24	255.62	260.14	264.82	269.61	274.52	279.55	284.69			
10(≥60y)	(30.29)	(36.85)	(42.94)	(50.06)	(58.14)	(67.14)	(77.01)	(87.75)	(99.34)	(111.81)			
Male locals(≥60y)	150.75	146.29	143.54	141.84	140.07	138.14	136.65	136.49	137.24	138.26			
	(16.22)	(18.46)	(20.58)	(23.97)	(28.24)	(33.39)	(39.82)	(47.87)	(57.47)	(68.52)			

eTable 1. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of lung cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predicti	Predictive mean of age-standardized mortality rates of colon cancer per 100,000 population												
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030			
Female	20.03	18.95	18.77	18.59	18.42	18.27	18.12	17.98	17.85	17.73			
immigrants >10	(0.95)	(1.13)	(1.37)	(1.66)	(1.98)	(2.33)	(2.71)	(3.11)	(3.53)	(3.96)			
Female immigrants ≤	8.11	7.70	7.25	6.82	6.42	6.03	5.67	5.33	5.01	4.71			
10	(2.19)	(2.51)	(2.81)	(3.11)	(3.37)	(3.61)	(3.83)	(4.01)	(4.17)	(4.31)			
Female locals	13.77	13.47	13.24	13.01	12.77	12.53	12.29	12.06	11.82	11.59			
	(1.30)	(1.61)	(1.72)	(1.87)	(2.04)	(2.24)	(2.46)	(2.68)	(2.92)	(3.16)			
Male immigrants >10	31.22	29.82	29.66	29.52	29.41	29.30	29.21	29.14	29.06	28.98			
	(1.28)	(1.46)	(1.79)	(2.19)	(2.63)	(3.11)	(3.64)	(4.19)	(4.78)	(5.39)			
Male immigrants ≤10	15.47	16.77	17.02	17.23	17.45	17.67	17.88	18.09	18.31	18.50			
	(2.14)	(3.77)	(4.18)	(4.64)	(5.14)	(5.69)	(6.27)	(6.91)	(7.56)	(8.26)			
Male locals	21.28	19.81	19.39	18.97	18.57	18.18	17.81	17.43	17.06	16.71			
	(1.38)	(2.07)	(2.22)	(2.42)	(2.61)	(2.85)	(3.12)	(3.40)	(3.71)	(4.03)			
Female	7.09	7.36	7.46	7.56	7.65	7.74	7.83	7.92	8.01	8.09			
immigrants >10(<60y)	(0.99)	(1.12)	(1.28)	(1.46)	(1.68)	(1.92)	(2.19)	(2.48)	(2.79)	(3.13)			
Female immigrants ≤	3.11	2.82	2.65	2.51	2.36	2.22	2.08	1.95	1.83	1.72			
10(<60y)	(0.67)	(0.86)	(0.91)	(0.97)	(1.02)	(1.07)	(1.11)	(1.14)	(1.18)	(1.22)			
Female locals(<60y)	4.10	3.87	3.73	3.61	3.47	3.34	3.22	3.11	2.99	2.88			
	(0.41)	(0.50)	(0.54)	(0.59)	(0.65)	(0.70)	(0.76)	(0.82)	(0.88)	(0.94)			
Male immigrants >10(<60y)	8.29 (0.91)	7.98 (1.17)	7.85 (1.38)	7.71 (1.60)	7.54 (1.83)	7.36 (2.08)	7.17(2.32)	6.97(2.57)	6.76(2.81)	6.55(3.05)			
Male immigrants ≤ 10(<60y)	5.03 (1.44)	5.18 (1.58)	5.22 (1.75)	5.26 (1.93)	5.30 (2.14)	5.34 (2.36)	5.38(2.59)	5.43(2.84)	5.47(3.11)	5.51(3.38)			
Male locals(<60y)	5.14 (0.43)	4.88 (0.63)	4.66 (0.79)	4.46 (0.96)	4.26 (1.13)	4.08 (1.31)	3.91(1.48)	3.73(1.65)	3.57(1.82)	3.42(1.97)			
Female	52.16	49.21	48.70	48.26	47.87	47.54	47.26	47.05	46.91	46.81			
immigrants >10(≥60y)	(2.59)	(2.99)	(3.56)	(4.26)	(5.05)	(5.94)	(6.90)	(7.94)	(9.06)	(10.26)			
Female immigrants ≤	24.01	22.44	21.69	20.95	20.23	19.52	18.84	18.17	17.51	16.86			
10(≥60y)	(5.83)	(6.56)	(6.96)	(7.38)	(7.80)	(8.23)	(8.66)	(9.08)	(9.49)	(9.90)			
Female locals(≥60y)	37.42	36.69	36.29	35.87	35.46	35.04	34.61	34.19	33.77	33.34			
	(5.31)	(5.74)	(6.06)	(6.46)	(6.95)	(7.5)	(8.12)	(8.79)	(9.51)	(10.27)			
Male	84.17	82.72	82.16	81.64	81.19	80.81	80.47	80.15	79.85	79.56			
immigrants >10(≥60y)	(3.55)	(4.09)	(4.95)	(5.97)	(7.12)	(8.39)	(9.77)	(11.24)	(12.81)	(14.45)			
Male immigrants ≤	43.25	44.93	45.62	46.30	46.96	47.61	48.25	48.88	49.51	50.13			
10(≥60y)	(11.07)	(13.09)	(14.52)	(16.09)	(17.80)	(19.64)	(21.62)	(23.73)	(25.97)	(28.34)			
Male locals(≥60y)	55.79	54.89	53.75	52.63	51.54	50.47	49.43	48.42	47.42	46.44			
	(6.86)	(7.65)	(8.03)	(8.52)	(9.12)	(9.8)	(10.55)	(11.37)	(12.25)	(13.16)			

eTable 2. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of colon cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive	Predictive mean of age-standardized mortality rates of liver cancer per 100,000 population											
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Female immigrants >10	11.34 (0.66)	10.68 (0.71)	10.09 (0.85)	9.54 (1.01)	9.01 (1.16)	8.50 (1.31)	8.02(1.45)	7.57(1.59)	7.14(1.72)	6.74(1.83)		
Female immigrants ≤10	9.15 (1.55)	8.66 (1.82)	8.38 (1.95)	8.11 (2.08)	7.84 (2.22)	7.58 (2.36)	7.32(2.49)	7.07(2.63)	6.82(2.76)	6.58(2.88)		
Female locals	6.72 (0.69)	6.36 (0.88)	6.08 (0.90)	5.81 (0.93)	5.53 (0.97)	5.26 (1.01)	5.01(1.06)	4.77(1.11)	4.53(1.15)	4.3(1.21)		
Male immigrants >10	52.17 (1.78)	49.22 (2.36)	47.76 (2.93)	46.35 (3.59)	45.01 (4.31)	43.67 (5.05)	42.37 (5.81)	41.1(6.56)	39.89 (7.33)	38.71 (8.08)		
Male immigrants ≤10	42.33	39.03	37.39	35.81	34.26	32.76	31.31	29.91	28.56	27.25		
	(5.87)	(6.49)	(7.47)	(8.51)	(9.58)	(10.63)	(11.65)	(12.62)	(13.54)	(14.40)		
Male locals	24.22	22.16	21.02	19.91	18.85	17.83	16.85	15.92	15.03	14.18		
	(1.77)	(2.09)	(2.22)	(2.39)	(2.58)	(2.79)	(3.03)	(3.21)	(3.40)	(3.59)		
Female immigrants >10(<60y)	3.62 (0.45)	3.39 (0.52)	3.29 (0.57)	3.20 (0.63)	3.12 (0.69)	3.04 (0.75)	2.96(0.82)	2.89(0.89)	2.82(0.96)	2.75(1.03)		
Female immigrants ≤ 10(<60y)	4.10 (0.79)	3.81 (0.91)	3.69 (0.96)	3.57 (1.02)	3.46 (1.08)	3.36 (1.15)	3.25(1.22)	3.15(1.29)	3.06(1.36)	2.97(1.43)		
Female locals(<60y)	1.50 (0.13)	1.37 (0.2)	1.29 (0.21)	1.22 (0.23)	1.16 (0.24)	1.10 (0.26)	1.04(0.27)	0.99(0.29)	0.94(0.30)	0.89(0.31)		
Male	26.32	24.04	23.02	22.05	21.13	20.25	19.41	18.62	17.86	17.14		
immigrants >10(<60y)	(2.11)	(2.35)	(2.63)	(2.94)	(3.27)	(3.61)	(3.95)	(4.30)	(4.64)	(4.98)		
Male immigrants ≤	25.52	22.56	21.71	20.87	20.04	19.22	18.42	17.63	16.86	16.11		
10(<60y)	(2.99)	(3.96)	(4.44)	(4.94)	(5.45)	(5.95)	(6.45)	(6.91)	(7.36)	(7.78)		
Male locals(<60y)	8.25 (0.69)	7.47 (0.74)	6.97 (0.79)	6.52 (0.86)	6.11 (0.93)	5.73 (1.01)	5.38(1.08)	5.04(1.15)	4.73(1.21)	4.44(1.27)		
Female immigrants >10(≥	33.67	29.63	27.99	26.42	24.92	23.49	22.13	20.85	19.64	18.50		
60y)	(1.88)	(2.01)	(2.36)	(2.75)	(3.14)	(3.52)	(3.88)	(4.23)	(4.55)	(4.85)		
Female immigrants ≤10(≥	21.72	19.08	18.38	17.71	17.03	16.39	15.76	15.16	14.57	14.01		
60y)	(5.11)	(5.81)	(6.14)	(6.48)	(6.83)	(7.16)	(7.49)	(7.80)	(8.11)	(8.39)		
Female locals(≥60y)	20.63	18.41	17.55	16.72	15.91	15.11	14.34	13.59	12.87	12.17		
	(3.03)	(3.23)	(3.26)	(3.32)	(3.40)	(3.49)	(3.59)	(3.69)	(3.81)	(3.93)		
Male immigrants >10(≥	115.39	113.96	113.43	113.17	113.16	113.37	113.79	114.39	115.19	116.17		
60y)	(4.54)	(5.95)	(7.65)	(9.70)	(12.04)	(14.66)	(17.56)	(20.73)	(24.18)	(27.91)		
Male immigrants ≤10(≥	88.61	85.14	82.59	80.02	77.42	74.83	72.23	69.64	67.07	64.52		
60y)	(15.58)	(18.85)	(20.6)	(22.44)	(24.34)	(26.24)	(28.12)	(29.94)	(31.70)	(33.38)		
Male locals(≥60y)	62.88	58.95	56.51	54.14	51.84	49.61	47.46	45.38	43.38	41.45		
	(5.97)	(7.91)	(8.20)	(8.61)	(9.12)	(9.70)	(10.33)	(11.01)	(11.68)	(12.36)		

eTable 3. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of liver cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of pancreatic cancer per 100,000 population										
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Female immigrants >10	10.89 (0.62)	11.11 (0.75)	11.36 (0.91)	11.61 (1.09)	11.87 (1.31)	12.14 (1.56)	12.42 (1.84)	12.71 (2.15)	13.01 (2.48)	13.3(2.85)
Female immigrants ≤ 10	5.51 (1.44)	5.44 (1.56)	5.44 (1.69)	5.43(1.84)	5.42(1.99)	5.41(2.15)	5.39(2.32)	5.36(2.49)	5.34(2.66)	5.31(2.84)
Female locals	8.79 (1.10)	9.01 (1.22)	9.15 (1.34)	9.29(1.48)	9.43(1.64)	9.57(1.83)	9.71(2.05)	9.85(2.28)	9.99(2.54)	10.14 (2.83)
Male immigrants >10	16.30 (0.98)	17.87 (1.19)	18.48 (1.49)	19.11 (1.87)	19.78 (2.32)	20.47 (2.83)	21.18 (3.42)	21.92 (4.07)	22.69 (4.81)	23.49 (5.61)
Male immigrants ≤10	8.10 (2.02)	7.87 (2.37)	7.76 (2.53)	7.64(2.70)	7.51(2.87)	7.38(3.05)	7.24(3.23)	7.09(3.41)	6.95(3.58)	6.81(3.75)
Male locals	11.97 (1.26)	12.29 (1.49)	12.49 (1.64)	12.69 (1.83)	12.91 (2.06)	13.11 (2.33)	13.33 (2.63)	13.55 (2.97)	13.78 (3.34)	14.02 (3.74)
Female immigrants >10(<60y)	3.47 (0.33)	3.62 (0.57)	3.74 (0.66)	3.87(0.77)	4.01(0.89)	4.14(1.02)	4.28(1.18)	4.42(1.34)	4.57(1.53)	4.72(1.73)
Female immigrants ≤ 10(<60y)	1.12 (0.33)	1.21 (0.48)	1.22 (0.52)	1.23(0.56)	1.24(0.61)	1.25(0.66)	1.26(0.71)	1.26(0.77)	1.27(0.83)	1.28(0.89)
Female locals(<60y)	2.76 (0.27)	2.88 (0.36)	2.91 (0.41)	2.93(0.48)	2.96(0.55)	2.99(0.63)	3.02(0.71)	3.04(0.81)	3.07(0.90)	3.10(1.01)
Male immigrants >10(<60y)	6.88 (0.98)	7.05 (1.11)	7.24 (1.32)	7.43(1.56)	7.62(1.84)	7.82(2.16)	8.01(2.50)	8.21(2.88)	8.40(3.30)	8.61(3.75)
Male immigrants ≤ 10(<60y)	2.20 (0.71)	2.01 (0.85)	1.95 (0.91)	1.9(0.94)	1.84(0.99)	1.79(1.04)	1.74(1.09)	1.69(1.14)	1.64(1.19)	1.60(1.24)
Male locals(<60y)	4.16 (0.35)	4.33 (0.48)	4.41 (0.57)	4.46(0.68)	4.53(0.81)	4.61(0.94)	4.69(1.09)	4.77(1.26)	4.85(1.44)	4.93(1.63)
Female immigrants >10(≥60y)	28.58 (1.83)	29.45 (2.11)	29.91 (2.54)	30.38 (3.06)	30.85 (3.66)	31.33 (4.33)	31.81 (5.08)	32.29 (5.91)	32.78 (6.79)	33.27 (7.74)
Female immigrants ≤ 10(≥60y)	16.79 (5.29)	15.65 (6.08)	15.49 (6.71)	15.33 (7.36)	15.16 (8.03)	14.97 (8.73)	14.79 (9.43)	14.59 (10.14)	14.39 (10.86)	14.19 (11.58)
Female locals(≥60y)	22.80 (4.23)	23.85 (4.46)	24.21 (4.81)	24.56 (5.23)	24.91 (5.73)	25.25 (6.30)	25.58 (6.95)	25.90 (7.67)	26.22 (8.47)	26.54 (9.34)
Male immigrants >10(≥60y)	42.70 (2.55)	44.36 (3.02)	45.85 (3.76)	47.41 (4.69)	49.04 (5.78)	50.73 (7.05)	52.48 (8.50)	54.28 (10.13)	56.16 (11.95)	58.11 (13.98)
Male immigrants ≤ 10(≥60y)	24.68 (8.21)	23.96 (9.01)	23.87 (9.74)	23.75 (10.52)	23.61 (11.33)	23.45 (12.17)	23.28 (13.04)	23.09 (13.93)	22.89 (14.83)	22.68 (15.75)
Male locals(≥60y)	30.10 (4.68)	31.17 (5.22)	31.55 (5.63)	31.93 (6.14)	32.30 (6.75)	32.66 (7.45)	33.01 (8.23)	33.35 (9.11)	33.69 (10.08)	34.03 (11.12)

eTable 4. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of pancreatic cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of stomach cancer per 100,000 population											
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Female immigrants >10	8.20	7.95	7.71	7.47	7.25	7.03	6.83	6.62	6.43	6.24	
	(0.55)	(0.62)	(0.74)	(0.87)	(1.01)	(1.15)	(1.29)	(1.43)	(1.57)	(1.71)	
Female immigrants ≤	7.51	7.36	7.33	7.30	7.28	7.27	7.27	7.28	7.31	7.33	
10	(1.44)	(1.56)	(1.69)	(1.85)	(2.01)	(2.20)	(2.40)	(2.61)	(2.84)	(3.09)	
Female locals	5.26	4.91	4.75	4.61	4.47	4.34	4.21	4.08	3.95	3.83	
	(0.40)	(0.52)	(0.57)	(0.63)	(0.71)	(0.77)	(0.84)	(0.91)	(0.99)	(1.06)	
Male immigrants >10	15.22 (0.64)	13.89 (0.97)	13.34(1.21)	12.81 (1.46)	12.31 (1.73)	11.83 (1.99)	11.38 (2.26)	10.95 (2.51)	10.54 (2.76)	10.15 (3.01)	
Male immigrants ≤10	15.83	15.21	15.07	14.93	14.79	14.64	14.51	14.35	14.19	14.03	
	(3.04)	(3.38)	(3.67)	(3.98)	(4.31)	(4.65)	(5.02)	(5.39)	(5.78)	(6.17)	
Male locals	8.14 (0.89)	8.07 (0.99)	7.73 (1.03)	7.41(1.07)	7.10 (1.13)	6.81 (1.19)	6.51 (1.26)	6.23 (1.33)	5.97 (1.39)	5.71 (1.46)	
Female	4.81	4.69	4.62	4.55	4.47	4.39	4.31	4.22	4.13	4.03	
immigrants >10(<60y)	(0.56)	(0.79)	(0.87)	(0.96)	(1.07)	(1.17)	(1.29)	(1.41)	(1.52)	(1.64)	
Female immigrants ≤	3.89	4.08	4.10	4.13	4.17	4.21	4.24	4.28	4.32	4.36	
10(<60y)	(0.80)	(0.93)	(1.03)	(1.14)	(1.27)	(1.41)	(1.55)	(1.70)	(1.87)	(2.05)	
Female locals(<60y)	2.28	2.08	1.98	1.88	1.79	1.71	1.61	1.53	1.44	1.37	
	(0.21)	(0.27)	(0.29)	(0.32)	(0.35)	(0.37)	(0.41)	(0.43)	(0.45)	(0.47)	
Male	4.94	4.71	4.55	4.41	4.25	4.12	3.98	3.86	3.74	3.63	
immigrants >10(<60y)	(0.57)	(0.79)	(0.89)	(0.99)	(1.10)	(1.21)	(1.32)	(1.43)	(1.54)	(1.65)	
Male immigrants ≤	4.81	4.70	4.66	4.63	4.59	4.55	4.52	4.48	4.44	4.41	
10(<60y)	(1.31)	(1.42)	(1.55)	(1.69)	(1.83)	(1.99)	(2.15)	(2.32)	(2.50)	(2.68)	
Male locals(<60y)	2.48	2.37	2.28	2.21	2.12	2.04	1.97	1.91	1.83	1.77(0.	
	(0.21)	(0.29)	(0.32)	(0.35)	(0.38)	(0.42)	(0.45)	(0.49)	(0.52)	55)	
Female	17.80	16.23	15.65	15.08	14.55	14.03	13.54	13.07	12.62	12.19	
immigrants >10(≥60y)	(1.04)	(1.26)	(1.47)	(1.70)	(1.94)	(2.18)	(2.43)	(2.68)	(2.92)	(3.16)	
Female immigrants ≤	14.72	13.01	12.52	12.03	11.55	11.08	10.63	10.19	9.76(6.56)	9.34	
10(≥60y)	(4.29)	(4.83)	(5.11)	(5.37)	(5.63)	(5.88)	(6.12)	(6.35)		(6.75)	
Female locals(≥60y)	12.20 (1.66)	11.86 (1.84)	11.67 (1.98)	11.49 (2.15)	11.33 (2.35)	11.18 (2.58)	11.04 (2.84)	10.91 (3.11)	10.79(3.4)	10.68 (3.71)	
Male immigrants >10(≥	37.23	36.59	35.17(3.18)	33.82	32.55	31.34	30.19	29.08	28.02	27.01	
60y)	(2.29)	(2.56)		(3.86)	(4.57)	(5.28)	(6.01)	(6.70)	(7.40)	(8.07)	
Male immigrants ≤	42.30	41.43	41.03	40.61	40.17	39.71	39.24	38.75	38.23	37.71	
10(≥60y)	(10.88)	(11.78)	(12.71)	(13.70)	(14.75)	(15.85)	(16.99)	(18.16)	(19.35)	(20.57)	
Male locals(≥60y)	23.04 (3.29)	22.69 (3.56)	22.37(4.07)	22.16(4.8 4)	21.89 (5.86)	21.61 (7.22)	21.52 (9.02)	21.74 (11.29)	22.17 (14.03)	22.73 (17.28)	

eTable 5. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of stomach cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive	Predictive mean of age-standardized mortality rates of prostate cancer per 100,000 population									
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Male immigrants >10	14.81 (0.61)	14.59 (0.79)	14.57 (0.96)	14.56 (1.15)	14.54 (1.37)	14.51 (1.61)	14.48 (1.86)	14.45 (2.13)	14.42 (2.42)	14.38 (2.72)
Male immigrants ≤10	9.03 (2.95)	8.78 (3.11)	8.58 (3.29)	8.39 (3.49)	8.19(3.69)	8.10(3.89)	7.82(4.11)	7.63(4.31)	7.45(4.51)	7.27(4.72)
Male locals	9.54 (1.40)	9.66 (1.57)	9.67 (1.66)	9.69 (1.77)	9.72(1.91)	9.75(2.06)	9.78(2.23)	9.82(2.43)	9.86(2.64)	9.9(2.88)
Male immigrants >10(<60y)	0.57 (0.12)	0.52 (0.17)	0.51 (0.19)	0.50 (0.21)	0.49(0.22)	0.48(0.24)	0.47(0.25)	0.46(0.27)	0.45(0.29)	0.44(0.31)
Male immigrants ≤ 10(<60y)	0.65 (0.59)	0.73 (0.77)	0.81 (0.93)	0.87 (1.10)	0.94(1.31)	1.01(1.51)	1.09(1.75)	1.16(2.02)	1.24(2.32)	1.33(2.64)
Male locals(<60y)	0.63 (0.12)	0.66 (0.14)	0.66 (0.16)	0.66 (0.19)	0.67(0.21)	0.67(0.24)	0.67(0.27)	0.68(0.31)	0.68(0.33)	0.69(0.37)
Male immigrants >10(≥ 60y)	49.43 (2.59)	49.61 (2.73)	49.63 (3.29)	49.64 (3.94)	49.64 (4.68)	49.64 (5.51)	49.63 (6.38)	49.62 (7.32)	49.61 (8.32)	49.58(9.3 7)
Male immigrants ≤ 10(≥60y)	28.29 (9.15)	27.66 (9.78)	26.53 (10.21)	25.4 (10.63)	24.28 (11.03)	23.16 (11.41)	22.07 (11.76)	21.01 (12.09)	19.96 (12.38)	18.95(12. 63)
Male locals(≥60y)	31.57 (5.17)	31.48 (5.49)	31.40 (5.76)	31.32 (6.09)	31.24 (6.48)	31.15 (6.94)	31.06 (7.44)	30.96 (8.01)	30.86 (8.61)	30.74(9.2 6)

eTable 6. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of prostate cancer per 100,000 population for each age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract		°Z	
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	4
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	5
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5

Page 55 of 56

BMJ Open

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5
6 7 8	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	n/a
10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
15 16 17 18 19 20 21	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	5
22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5
24 25	Study size	<u>#10</u>	Explain how the study size was arrived at	5
26 27 28 29	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5
30 31 32 33 34 35	Statistical methods 5	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
36 37 38 39	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	5
40 41 42 43	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	5
44 45 46 47	Statistical methods	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	n/a
48 49 50 51 52	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	
52 53 54	n/a			
55 56	Results			
57 58 59 60	Participants	<u>#13a</u> For	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

BMJ Open

1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	
5 6	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	5
7 8 9	Participants	<u>#13c</u>	Consider use of a flow diagram	
10 11	n/a			
12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	5
19 20 21 22	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	
23 24	n/a			
25 26 27	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	
27 28 29	n/a			
30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.	
35 36	n/a			
 37 38 39 40 41 42 43 	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	n/a
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
52 53	n/a			
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7
58 59 60	Discussion	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 57 of 56

BMJ Open

1 2	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8
3 4 5 6 7	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	10
8 9 10 11 12	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	8
13 14 15	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	9
16	Other			
17 18	Information			
19 20		1122		11
21	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present	11
22 23			study and, if applicable, for the original study on which the present	
24			article is based	
25 26	The STROBE chec	klist is	distributed under the terms of the Creative Commons Attribution License CC-BY.	
20 27	This checklist was	complet	ted on 11. February 2023 using https://www.goodreports.org/, a tool made by the	
28	EOUATOR Netwo	rk in co	llaboration with Penelope.ai	
29 30				
31				
32 33				
34				
35 36				
37				
38				
40				
41				
42 43				
44				
45 46				
47				
48 ⊿q				
50				
51 52				
52 53				
54				
55 56				
57				
58 59				
60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

BMJ Open

An age-period-cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-072751.R3
Article Type:	Original research
Date Submitted by the Author:	30-Aug-2023
Complete List of Authors:	Zhao, Yanji; The Hong Kong Polytechnic University, Department of Applied Mathematics Zhuang, Zian; The Hong Kong Polytechnic University, Department of Applied Mathematics; University of California Los Angeles, Department of Biostatistics Yang, Lin; The Hong Kong Polytechnic University, School of Nursing He, Daihai; The Hong Kong Polytechnic University, Department of Applied Mathematics; The Hong Kong Polytechnic University, Research Institute for Future Food
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Public health, Oncology
Keywords:	STATISTICS & RESEARCH METHODS, ONCOLOGY, Risk Factors

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
з	
1	
4	
5	
6	
7	
, 0	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
24	
54	
35	
36	
37	
20	
20	
39	
40	
41	
42	
12	
43	
44	
45	
46	
10	
+/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
55	
50	
57	
58	
50	

1	An age-period-cohort analysis and projection of
2	cancer mortality in Hong Kong, 1998–2030
3	
4	Yanji Zhao ^{1, #} , Zian Zhuang ^{1,2, #} , Lin Yang ³ and Daihai He ^{1,4*}
5	
_	

- 6 1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong,
 - China

7

11

- 8 2 Department of Biostatistics, University of California, Los Angeles, CA, United States
- 9 3 School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
- 10 4 Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong, China

12 # These authors contributed equally to this work.

- 13 * To whom correspondence should be addressed:
- 14 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong,
- 15 China
 - 16 Tel: 852-27667864; daihai.he@polyu.edu.hk (DH).
- 17
 - 18 Email of all authors
 - 19 Yanji Zhao: <u>yan-ji.zhao@connect.polyu.hk;</u> Zian Zhuang: <u>zianzhuang@ucla.edu;</u>
 - 20Lin Yang: live Daihai He: daihai.he@polyu.edu.hk.
- 21
 - **22** *Word count:3379*
- 23

24 Abstract

Objectives: To explore the relationship between immigration groups and cancer mortality, this study aimed to explore age, period, birth cohort effects and effects across genders and immigration groups on mortality rates of lung, pancreatic, colon, liver, prostate and stomach cancers and their projections.

30 Design, Setting, and Participants: Death registry data in Hong Kong between 1998 and 2021,
31 which were stratified by age, sex and immigration status. Immigration status was classified into
32 three groups: locals born in Hong Kong, long-stay immigrants and short-stay immigrants.

Methods: Age-period-cohort analysis was used to examine age, period, and birth cohort effects
for genders and immigration groups from 1998 to 2021. Bayesian age-period-cohort models
were applied to predict the mortality rates from 2022 to 2030.

Results: Short-stay immigrants revealed pronounced fluctuations of mortality rates by age and of relative risks by cohort and period effects for six types of cancers than those of long-stay immigrants and locals. Immigrants for each type of cancer and gender will be at a higher mortality risk than locals, as men will be at a higher risk of mortality from cancers than women in the future (excluding prostate cancer). After 2021, decreasing trends (p < 0.05) or plateau (p>0.05) of forecasting mortality rates of cancers occur for all immigration groups, except for increasing trends for short-stay male immigrants with colon cancer (p<0.05, Avg +0.30 deaths/100,000 per annum from 15.47 to 18.50 deaths/100,000) and long-stay male immigrants with pancreatic cancer (p<0.05, Avg +0.72 deaths/100,000 per annum from 16.30 to 23.49 deaths/100,000).,

49 Conclusions: Findings underscore the effect of gender and immigration status in Hong Kong
50 on mortality risks of cancers that immigrants for each type of cancer and gender will be at a
51 higher mortality risk than locals.

Keywords: Age-period-cohort analysis, immigration, mortality, lung cancer, pancreatic cancer,
colon cancer, liver cancer, prostate cancer, stomach cancer

55 Strengths and limitations of this study

- This study provides new evidence regarding the relationship between immigration status
 and cancer mortality, given the effects of age, period, birth cohort and their predictions.
- and cancer mortality, given the effects of age, period, birth cohort and their predictions.
- 60 The non-identifiability problem has not been interpreted in APC models
- 62 The future perspective of cancer therapies and techniques have not been considered.

to perteries only

Page 5 of 56

64 Introduction

Several migration waves from mainland China to Hong Kong have occurred over the past
century. These migration waves included a large-scale migration inflow from 1945 to 1950 (the
Chinese Civil War) and a few small-scale inflows in the 1950s, 1970s, and 1990s [1-3]. In 2016,
immigrants from mainland China formed approximately 38% of the population of Hong Kong.
These inflows have led to a growing interest in research on the disparity of health conditions
between the locals and immigrants.

Cancer has been one of the most common causes of death, as an estimated 19.3 million new cancer cases and 9.9 million new cancer-associated deaths occurred worldwide in 2020 [4]. In Hong Kong, lung cancer is one of the most common causes of cancer deaths [5, 6]. Previous studies suggested that the primary cause of lung cancer is cigarette smoking [7-11]. Genetic factors, asbestos, radon gas, second-hand smoke, and other forms of air pollution have been proven to influence the risk of lung cancer [12-18]. The overall daily smoking rate in mainland China was approximately 23.2% in 2018 [19], whereas the daily smoking rate in Hong Kong was only 10.2% in 2019 [20]. The leading causes of liver cancer include viral infection, drinking of alcohol and polluted water and food supplies which are also culprits for colon, stomach and pancreatic cancer [21]. Alcohol consumption per capita in Hong Kong has reached 2.37 liters in 2021 [22], compared to 7.0 liters of per capita consumption of alcohol in mainland China in 2018 [23]. As approximately 99% of prostate cancer cases occur after age 50, factors of prostate cancer have been regarded as old age, race, family history and the diet of red meat consumption [24]. In addition to these risk factors, studies have suggested that cancer mortality rates vary depending on migrant status [25-28]. According to data from the Census and Statistics Department of Hong Kong, approximately 81% of immigrants in Hong Kong immigrated from mainland China, Macau, and Taiwan. Immigrants from mainland China account for the bulk of this population. Previous studies have shown that child immigrants in Hong Kong tend to suffer from a higher risk of wheezing disorders and cardiovascular diseases, and immigrant women have higher age-specific mortality rates of breast cancer than locally-born women in Hong Kong [29, 30]. However, to date, few studies have investigated the effect of length of stay in Hong Kong and birthplace on the risk of other types of cancer.

95 In this study, we compared the mortality rates of lung, pancreatic, colon, liver, prostate and 96 stomach cancers between locally born residents in Hong Kong and immigrants from mainland 97 China. Both populations are widely considered as ethnically homogeneous with similar cultures. 98 Nevertheless, due to different early life experiences, immigrants are exposed to more various 99 social economy and lifestyles than locals. Therefore, it's constructive to ascertain whether 100 immigrants from mainland China have a different mortality pattern of cancers from locals to verify the significance of migration status for this health outcome. As Age-period-cohort (APC) analysis plays a vital role in studying time-specific phenomena in epidemiology, in this study, to evaluate the effect of immigration on cancer mortality in the past and future, we developed APC models specified by sex and migrant status to assess the effects of age, period, birth cohort, and of the length of stay in Hong Kong on the mortality risks of cancers. Additionally, we explore the projection of mortality rates for the locally born population and immigrants in Hong Kong who were younger or older than 60 using a predictive model, taking into account age, period, and birth cohort effects as well.

110 Methods

Data

We obtained the death registry data in Hong Kong between 1998 and 2021 from the Census and Statistics Department of Hong Kong, as the data in 2022 has not been available up to now. The data was extracted from a routine census held by the Hong Kong government as subjective errors caused by resampling can be neglected. The population data were stratified by age, sex, immigration status, and length of stay in Hong Kong. We retrieved six types of cancer cases from the death registry data using ICD codes, such as ICD-9 code 162 and ICD-10 codes C34.0–C34.3, C348, and C349 for Jung cancer. To assure comparability among registries, deaths from the age group of 35–85 years were selected, since cases younger than 35 and older than 85 were relatively trivial for lack of statistical interpretability [31]. Immigration status was classified into three groups: locals born in Hong Kong, immigrants who have lived in Hong Kong for >10 years before death defined as long-stay immigrants, and immigrants who have lived in Hong Kong for ≤ 10 years before death defined as short-stay immigrants. Notably, much focus was placed on immigrants from mainland China, because approximately 81% of immigrants in Hong Kong came from mainland China, Macau, and Taiwan based on the data from the Census and Statistics Department of Hong Kong. Moreover, few cases recorded from Macau and Taiwan are statistically insignificant in the analysis. Demographics and population projections from 2022 to 2030 were retrieved from the Census and Statistics Department of Hong Kong and estimated with cubic smoothing spline as the prerequisite of the predictive model. Codes for APC and BAPC analysis are available in the GitHub repository (https://github.com/kshz2164313/APC-population-projections-for-immigration-HK).

53 133

134 <u>Statistical analysis</u>

We modeled cancer mortality rates in Hong Kong using APC analysis based on log-linear
Poisson regression models. The model aimed to disentangle age, period, and cohort effects of
time-varying phenomena simultaneously [32, 33], given that

BMJ Open

2		
3	138	$\log(E) = c + c + c + c + \log(c) $ (1)
4	150	$\log(E_{ij}) = \alpha_i + \beta_j + \gamma_k + \mu + \log(\sigma_{ij}) \tag{1}$
6 7	139	where E_{ij} denotes expected mortality; α_i , β_j , and γ_k denote age, period, and cohort
8	140	effect, respectively, for $i=1,,I$, $j=1,,J$, $k=1,,K$ with $k=I-i+j$.
9	141	$\log(\theta_{ij})$ is the offset. We mainly focused on the contributions of sex and immigration status
10	142	due to the non-identifiability problem that the effects of these three components are collinear
12	143	with each other (denoted as period $-$ age $=$ cohort) [34]. Birth cohort effect and period effect
13	144	were assessed with relative risks to evaluate the effect of three components. The median year
14	145	of birth among cases was regarded as the reference cohort [35,36]. Since death cases aged at
15 16	146	35–85 years between 1998 and 2021 were selected, the range of birth cohort from 1913 to
10	147	1986 covered observations and further projections until 2030. The second and penultimate
18	148	period effects were constrained to the reference for period. For sex and immigration status,
19	149	maximum likelihood framework was applied to estimate the relative risks and 95%
20	150	confidence intervals (CIs) by age groups, calendar period, and birth cohort.
21	151	
23	152	Savaral projection approaches for future concer mortality have been developed, but a
24	152	Devesion age period expert (DAPC) model built upon integrated period Lonlose
25	100	Bayesian age-period-conort (BAPC) model built upon integrated nested Laplace
26 27	154	approximations (INLA) [37] yields relatively higher coverage and better performance for all
27 28	155	evaluated parameter combinations [38]. To prevent some sampling problems caused by
29	156	Markov chain Monte Carlo (MCMC), this MCMC-free BAPC approach was applied to
30	157	predict future cancer mortality within a fully Bayesian inference setting and provide outputs
31	158	of interest simply, such as projected age-standardized and age-specific rates. Convergence
32	159	checks are not necessary for this technique [37]. The projections of age-standardized cancer
33 34	160	mortality rates for each sex, age group (younger or older than 60 years) and migrant status,
35	161	taking into account age, period, and birth cohort effects, were performed based on the weights
36	162	of population age groups from the WHO World Standard population [39], with 95%
37	163	prediction intervals. Mann-Kendall trend test was applied to verify the projection trend.
38 30	164	Friedman's Two-Way Analysis of Variance was applied to test interactions between gender
40	165	and immigration groups for each year
41	166	und minigration groups for ouch year.
42	100	
43 11	167	All analyses were performed via R version 4.2.1 (R Core Team, R Foundation for Statistical
44	168	Computing, Vienna, Austria, 2013, http://www.R-project.org/). The APC models were
46	169	established using the Epi package, and the projections based on Bayesian APC models were
47 48	170	performed with the BAPC package.
49	171	
50 51	172	Patient and Public Involvement
52	173	None.
53	174	
54 55	175	
55		
57	176	Results
58	477	Eigene 1 & 2 and a Eigene 1(a a) in Second second and Mathematical Advantage of the second and a
59 60	177	Figure 1 & 2 and eFigure 1(a-e) in Supplementary Material illustrate the estimates of age
00		

BMJ Open

 (assessed by cancer mortality), cohort and period effects (assessed by relative risk) based on APC models among three migrant groups for men and women with six types of cancers, respectively. All the mortality rates for each gender and immigration status exhibit notable increasing trends with age. Age, cohort and period effects of six types of cancer for immigrants who stayed in Hong Kong for ≤10 years revealed relatively more pronounced fluctuations and deviations from those effects in the other two immigration groups. Significant increasing trends of age effect occurred in all types of cancer, regardless of gender and immigration status. For example, while relatively insignificant differences in lung cancer mortality rates by immigration status among females have performed, male immigrants who remained in Hong Kong for >10 years had higher lung cancer mortality rates at ages above 50 years and those who arrived ≤ 10 years had lower lung cancer mortality at ages below 62 years compared to local men Figure 1. In addition to compatible dynamics of period effect for locals and long-stay immigrants, similar changes of relative risks by birth cohort for locals and long-stay immigrants in lung, colon, liver and stomach cancers occurred before 1945, whereas significant differences of relative risks by birth cohort between these two immigration groups occurred after 1960 (Figure 1 & eFigure 1(a,b,d)). Locals and long-stay immigrants in pancreatic and prostate cancer perform almost similar changes of relative risks by birth cohort effects all the time (eFigure 1(c,e)). Short-stay immigrants who have stayed in Hong Kong for ≤ 10 years had more fluctuating relative risks affected by period effects before 2020 than those for locals and long-stay immigrants. Lack of young cases, especially young short-stay immigrants, of prostate cancer leads to significant deviations and variances in age and cohort effects.

Figure 3-5, eFigure 2-6 in Supplementary Material illustrate the age-standardized mortality rates of six types of cancer from 1998 to 2021 and their projections by sex, immigrant status and age groups from 2022 to 2030, taking into account age, period, and birth cohort effects. Means and standard deviations of predictive mortality rates are shown in eTable 1-6 in Supplementary Material. For all ages projection (Figure 2 & eFigure 2-6), as men will be at higher risk of mortality rates of cancers (excluding prostate cancer) than women in the future for all three age groups (all ages, young and older than 60 years) and approximately significant interactions between gender and immigration groups emerge for each type of cancer in each year (p < 0.05), given the projected trends, immigrants for each gender, especially who have stayed in Hong Kong for > 10 years will suffer from higher mortality rates of cancer in each year than locals. Monotone decreasing trends or plateau of forecasting occur for both genders and all immigration groups in cancers, except for increasing trends for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer (p < 0.05, Avg +0.30 deaths/100,000 per annum) from 15.47 deaths/100,000 (95% CI: 11.28, 19.66) in 2021 to 18.50 deaths/100,000 (95% CI: 2.31, 34.69) in 2030, and male immigrants who have stayed in Hong Kong for > 10 years with pancreatic cancer (p < 0.05, Avg +0.72 deaths/100,000 per annum) from 16.30

BMJ Open

3 4	216	deaths/100,000 (95% CI: 14.38,17.26) in 2021 to 23.49 deaths/100,000 (95% CI: 12.49, 34.49)
5 6	217	in 2030. Most of predictive trends for younger cases (<60 years) and older cases (≥60 years)
7 8	218	reach a consensus with those for all ages population, except for two phenomena: 1.) mortality
9 10	219	rates of lung cancer for men immigrants ≤ 10 that insignificant trend for all ages (p > 0.05) vs.
11	220	decline for younger cases (p < 0.05) vs. increase for older cases (p < 0.05); 2.) mortality rates
12	221	of liver cancer for men immigrants >10 that decline for all ages ($p < 0.05$) vs. decline for
13 14	222	younger cases (p < 0.05) vs. insignificant trend for older cases (p > 0.05). Some particular cases
15	223	occur in the projection of prostate cancer that young long-stay male immigrants (0.44
16 17	224	deaths/100,000, 95% CI: 0, 1.05) aged less than 60 will be at lower mortality rate than locals
18	225	(0.69 deaths/100,000, 95% CI: 0, 1.42) in 2030 (eTable 6). Compared with other cancers and
19 20	226	immigration groups, male immigrants who have stayed in Hong Kong for >10 years with lung
21	227	cancer would perform the most significant decline in predictive mean from 102.90 (95% CI:
22 23	228	98.14, 107.66) to 79.55 (95% CI: 47.46, 111.64) deaths per 100,000 population (Avg -2.34
24	229	deaths/100,000 per annum) (eTable 1), while the same immigration group with pancreatic
25 26	230	cancer would indicate the most significant uptrend in each year of 16.30 (95% CI: 14.38,17.26)
27	231	and 23.49 (95% CI: 12.49, 34.49) deaths per 100,000 population in 2021 and 2030, respectively
28 29	232	(Avg +0.72 deaths/100,000 per annum) (eTable 4).
30	233	
31	234	
32 33	235	
34 35	236	Discussion
36 37	237	Early detection of cancer is positive and instructive for increasing chances of cure. Nevertheless,
38	238	the high mortality rate of cancer results from late diagnosis among most patients after
39 40	239	progression to more advanced or severe stages. Individuals at high risk of cancer, such as
41	240	smokers, alcoholics or those who are frequently exposed to susceptible circumstances, should
42 43	241	be screened for early detections to increase opportunities for cure [40]. Therefore, the
44	242	differences in mortality rates among immigration groups are synonymous with detection means.

therapies, and social history in disparate periods and areas.

While the changes in mortality rates by age for long-stay immigrants reached approximate harmony with those for locals, the changes in mortality rates by age for short-stay immigrants revealed clear differences with those for the other two populations. The group of long-stay immigrants had a higher risk of death from lung, colon and liver cancers than the other two immigration groups after the age of 60 years. Short-stay male immigrants were less likely to die from lung cancer before the age of 65 years. The contrast in age effects among the immigration groups was partially consistent with studies [25, 41] that highlighted the age effects for locals and immigrants on breast cancer mortality in Hong Kong and lung cancer

BMJ Open

incidence in Sweden, as they both showed similar trends and magnitudes between locals and immigrants before the age of 60 years. They are also compatible with the results in [42] that diagnosis of liver cancer is the most frequent among populations at 55 to 65 years old. According to these trends, young individuals, especially new young immigrant men, who have benefited from all-rounded development in mainland China and Hong Kong, are more likely to seek early detection and be treated for cancers using more advanced treatments [43]. Differences in birth cohort effects among immigrant groups partially comply with the interpretation above.

We observed significant trends of cohort effects among locals and immigrants. These findings are partially consistent but subtly different from previous findings, regarding the effect of immigration status on cancers. Zhao et al. [25] described multiple peaks of cohort effects on breast cancer mortality between locals and immigrants in Hong Kong, as well as a significant decline in cohort effects after 1950. In contrast, Sung et al. [44] investigated the difference in breast cancer incidence between Chinese Americans and non-Hispanic whites in the U.S. and emphasized that Chinese Americans were at lower risk of breast cancer than non-Hispanic whites born in the same year. Here, we interpret the cohort-driven trends resulting from the intricacy of social history and lifestyle. Compared to a relatively stable social development in Hong Kong, representing downward trends of relative risks for locals, wars and social instability in mainland China resulted in several immigration waves from mainland China to Hong Kong before 1950. Additionally, remarkable increasing trends were recorded for new immigrants after 1950, which corresponded to the economic downturn after wars and famine between 1959 and 1961 during their youth [45]. The increasing trends for new immigrants and similar trends for locals and long-stay immigrants were consistent with the finding that nutrient deficiency contributes to a higher risk of severe mortality rates of cancers [46]. Furthermore, we speculate that these trends, especially those for locals and long-stay immigrants, are most likely attributed to social development and personal behaviors, such as daily habits, occupational history, different diagnoses and treatments, and domestic environmental exposures. Notably, short-stay immigrants suffered from a lower risk of death from colon cancer for all ages (eFigure 1a in Supplementary Material). As locals and immigrants in Hong Kong transitioned to more westernized lifestyles, higher consumption of meat was associated with a higher risk of these types of cancer, whereas consumption of vegetables had a strong protective effect against pancreatic cancer, and moderate consumption of coffee appeared to be beneficial against lung cancer [47,48]. Further studies on potential risk factors are required.

289 Short-stay immigrants had more fluctuating and non-stationary but inconspicuous relative
290 risks by period effects before 2021 than locals and long-stay immigrants. Cumulatively, an

Page 11 of 56

BMJ Open

arch pattern and fluctuating curve depicting period effects externally resulted in an arch pattern of age-standardized mortality rates for short-stay immigrant women and irregular rates for short-stay immigrant men before 2021. The external performance of different period effects on mortality rates could be most likely attributed to the higher effect of different lifestyles and social development on new immigrants than on long-stay immigrants and locals in Hong Kong. For the age-standardized mortality rates and projections, consistent with previous findings [49,50], we predict that the mortality rates of cancer in Hong Kong after 2021 will continue to decline or remain relatively stable, consistent with the trends before 2020, except for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer. Men will be at higher risk of mortality rates of cancer than women, regardless of immigration status. They are also compatible with the results in [4] that men suffer from a higher risk of these types of cancer than women, excluding prostate cancer. Furthermore, new immigrant women will be at lower risk than local women, even though long-stay immigrants will suffer from higher mortality rates than locals in the future. Potential interpretations could be consistent with those for birth cohort effects, as age and period effects are considered as confounders of cohort effect.

In the past few decades, spurred by an increasing burden of high incidence and mortality rates of cancer, several studies focused on the inherent identification dilemma of three effects in the APC model. Further, complicated population distribution and immigration status in Hong Kong, one of the areas with the highest population density and migration frequency in the world, have intricate causes and inherent dynamics of cancer and other diseases. To our knowledge, few studies have assessed the relationship between immigration status and cancer mortality. Therefore, this study is original to examine the effect of the length of stay in Hong Kong and origins of previous residence on cancer deaths, which is instructive for further immigration policy-making and targeted strategies of disease detection and intervention. However, this study had several limitations. Given the non-identifiability problem in age-period-cohort models, we could only depict trends and variations among different immigration and sex groups, as illustrated in figures, and insufficiently perform the estimates of the contributions of three effects or subgroups to mortality rates. Furthermore, we adopted a cubic smoothing spline to estimate populations of immigrants and locals due to the large proportion of unspecified immigration status from official demographic projections. A few acceptable cases resulted in a limited type of cancer so that some common cancers, such as the ovary and cervix, were discarded. Since the issue of quantification, the future perspective of cancer therapies and techniques have not been considered in the model of projection.

329 Conclusion

We conclude that immigrants, especially short-stay immigrants, had more pronounced fluctuations of mortality rates by age and of relative risks by cohort and period effects for six types of cancers than those of long-stay immigrants and locals. Men will be at a higher risk of mortality rates of six types of cancer than women in the future. Male immigrants who have stayed in Hong Kong for ≤10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer would perform significant uptrend in the future, while other immigration groups for each type of cancer would continue to decline or remain relatively stable. Immigrants for each gender in Hong Kong would suffer from higher mortality risks of cancers than locals in the future. sks of cancers

1		
2 3		
4	339	Declaration
5 6 7	340	Ethical approval and consent to participate
8 9	341	Ethical approval and consent to participate are not applicable. This study does not involve
10 11	342	human participants. Data was obtained from the Census and Statistics Department of Hong
12 13	343	Kong.
14 15	344	Consent for publication
16 17 19	345	Not applicable.
18 19 20	346	Data Availability Statement
21	347	Data are available upon reasonable request.
22 23	348	Author contributions
24 25	349	Yanji Zhao: Methodology, Formal analysis, Data Curation, Writing - Original Draft,
25 26	350	Visualization
27	351	Zian Zhuang: Methodology, Formal analysis, Data Curation, Writing - Review & Editing
28	352	Lin Vang: Validation Writing - Review & Editing
29	252	Deihei Het Concentualization Writing Deview & Editing Supervision
30	555	Damai ne. Conceptualization, writing - Keview & Editing, Supervision
31 20	354	
33 34	355	Funding
34 35 36	356	The work described in this paper was partially supported by a grant from the Research Grants
37 38	357	Council of the Hong Kong Special Administrative Region, China (HKU C7123-20G).
39 40	358	Conflict of interest
41 42	359	None declared.
43 44 45	360	Acknowledgements
46 47	361	None.
47 48 49 50 51 52 53 54 55 56 57 58 59 60	362	
50		12

364 **<u>References</u>**

- 5 365 6 7 366 1.Fan S-C. The population projection of Hong Kong. Southeast Asian Journal of Social Science. 8 367 1974;2(1/2):105-17. 9 368 2.Department CaS. Hong Kong Statistics 1947-1967 (Report). 10 11 369 https://www.statistics.gov.hk/pub/hist/1961 1970/B10100031967AN67E0100.pdf, 12 370 Accessed 4th May 2019. 13 371 3. Department CaS. Demographic Trends in Hong Kong 1981-2011 (Report). 14
- 15 http://www.statistics.gov.hk/pub/B1120017032012XXXXB0100.pdf, Accessed 4th May 2019. 372 16 373 4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer 17 374 Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers 18 19 375 in 185 Countries. CA: A Cancer Journal for Clinicians. 2021 2021/05/01;71(3):209-49. doi: 20 376 https://doi.org/10.3322/caac.21660.
- 377
 378
 378
 378
 379
 2009/04/01/;20(4):746-51. doi: https://doi.org/10.1093/annonc/mdn699.
- 25
 380
 6. Chiu Y-L, Wang X-R, Qiu H, Yu IT-S. Risk factors for lung cancer: a case-control study in

 27
 381
 Hong Kong women. Cancer Causes & Control. 2010 2010/05/01;21(5):777-85. doi:

 28
 382
 10.1007/s10552-010-9506-9.
- 383 7. Office on S, Health. Publications and Reports of the Surgeon General. Women and
 384 Smoking: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and
 385 Prevention (US); 2001.
- 33
 386
 386
 387
 387
 388
 388
 388
 389
 389
 380
 380
 380
 381
 381
 382
 382
 383
 384
 385
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 <
- 37 389
 38 9. Husten CG, Shelton DM, Chrismon JH, Lin YC, Mowery P, Powell FA. Cigarette smoking
 39 and smoking cessation among older adults: United States, 1965-94. Tobacco Control.
 391 1997;6(3):175. doi: 10.1136/tc.6.3.175.
- 41
 392
 10. Bolego C, Poli A, Paoletti R. Smoking and gender. Cardiovascular Research.

 42
 393
 2002;53(3):568-76. doi: 10.1016/S0008-6363(01)00520-X.
- 394 11. Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary
 395 report. Br Med J. 1954;1(4877):1451-5. PMID: 13160495. doi: 10.1136/bmj.1.4877.1451.
- 397 burden and asbestos-related diseases: an umbrella review. Gaceta Sanitaria. 2021 2021/06/11/.
 398 doi: <u>https://doi.org/10.1016/j.gaceta.2021.04.001</u>.
- 399 13. Collishaw NE, Kirkbride J, Wigle DT. Tobacco smoke in the workplace: an occupational health hazard. Can Med Assoc J. 1984;131(10):1199-204. PMID: 6498670.
- 401 14. Dresler CM, Fratelli C, Babb J, Everley L, Evans AA, Clapper ML. Gender differences in
 402 genetic susceptibility for lung cancer. Lung Cancer. 2000 2000/12/01/;30(3):153-60. doi:
 403 <u>https://doi.org/10.1016/S0169-5002(00)00163-X</u>.
- 404 15. Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1
 405 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: comparison with
 406 aromatic/hydrophobic adduct formation. Carcinogenesis. 2002;23(12):1969-77. doi:

1		
2		
4	407	10.1093/carcin/23.12.1969.
5	408	16. Samet JM. Radon and Lung Cancer. JNCI: Journal of the National Cancer Institute.
6	409	1989;81(10):745-58. doi: 10.1093/jnci/81.10.745.
7	410	17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in
8 0	411	homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-
10	412	control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmj.38308.477650.63.
11	413	18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al.
12	414	Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the
13	415	European Study of Cohorts for Air Pollution Effects (ESCAPE) The Lancet Oncology 2013
14	416	2013/08/01/·14(9)·813-22 doi: https://doi.org/10.1016/\$1470-2045(13)70279-1
16	/17	10 2018 Summary 20100710 Retrieved August 26 2022 from
17	417 /18	https://www.who.int/docs/default.source/wprodocuments/countries/china/2018 gats.china
18	410	facts act on a dflashran=2f4c2de0, 2
19 20	419	The set of
21	420	20. Inematic nousenoia survey. Retrieved August 26, 2022, from
22	421	https://www.censtatd.gov.hk/en/data/stat_report/product/B1130201/att/B11302/02020XXXX
23	422	B0100.pdf
24	423	21. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-
26	424	cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis
27	425	for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71.
28	426	22. Estimated alcohol consumption per capita in Hong Kong. Change4Health. (n.d.).
29	427	Retrieved December 1, 2022, from
30 31	428	https://www.change4health.gov.hk/en/alcohol_aware/figures/alcohol_consumption/index.htm
32	429	1
33	430	23. World Health Organization. Global status report on alcohol and health 2018. World
34 25	431	Health Organization; 2019 Feb 14.
35 36	432	24 Wild C World cancer report 2014 Wild CP Stewart BW editors Geneva Switzerland
37	433	World Health Organization: 2014
38	434	World Hould Organization, 2011.
39	435	25 Zhao S. Dong H. Oin I. Liu H. Li V. Chen V. et al. Breast cancer mortality in Chinese
40 41	400	25. Endo S, Dolig II, Qili J, Elu II, El I, Cheli I, et al. Diedst cancer mortanty in enniese
42	430	24 c2 doi: https://doi.org/10.1016/i.org/and/2010.10.006
43	437	34.e2. doi: <u>https://doi.org/10.1016/j.annepidem.2019.10.006</u> .
44	438	26. Gomez SL, Yang J, Lin S-W, McCusker M, Sandler A, Cheng I, et al. Incidence trends of
45 46	439	lung cancer by immigration status among Chinese Americans. Cancer Epidemiol Biomarkers
40 47	440	Prev. 2015;24(8):1157-64. PMID: 25990553. doi: 10.1158/1055-9965.EPI-15-0123.
48	441	27.Hemminki K, Li X, Czene K. Cancer risks in first-generation immigrants to Sweden.
49	442	International Journal of Cancer. 2002 2002/05/10;99(2):218-28. doi:
50	443	https://doi.org/10.1002/ijc.10322.
51 52	444	28. Vanthomme K, Rosskamp M, De Schutter H, Vandenheede H. Lung cancer incidence
53	445	differences in migrant men in Belgium, 2004–2013: histology-specific analyses. BMC Cancer.
54	446	2021 2021/03/30;21(1):328. doi: 10.1186/s12885-021-08038-6.
55	447	29. Schooling M, Leung GM, Janus ED, Ho SY, Hedley AJ, Lam TH. Childhood migration
56 57	448	and cardiovascular risk. International Journal of Epidemiology. 2004;33(6):1219-26. doi:
58	449	10.1093/ije/dyh221.
59	450	30 Leung JYY Li AM Leung GM Schooling CM Mode of delivery and childhood
60	.00	so. Louis VII, Li Min, Louis On, benooning Chi. Mode of derivery and emidilood

hospitalizations for asthma and other wheezing disorders. Clinical & Experimental Allergy. 2015 2015/06/01;45(6):1109-17. doi: https://doi.org/10.1111/cea.12548. 31. Baker A, Bray I. Bayesian projections: what are the effects of excluding data from younger age groups?. American Journal of Epidemiology. 2005 Oct 15;162(8):798-805. 32. Rosenberg PS, Anderson WF. Age-Period-Cohort Models in Cancer Surveillance Research: Ready for Prime Time? APC Models. Cancer Epidemiology, Biomarkers & Prevention. 2011 Jul 1;20(7):1263-8. 33. Holford T. Analyzing the effects of age, period and cohort on incidence and mortality rates. Stat Meth Med Res. 1992;1:317-37. 34. Brookmeyer R, Stroup DF, editors. Monitoring the health of populations: statistical principles and methods for public health surveillance. Oxford University Press; 2004. 35. Yang Y, Land KC. Age-period-cohort analysis: New models, methods, and empirical applications. Taylor & Francis; 2013. 36. Robertson C, Gandini S, Boyle P. Age-period-cohort models: a comparative study of available methodologies. Journal of clinical epidemiology. 1999 Jun 1;52(6):569-83. 37. Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Biometrical Journal. 2017 May:59(3):531-49. 38. Knoll M, Furkel J, Debus J, Abdollahi A, Karch A, Stock C. An R package for an integrated evaluation of statistical approaches to cancer incidence projection. BMC medical research methodology. 2020 Dec;20(1):1-1. 39. Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates; a new WHO standard. Geneva: World Health Organization. 2001 Jan;9(10):1-4. 40. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021 May;71(3):209-49. 41. Mousavi SM, Fallah M, Sundquist K, Hemminki K. Age-and time-dependent changes in cancer incidence among immigrants to Sweden: colorectal, lung, breast and prostate cancers. International journal of cancer. 2012 Jul 15;131(2):E122-8. 42. National Cancer Institute. SEER stat fact sheets: liver and intrahepatic bile duct cancer. 43. Wu X, Chung VC, Hui EP, Ziea ET, Ng BF, Ho RS, Tsoi KK, Wong S, Wu JC. Effectiveness of acupuncture and related therapies for palliative care of cancer: overview of systematic reviews. Scientific reports. 2015 Nov 26;5(1):1-5. 44. Sung H, Rosenberg PS, Chen WQ, Hartman M, Lim WY, Chia KS, Wai-Kong Mang O, Tse L, Anderson WF, Yang XR. The impact of breast cancer-specific birth cohort effects among younger and older C hinese populations. International journal of cancer. 2016 Aug 1;139(3):527-34. 45. The world economy volume 1: a millennial perspective, 2, Historical statistics: Academic Foundation, Gurgaon, India (2007) 46. Elias SG, Peeters PH, Grobbee DE, van Noord PA. The 1944-1945 Dutch famine and subsequent overall cancer incidence. Cancer Epidemiology Biomarkers & Prevention. 2005 Aug;14(8):1981-5. 47. Chiu YL, Wang XR, Qiu H, Yu IT. Risk factors for lung cancer: a case-control study in

1 2		
3	495	Hong Kong women Cancer Causes & Control 2010 May 21(5):777-85
4	496	48 Li L Jam AS, Yau ST, Yiu KK, Tsoi KK, Antihypertensive treatments and risks of lung
5 6	100	Cancer: A large population-based cohort study in Hong Kong, BMC cancer, 2021 Dec:21(1):1-
7	108	0
8	490	7. 40 Du I Sun H Sun V Du I Cao W Sun S Assessment of age period and schort offects of
9	499 500	49. Du J, Sun H, Sun T, Du J, Cao W, Sun S. Assessment of age, period, and conort effects of lung concer incidence in Hong Kong and projection up to 2020 based on changing
10 11	500	demographics American Journal of Cancer Descareb 2021:11(12):5002
12	501	50 Contro for Hagleh Protostion. Der metre of Hagleh – Lung Concert Contro for Hagleh
13	502	50. Centre for Health Protection, Department of Health - Lung Cancer. Centre for Health
14 15	503	https://www.second.ketrieved.August 10, 2022, from
15 16	504	https://www.chp.gov.hk/en/healthtopics/content/25/49.html
17		
18		
19 20		
20 21		
22		
23		
24 25		
25		
27		
28		
29 30		
31		
32		
33 24		
34 35		
36		
37		
38 20		
40		
41		
42		
43 44		
45		
46		
47 48		
49		
50		
51		
52 53		
54		
55		

BMJ Open

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

For peer teriew only

1		
2 3 4 5 6 7	512 513 514 515 516 517	Figure 2 . Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of female lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.
8 9	518	
10 11		
12 13		
14 15		
16 17		
18 19		
20 21		
22		
24 25 26		
20 27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41		
43 44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

Figure 3. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

1		
2 3 4 5 6 7 8	525 526 527 528 529 530	Figure 4. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.
9 10 11 12		
13 14 15		
10 17 18 19		
20 21 22		
23 24 25		
26 27 28		
29 30 31		
32 33 34		
35 36 37		
38 39 40		
41 42 43 44		
45 46 47		
48 49 50		
51		
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 67\\ 58\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56$	531 532 533 534 535 536	Figure 5. Projections of lung cancer montality rates for the population older than or equal to 60 by gender and and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive C1. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.
--	--	---
58 59		
60		21
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

Figure 2. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of female lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

Figure 3. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 4. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 5. Projections of lung cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Supplementary Material for

"An age-period-cohort analysis and projection of cancer mortality in

Hong Kong, 1998–2030"

APC Figures

	3
eFigure 1(b) Liver cancer	4
eFigure 1(c) Pancreatic cancer	5
eFigure 1(d) Stomach cancer	6
eFigure 1(e) Prostate cancer	7
Projection Figures Colon cancer	
eFigure 2(a)Projection (all ages)	8
eFigure 2(b)Projection (<60 years)	9
eFigure 2(c)Projection (≥60 years)	
Liver cancer	
eFigure 3(a)Projection (all ages)	11
	····· ⊥⊥
eFigure 3(b)Projection (<60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer eFigure 5(a)Projection (all ages)	
eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer eFigure 5(a)Projection (all ages) eFigure 5(b)Projection (<60 years)	

2		
3	eFigure 5(c)Projection (\geq 60 years)	
4 5		
6	Prostate cancer	
7	eFigure 6 Projection (all ages, <60 years and \geq 60 years)	
8		
9		
10	Tables	
12	eTable 1 Lung cancer	21
13		
14	eTable 2 Colon cancer	22
15	eTable 3 Liver cancer	23
16		
17 18	eTable 4 Pancreatic cancer	24
10	aTabla E Stomach concer	25
20		
21	eTable 6 Prostate cancer	
22		
23		
24 25		
26		
27		
28		
29		
30		
31 22		
32 33		
34		
35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45		
16		

eFigure 1(a). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female colon cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(b). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female liver cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(c). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female pancreatic cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(d). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female stomach cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(e). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male prostate cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 2(a). Projections of colon cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(b). Projections of colon cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(c). Projections of colon cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(a). Projections of liver cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(b). Projections of liver cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(c). Projections of liver cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

ân ..

eFigure 4(a). Projections of pancreatic cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

.lua.

eFigure 4(b). Projections of pancreatic cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

an is show...

eFigure 4(c). Projections of pancreatic cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(a). Projections of stomach cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(b). Projections of stomach cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(c). Projections of stomach cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

an is show...

eFigure 6. Projections of prostate cancer mortality rates for males by immigrant status and age groups (less than, greater than or equal to 60 years old) from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Predict	Predictive mean of age-standardized mortality rates of lung cancer per 100,000 population												
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030			
Female	41.80	41.34	40.58	39.87	39.19	38.53	37.89	37.26	36.65	36.04			
immigrants >10	(1.27)	(1.86)	(2.27)	(2.75)	(3.28)	(3.86)	(4.46)	(5.09)	(5.74)	(6.4)			
Female immigrants ≤	23.92	22.22	20.56	19.01	17.57	16.24	15.00	13.85	12.79	11.81			
10	(4.00)	(4.67)	(5.38)	(6.10)	(6.80)	(7.45)	(8.04)	(8.56)	(9.01)	(9.39)			
Female locals	34.67	30.22	30.63	31.05	31.48	31.9	32.32	32.73	33.15	33.55			
	(1.76)	(3.54)	(4.77)	(6.38)	(8.29)	(10.47)	(12.87)	(15.48)	(18.31)	(21.33)			
Male immigrants >10	102.90	100.18	97.18	94.34	91.71	89.15	86.66	84.19	81.81	79.55			
	(2.43)	(4.18)	(5.33)	(6.72)	(8.24)	(9.84)	(11.47)	(13.11)	(14.74)	(16.37)			
Male immigrants ≤10	81.26	79.90	79.81	79.72	79.62	79.50	79.32	79.08	78.78	78.41			
	(9.21)	(10.41)	(11.82)	(13.42)	(15.19)	(17.09)	(19.09)	(21.18)	(23.32)	(25.53)			
Male locals	60.96	52.27	50.83	49.56	48.18	46.64	45.13	43.83	42.67	41.43			
	(2.82)	(4.86)	(5.39)	(6.13)	(6.97)	(7.84)	(8.76)	(9.76)	(10.8)	(11.8)			
Female	15.51	14.51	13.90	13.29	12.71	12.13	11.57	11.02	10.49	9.98			
immigrants>10(<60y)	(1.12)	(1.50)	(1.76)	(2.04)	(2.33)	(2.62)	(2.91)	(3.18)	(3.43)	(3.68)			
Female immigrants ≤ 10(<60y)	8.14 (1.91)	7.79 (1.95)	7.18(2.23)	6.62(2.53)	6.10(2.81)	5.63(3.08)	5.19(3.32)	4.79 (3.53)	4.42 (3.72)	4.09 (3.88)			
Female locals(<60y)	10.25 (0.77)	9.48 (0.89)	9.17(1.02)	8.87(1.16)	8.57(1.32)	8.27(1.49)	7.97(1.65)	7.68 (1.82)	7.38 (1.98)	7.09 (2.13)			
Male	27.81	26.36	24.96	23.64	22.38	21.17	20.03	18.96	17.96	17.03			
immigrants>10(<60y)	(2.10)	(3.58)	(3.94)	(4.35)	(4.79)	(5.23)	(5.67)	(6.10)	(6.51)	(6.90)			
Male immigrants ≤	15.01	13.38	12.02	10.79	9.68	8.69	7.79	6.98	6.25	5.59			
10(<60y)	(2.98)	(3.71)	(4.17)	(4.59)	(4.95)	(5.24)	(5.46)	(5.61)	(5.69)	(5.72)			
Male locals(<60y)	15.19	14.45	14.03	13.61	13.14	12.65	12.13	11.55	10.93	10.26			
	(0.78)	(1.15)	(1.29)	(1.46)	(1.64)	(1.82)	(2.01)	(2.17)	(2.31)	(2.43)			
Female immigrants >10(≥ 60y)	108.85 (4.80)	107.21 (5.17)	106.26 (6.24)	105.52 (7.54)	104.94 (9.04)	104.51 (10.72)	104.21 (12.57)	104.07 (14.61)	104.06 (16.78)	104.16 (19.14)			
Female immigrants ≤	66.16	63.84	59.88	56.14	52.60	49.27	46.14	43.20	40.44	37.85			
10(≥60y)	(13.25)	(15.72)	(17.50)	(19.31)	(21.03)	(22.66)	(24.16)	(25.52)	(26.74)	(27.81)			
Female locals(≥60y)	77.33	76.53	76.22	75.94	75.69	75.49	75.32	75.19	75.10	75.03			
	(9.40)	(10.11)	(10.85)	(11.79)	(12.94)	(14.28)	(15.80)	(17.48)	(19.33)	(21.32)			
Male	293.56	289.8	286.6	284.28	282.78	281.99	281.88	282.31	283.37	285.03			
immigrants>10(≥60y)	(9.13)	(11.7)	(15.19)	(19.51)	(24.49)	(30.07)	(36.31)	(43.15)	(50.66)	(58.86)			
Male immigrants ≤	244.88	247.01	251.24	255.62	260.14	264.82	269.61	274.52	279.55	284.69			
10(≥60y)	(30.29)	(36.85)	(42.94)	(50.06)	(58.14)	(67.14)	(77.01)	(87.75)	(99.34)	(111.81)			
Male locals(≥60y)	150.75	146.29	143.54	141.84	140.07	138.14	136.65	136.49	137.24	138.26			
	(16.22)	(18.46)	(20.58)	(23.97)	(28.24)	(33.39)	(39.82)	(47.87)	(57.47)	(68.52)			

eTable 1. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of lung cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of colon cancer per 100,000 population												
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Female	20.03	18.95	18.77	18.59	18.42	18.27	18.12	17.98	17.85	17.73		
immigrants >10	(0.95)	(1.13)	(1.37)	(1.66)	(1.98)	(2.33)	(2.71)	(3.11)	(3.53)	(3.96)		
Female immigrants ≤	8.11	7.70	7.25	6.82	6.42	6.03	5.67	5.33	5.01	4.71		
10	(2.19)	(2.51)	(2.81)	(3.11)	(3.37)	(3.61)	(3.83)	(4.01)	(4.17)	(4.31)		
Female locals	13.77	13.47	13.24	13.01	12.77	12.53	12.29	12.06	11.82	11.59		
	(1.30)	(1.61)	(1.72)	(1.87)	(2.04)	(2.24)	(2.46)	(2.68)	(2.92)	(3.16)		
Male immigrants >10	31.22	29.82	29.66	29.52	29.41	29.30	29.21	29.14	29.06	28.98		
	(1.28)	(1.46)	(1.79)	(2.19)	(2.63)	(3.11)	(3.64)	(4.19)	(4.78)	(5.39)		
Male immigrants ≤10	15.47	16.77	17.02	17.23	17.45	17.67	17.88	18.09	18.31	18.50		
	(2.14)	(3.77)	(4.18)	(4.64)	(5.14)	(5.69)	(6.27)	(6.91)	(7.56)	(8.26)		
Male locals	21.28	19.81	19.39	18.97	18.57	18.18	17.81	17.43	17.06	16.71		
	(1.38)	(2.07)	(2.22)	(2.42)	(2.61)	(2.85)	(3.12)	(3.40)	(3.71)	(4.03)		
Female	7.09	7.36	7.46	7.56	7.65	7.74	7.83	7.92	8.01	8.09		
immigrants >10(<60y)	(0.99)	(1.12)	(1.28)	(1.46)	(1.68)	(1.92)	(2.19)	(2.48)	(2.79)	(3.13)		
Female immigrants ≤	3.11	2.82	2.65	2.51	2.36	2.22	2.08	1.95	1.83	1.72		
10(<60y)	(0.67)	(0.86)	(0.91)	(0.97)	(1.02)	(1.07)	(1.11)	(1.14)	(1.18)	(1.22)		
Female locals(<60y)	4.10	3.87	3.73	3.61	3.47	3.34	3.22	3.11	2.99	2.88		
	(0.41)	(0.50)	(0.54)	(0.59)	(0.65)	(0.70)	(0.76)	(0.82)	(0.88)	(0.94)		
Male immigrants >10(<60y)	8.29 (0.91)	7.98 (1.17)	7.85 (1.38)	7.71 (1.60)	7.54 (1.83)	7.36 (2.08)	7.17(2.32)	6.97(2.57)	6.76(2.81)	6.55(3.05)		
Male immigrants ≤ 10(<60y)	5.03 (1.44)	5.18 (1.58)	5.22 (1.75)	5.26 (1.93)	5.30 (2.14)	5.34 (2.36)	5.38(2.59)	5.43(2.84)	5.47(3.11)	5.51(3.38)		
Male locals(<60y)	5.14 (0.43)	4.88 (0.63)	4.66 (0.79)	4.46 (0.96)	4.26 (1.13)	4.08 (1.31)	3.91(1.48)	3.73(1.65)	3.57(1.82)	3.42(1.97)		
Female	52.16	49.21	48.70	48.26	47.87	47.54	47.26	47.05	46.91	46.81		
immigrants >10(≥60y)	(2.59)	(2.99)	(3.56)	(4.26)	(5.05)	(5.94)	(6.90)	(7.94)	(9.06)	(10.26)		
Female immigrants ≤	24.01	22.44	21.69	20.95	20.23	19.52	18.84	18.17	17.51	16.86		
10(≥60y)	(5.83)	(6.56)	(6.96)	(7.38)	(7.80)	(8.23)	(8.66)	(9.08)	(9.49)	(9.90)		
Female locals(≥60y)	37.42	36.69	36.29	35.87	35.46	35.04	34.61	34.19	33.77	33.34		
	(5.31)	(5.74)	(6.06)	(6.46)	(6.95)	(7.5)	(8.12)	(8.79)	(9.51)	(10.27)		
Male	84.17	82.72	82.16	81.64	81.19	80.81	80.47	80.15	79.85	79.56		
immigrants >10(≥60y)	(3.55)	(4.09)	(4.95)	(5.97)	(7.12)	(8.39)	(9.77)	(11.24)	(12.81)	(14.45)		
Male immigrants ≤	43.25	44.93	45.62	46.30	46.96	47.61	48.25	48.88	49.51	50.13		
10(≥60y)	(11.07)	(13.09)	(14.52)	(16.09)	(17.80)	(19.64)	(21.62)	(23.73)	(25.97)	(28.34)		
Male locals(≥60y)	55.79	54.89	53.75	52.63	51.54	50.47	49.43	48.42	47.42	46.44		
	(6.86)	(7.65)	(8.03)	(8.52)	(9.12)	(9.8)	(10.55)	(11.37)	(12.25)	(13.16)		

eTable 2. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of colon cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of liver cancer per 100,000 population												
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Female immigrants >10	11.34 (0.66)	10.68 (0.71)	10.09 (0.85)	9.54 (1.01)	9.01 (1.16)	8.50 (1.31)	8.02(1.45)	7.57(1.59)	7.14(1.72)	6.74(1.83)		
Female immigrants ≤10	9.15 (1.55)	8.66 (1.82)	8.38 (1.95)	8.11 (2.08)	7.84 (2.22)	7.58 (2.36)	7.32(2.49)	7.07(2.63)	6.82(2.76)	6.58(2.88)		
Female locals	6.72 (0.69)	6.36 (0.88)	6.08 (0.90)	5.81 (0.93)	5.53 (0.97)	5.26 (1.01)	5.01(1.06)	4.77(1.11)	4.53(1.15)	4.3(1.21)		
Male immigrants >10	52.17 (1.78)	49.22 (2.36)	47.76 (2.93)	46.35 (3.59)	45.01 (4.31)	43.67 (5.05)	42.37 (5.81)	41.1(6.56)	39.89 (7.33)	38.71 (8.08)		
Male immigrants ≤10	42.33	39.03	37.39	35.81	34.26	32.76	31.31	29.91	28.56	27.25		
	(5.87)	(6.49)	(7.47)	(8.51)	(9.58)	(10.63)	(11.65)	(12.62)	(13.54)	(14.40)		
Male locals	24.22	22.16	21.02	19.91	18.85	17.83	16.85	15.92	15.03	14.18		
	(1.77)	(2.09)	(2.22)	(2.39)	(2.58)	(2.79)	(3.03)	(3.21)	(3.40)	(3.59)		
Female immigrants >10(<60y)	3.62 (0.45)	3.39 (0.52)	3.29 (0.57)	3.20 (0.63)	3.12 (0.69)	3.04 (0.75)	2.96(0.82)	2.89(0.89)	2.82(0.96)	2.75(1.03)		
Female immigrants ≤ 10(<60y)	4.10 (0.79)	3.81 (0.91)	3.69 (0.96)	3.57 (1.02)	3.46 (1.08)	3.36 (1.15)	3.25(1.22)	3.15(1.29)	3.06(1.36)	2.97(1.43)		
Female locals(<60y)	1.50 (0.13)	1.37 (0.2)	1.29 (0.21)	1.22 (0.23)	1.16 (0.24)	1.10 (0.26)	1.04(0.27)	0.99(0.29)	0.94(0.30)	0.89(0.31)		
Male	26.32	24.04	23.02	22.05	21.13	20.25	19.41	18.62	17.86	17.14		
immigrants >10(<60y)	(2.11)	(2.35)	(2.63)	(2.94)	(3.27)	(3.61)	(3.95)	(4.30)	(4.64)	(4.98)		
Male immigrants ≤	25.52	22.56	21.71	20.87	20.04	19.22	18.42	17.63	16.86	16.11		
10(<60y)	(2.99)	(3.96)	(4.44)	(4.94)	(5.45)	(5.95)	(6.45)	(6.91)	(7.36)	(7.78)		
Male locals(<60y)	8.25 (0.69)	7.47 (0.74)	6.97 (0.79)	6.52 (0.86)	6.11 (0.93)	5.73 (1.01)	5.38(1.08)	5.04(1.15)	4.73(1.21)	4.44(1.27)		
Female immigrants >10(≥	33.67	29.63	27.99	26.42	24.92	23.49	22.13	20.85	19.64	18.50		
60y)	(1.88)	(2.01)	(2.36)	(2.75)	(3.14)	(3.52)	(3.88)	(4.23)	(4.55)	(4.85)		
Female immigrants ≤10(≥	21.72	19.08	18.38	17.71	17.03	16.39	15.76	15.16	14.57	14.01		
60y)	(5.11)	(5.81)	(6.14)	(6.48)	(6.83)	(7.16)	(7.49)	(7.80)	(8.11)	(8.39)		
Female locals(≥60y)	20.63	18.41	17.55	16.72	15.91	15.11	14.34	13.59	12.87	12.17		
	(3.03)	(3.23)	(3.26)	(3.32)	(3.40)	(3.49)	(3.59)	(3.69)	(3.81)	(3.93)		
Male immigrants >10(≥	115.39	113.96	113.43	113.17	113.16	113.37	113.79	114.39	115.19	116.17		
60y)	(4.54)	(5.95)	(7.65)	(9.70)	(12.04)	(14.66)	(17.56)	(20.73)	(24.18)	(27.91)		
Male immigrants ≤10(≥	88.61	85.14	82.59	80.02	77.42	74.83	72.23	69.64	67.07	64.52		
60y)	(15.58)	(18.85)	(20.6)	(22.44)	(24.34)	(26.24)	(28.12)	(29.94)	(31.70)	(33.38)		
Male locals(≥60y)	62.88	58.95	56.51	54.14	51.84	49.61	47.46	45.38	43.38	41.45		
	(5.97)	(7.91)	(8.20)	(8.61)	(9.12)	(9.70)	(10.33)	(11.01)	(11.68)	(12.36)		

eTable 3. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of liver cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of pancreatic cancer per 100,000 population												
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Female immigrants >10	10.89 (0.62)	11.11 (0.75)	11.36 (0.91)	11.61 (1.09)	11.87 (1.31)	12.14 (1.56)	12.42 (1.84)	12.71 (2.15)	13.01 (2.48)	13.3(2.85)		
Female immigrants ≤ 10	5.51 (1.44)	5.44 (1.56)	5.44 (1.69)	5.43(1.84)	5.42(1.99)	5.41(2.15)	5.39(2.32)	5.36(2.49)	5.34(2.66)	5.31(2.84)		
Female locals	8.79 (1.10)	9.01 (1.22)	9.15 (1.34)	9.29(1.48)	9.43(1.64)	9.57(1.83)	9.71(2.05)	9.85(2.28)	9.99(2.54)	10.14 (2.83)		
Male immigrants >10	16.30 (0.98)	17.87 (1.19)	18.48 (1.49)	19.11 (1.87)	19.78 (2.32)	20.47 (2.83)	21.18 (3.42)	21.92 (4.07)	22.69 (4.81)	23.49 (5.61)		
Male immigrants ≤10	8.10 (2.02)	7.87 (2.37)	7.76 (2.53)	7.64(2.70)	7.51(2.87)	7.38(3.05)	7.24(3.23)	7.09(3.41)	6.95(3.58)	6.81(3.75)		
Male locals	11.97 (1.26)	12.29 (1.49)	12.49 (1.64)	12.69 (1.83)	12.91 (2.06)	13.11 (2.33)	13.33 (2.63)	13.55 (2.97)	13.78 (3.34)	14.02 (3.74)		
Female immigrants >10(<60y)	3.47 (0.33)	3.62 (0.57)	3.74 (0.66)	3.87(0.77)	4.01(0.89)	4.14(1.02)	4.28(1.18)	4.42(1.34)	4.57(1.53)	4.72(1.73)		
Female immigrants ≤ 10(<60y)	1.12 (0.33)	1.21 (0.48)	1.22 (0.52)	1.23(0.56)	1.24(0.61)	1.25(0.66)	1.26(0.71)	1.26(0.77)	1.27(0.83)	1.28(0.89)		
Female locals(<60y)	2.76 (0.27)	2.88 (0.36)	2.91 (0.41)	2.93(0.48)	2.96(0.55)	2.99(0.63)	3.02(0.71)	3.04(0.81)	3.07(0.90)	3.10(1.01)		
Male immigrants >10(<60y)	6.88 (0.98)	7.05 (1.11)	7.24 (1.32)	7.43(1.56)	7.62(1.84)	7.82(2.16)	8.01(2.50)	8.21(2.88)	8.40(3.30)	8.61(3.75)		
Male immigrants ≤ 10(<60y)	2.20 (0.71)	2.01 (0.85)	1.95 (0.91)	1.9(0.94)	1.84(0.99)	1.79(1.04)	1.74(1.09)	1.69(1.14)	1.64(1.19)	1.60(1.24)		
Male locals(<60y)	4.16 (0.35)	4.33 (0.48)	4.41 (0.57)	4.46(0.68)	4.53(0.81)	4.61(0.94)	4.69(1.09)	4.77(1.26)	4.85(1.44)	4.93(1.63)		
Female immigrants >10(≥60y)	28.58 (1.83)	29.45 (2.11)	29.91 (2.54)	30.38 (3.06)	30.85 (3.66)	31.33 (4.33)	31.81 (5.08)	32.29 (5.91)	32.78 (6.79)	33.27 (7.74)		
Female immigrants ≤ 10(≥60y)	16.79 (5.29)	15.65 (6.08)	15.49 (6.71)	15.33 (7.36)	15.16 (8.03)	14.97 (8.73)	14.79 (9.43)	14.59 (10.14)	14.39 (10.86)	14.19 (11.58)		
Female locals(≥60y)	22.80 (4.23)	23.85 (4.46)	24.21 (4.81)	24.56 (5.23)	24.91 (5.73)	25.25 (6.30)	25.58 (6.95)	25.90 (7.67)	26.22 (8.47)	26.54 (9.34)		
Male immigrants >10(≥60y)	42.70 (2.55)	44.36 (3.02)	45.85 (3.76)	47.41 (4.69)	49.04 (5.78)	50.73 (7.05)	52.48 (8.50)	54.28 (10.13)	56.16 (11.95)	58.11 (13.98)		
Male immigrants ≤ 10(≥60y)	24.68 (8.21)	23.96 (9.01)	23.87 (9.74)	23.75 (10.52)	23.61 (11.33)	23.45 (12.17)	23.28 (13.04)	23.09 (13.93)	22.89 (14.83)	22.68 (15.75)		
Male locals(≥60y)	30.10 (4.68)	31.17 (5.22)	31.55 (5.63)	31.93 (6.14)	32.30 (6.75)	32.66 (7.45)	33.01 (8.23)	33.35 (9.11)	33.69 (10.08)	34.03 (11.12)		

eTable 4. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of pancreatic cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of stomach cancer per 100,000 population											
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Female immigrants >10	8.20	7.95	7.71	7.47	7.25	7.03	6.83	6.62	6.43	6.24	
	(0.55)	(0.62)	(0.74)	(0.87)	(1.01)	(1.15)	(1.29)	(1.43)	(1.57)	(1.71)	
Female immigrants ≤	7.51	7.36	7.33	7.30	7.28	7.27	7.27	7.28	7.31	7.33	
10	(1.44)	(1.56)	(1.69)	(1.85)	(2.01)	(2.20)	(2.40)	(2.61)	(2.84)	(3.09)	
Female locals	5.26	4.91	4.75	4.61	4.47	4.34	4.21	4.08	3.95	3.83	
	(0.40)	(0.52)	(0.57)	(0.63)	(0.71)	(0.77)	(0.84)	(0.91)	(0.99)	(1.06)	
Male immigrants >10	15.22 (0.64)	13.89 (0.97)	13.34(1.21)	12.81 (1.46)	12.31 (1.73)	11.83 (1.99)	11.38 (2.26)	10.95 (2.51)	10.54 (2.76)	10.15 (3.01)	
Male immigrants ≤10	15.83	15.21	15.07	14.93	14.79	14.64	14.51	14.35	14.19	14.03	
	(3.04)	(3.38)	(3.67)	(3.98)	(4.31)	(4.65)	(5.02)	(5.39)	(5.78)	(6.17)	
Male locals	8.14 (0.89)	8.07 (0.99)	7.73 (1.03)	7.41(1.07)	7.10 (1.13)	6.81 (1.19)	6.51 (1.26)	6.23 (1.33)	5.97 (1.39)	5.71 (1.46)	
Female	4.81	4.69	4.62	4.55	4.47	4.39	4.31	4.22	4.13	4.03	
immigrants >10(<60y)	(0.56)	(0.79)	(0.87)	(0.96)	(1.07)	(1.17)	(1.29)	(1.41)	(1.52)	(1.64)	
Female immigrants ≤	3.89	4.08	4.10	4.13	4.17	4.21	4.24	4.28	4.32	4.36	
10(<60y)	(0.80)	(0.93)	(1.03)	(1.14)	(1.27)	(1.41)	(1.55)	(1.70)	(1.87)	(2.05)	
Female locals(<60y)	2.28	2.08	1.98	1.88	1.79	1.71	1.61	1.53	1.44	1.37	
	(0.21)	(0.27)	(0.29)	(0.32)	(0.35)	(0.37)	(0.41)	(0.43)	(0.45)	(0.47)	
Male	4.94	4.71	4.55	4.41	4.25	4.12	3.98	3.86	3.74	3.63	
immigrants >10(<60y)	(0.57)	(0.79)	(0.89)	(0.99)	(1.10)	(1.21)	(1.32)	(1.43)	(1.54)	(1.65)	
Male immigrants ≤	4.81	4.70	4.66	4.63	4.59	4.55	4.52	4.48	4.44	4.41	
10(<60y)	(1.31)	(1.42)	(1.55)	(1.69)	(1.83)	(1.99)	(2.15)	(2.32)	(2.50)	(2.68)	
Male locals(<60y)	2.48	2.37	2.28	2.21	2.12	2.04	1.97	1.91	1.83	1.77(0.	
	(0.21)	(0.29)	(0.32)	(0.35)	(0.38)	(0.42)	(0.45)	(0.49)	(0.52)	55)	
Female	17.80	16.23	15.65	15.08	14.55	14.03	13.54	13.07	12.62	12.19	
immigrants >10(≥60y)	(1.04)	(1.26)	(1.47)	(1.70)	(1.94)	(2.18)	(2.43)	(2.68)	(2.92)	(3.16)	
Female immigrants ≤	14.72	13.01	12.52	12.03	11.55	11.08	10.63	10.19	9.76(6.56)	9.34	
10(≥60y)	(4.29)	(4.83)	(5.11)	(5.37)	(5.63)	(5.88)	(6.12)	(6.35)		(6.75)	
Female locals(≥60y)	12.20 (1.66)	11.86 (1.84)	11.67 (1.98)	11.49 (2.15)	11.33 (2.35)	11.18 (2.58)	11.04 (2.84)	10.91 (3.11)	10.79(3.4)	10.68 (3.71)	
Male immigrants >10(≥	37.23	36.59	35.17(3.18)	33.82	32.55	31.34	30.19	29.08	28.02	27.01	
60y)	(2.29)	(2.56)		(3.86)	(4.57)	(5.28)	(6.01)	(6.70)	(7.40)	(8.07)	
Male immigrants ≤	42.30	41.43	41.03	40.61	40.17	39.71	39.24	38.75	38.23	37.71	
10(≥60y)	(10.88)	(11.78)	(12.71)	(13.70)	(14.75)	(15.85)	(16.99)	(18.16)	(19.35)	(20.57)	
Male locals(≥60y)	23.04 (3.29)	22.69 (3.56)	22.37(4.07)	22.16(4.8 4)	21.89 (5.86)	21.61 (7.22)	21.52 (9.02)	21.74 (11.29)	22.17 (14.03)	22.73 (17.28)	

eTable 5. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of stomach cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of prostate cancer per 100,000 population												
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Male immigrants >10	14.81 (0.61)	14.59 (0.79)	14.57 (0.96)	14.56 (1.15)	14.54 (1.37)	14.51 (1.61)	14.48 (1.86)	14.45 (2.13)	14.42 (2.42)	14.38 (2.72)		
Male immigrants ≤10	9.03 (2.95)	8.78 (3.11)	8.58 (3.29)	8.39 (3.49)	8.19(3.69)	8.10(3.89)	7.82(4.11)	7.63(4.31)	7.45(4.51)	7.27(4.72)		
Male locals	9.54 (1.40)	9.66 (1.57)	9.67 (1.66)	9.69 (1.77)	9.72(1.91)	9.75(2.06)	9.78(2.23)	9.82(2.43)	9.86(2.64)	9.9(2.88)		
Male immigrants >10(<60y)	0.57 (0.12)	0.52 (0.17)	0.51 (0.19)	0.50 (0.21)	0.49(0.22)	0.48(0.24)	0.47(0.25)	0.46(0.27)	0.45(0.29)	0.44(0.31)		
Male immigrants ≤ 10(<60y)	0.65 (0.59)	0.73 (0.77)	0.81 (0.93)	0.87 (1.10)	0.94(1.31)	1.01(1.51)	1.09(1.75)	1.16(2.02)	1.24(2.32)	1.33(2.64)		
Male locals(<60y)	0.63 (0.12)	0.66 (0.14)	0.66 (0.16)	0.66 (0.19)	0.67(0.21)	0.67(0.24)	0.67(0.27)	0.68(0.31)	0.68(0.33)	0.69(0.37)		
Male immigrants >10(≥ 60y)	49.43 (2.59)	49.61 (2.73)	49.63 (3.29)	49.64 (3.94)	49.64 (4.68)	49.64 (5.51)	49.63 (6.38)	49.62 (7.32)	49.61 (8.32)	49.58(9.3 7)		
Male immigrants ≤ 10(≥60y)	28.29 (9.15)	27.66 (9.78)	26.53 (10.21)	25.4 (10.63)	24.28 (11.03)	23.16 (11.41)	22.07 (11.76)	21.01 (12.09)	19.96 (12.38)	18.95(12. 63)		
Male locals(≥60y)	31.57 (5.17)	31.48 (5.49)	31.40 (5.76)	31.32 (6.09)	31.24 (6.48)	31.15 (6.94)	31.06 (7.44)	30.96 (8.01)	30.86 (8.61)	30.74(9.2 6)		

eTable 6. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of prostate cancer per 100,000 population for each age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract		°Z	
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	4
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	5
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5

Page 55 of 56

BMJ Open

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5
6 7 8	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	n/a
10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
15 16 17 18 19 20 21	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	5
22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5
24 25	Study size	<u>#10</u>	Explain how the study size was arrived at	5
26 27 28 29	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5
30 31 32 33 34 35	Statistical methods 5	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
36 37 38 39	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	5
40 41 42 43	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	5
44 45 46 47	Statistical methods	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	n/a
48 49 50 51 52	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	
52 53 54	n/a			
55 56	Results			
57 58 59 60	Participants	<u>#13a</u> For	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

BMJ Open

1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	
5 6	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	5
7 8 9	Participants	<u>#13c</u>	Consider use of a flow diagram	
10 11	n/a			
12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	5
19 20 21 22	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	
23 24	n/a			
25 26 27	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	
27 28 29	n/a			
30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.	
35 36	n/a			
 37 38 39 40 41 42 43 	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	n/a
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
52 53	n/a			
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7
58 59 60	Discussion	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 57 of 56

BMJ Open

1 2	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8
3 4 5 6 7 8 9 10 11 12	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	10
	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	8
13 14 15	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	9
16	Other			
17 18	Information			
19 20	г. I'	1122		11
21	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present	11
22 23			study and, if applicable, for the original study on which the present	
24			article is based	
25 26	The STROBE chec	klist is	distributed under the terms of the Creative Commons Attribution License CC-BY.	
20	This checklist was	complet	ted on 11. February 2023 using https://www.goodreports.org/, a tool made by the	
28	EOUATOR Netwo	rk in co	llaboration with Penelope.ai	
29 30				
31				
32 33				
34				
35 36				
37				
38 20				
40				
41				
42 43				
44				
45 46				
47				
48 ⊿q				
50				
51				
52				
54				
55 56				
57				
58 59				
60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
BMJ Open

An age-period-cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-072751.R4
Article Type:	Original research
Date Submitted by the Author:	05-Sep-2023
Complete List of Authors:	Zhao, Yanji; The Hong Kong Polytechnic University, Department of Applied Mathematics Zhuang, Zian; The Hong Kong Polytechnic University, Department of Applied Mathematics; University of California Los Angeles, Department of Biostatistics Yang, Lin; The Hong Kong Polytechnic University, School of Nursing He, Daihai; The Hong Kong Polytechnic University, Department of Applied Mathematics; The Hong Kong Polytechnic University, Research Institute for Future Food
Primary Subject Heading :	Research methods
Secondary Subject Heading:	Public health, Oncology
Keywords:	STATISTICS & RESEARCH METHODS, ONCOLOGY, Risk Factors

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
3		
4 5	1	An age-period-cohort analysis and projection of
6 7	2	cancer mortality in Hong Kong, 1998–2030
8 9	3	
10 11 12	4	Yanji Zhao ^{1, #} , Zian Zhuang ^{1,2, #} , Lin Yang ³ and Daihai He ^{1,4*}
13 14	5	
15 16 17	6	1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong,
18	7	China
19 20 21	8	2 Department of Biostatistics, University of California, Los Angeles, CA, United States
22 23	9	3 School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
24 25	10	4 Research Institute for Future Food, Hong Kong Polytechnic University, Hong Kong, China
20 27	11	
28 29 30	12	# These authors contributed equally to this work.
31 32	13	*Correspondence to:
33 34	14	Daihai He
35	15	Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong,
37 38	16	China
39 40	17	Tel: 852-27667864
41	18	Email: daihai.he@polyu.edu.hk
42 43	19	
44 45	20	
46 47	21	Word count:3326
48 49	22	
50 51		
52		
55 54		
55 56		
57		
58 59		
60		
		1

23 Abstract

Objectives: To explore the relationship between immigration groups and cancer mortality, this study aimed to explore age, period, birth cohort effects and effects across genders and immigration groups on mortality rates of lung, pancreatic, colon, liver, prostate and stomach cancers and their projections.

Design, setting, and participants: Death registry data in Hong Kong between 1998 and 2021, which were stratified by age, sex and immigration status. Immigration status was classified into three groups: locals born in Hong Kong, long-stay immigrants and short-stay immigrants.

Methods: Age-period-cohort analysis was used to examine age, period, and birth cohort effects
 for genders and immigration groups from 1998 to 2021. Bayesian age-period-cohort models
 were applied to predict the mortality rates from 2022 to 2030.

Results: Short-stay immigrants revealed pronounced fluctuations of mortality rates by age and of relative risks by cohort and period effects for six types of cancers than those of long-stay immigrants and locals. Immigrants for each type of cancer and gender will be at a higher mortality risk than locals. After 2021, decreasing trends (p<0.05) or plateau (p>0.05) of forecasting mortality rates of cancers occur for all immigration groups, except for increasing trends for short-stay male immigrants with colon cancer (p < 0.05, Avg + 0.30 deaths/100,000 per annum from 15.47 to 18.50 deaths/100,000) and long-stay male immigrants with pancreatic cancer (p<0.05, Avg +0.72 deaths/100,000 per annum from 16.30 to 23.49 deaths/100,000).,

46 Conclusions: Findings underscore the effect of gender and immigration status in Hong Kong
47 on mortality risks of cancers that immigrants for each type of cancer and gender will be at a
48 higher mortality risk than locals.

- *Keywords*: Age-period-cohort analysis, immigration, mortality, lung cancer, pancreatic cancer,
- 51 colon cancer, liver cancer, prostate cancer, stomach cancer

52 Strengths and limitations of this study

- This study provides new evidence regarding the relationship between immigration status and cancer mortality, given the effects of age, period, birth cohort and their predictions.
- The non-identifiability problem has not been interpreted in age-period-cohort models.
- 59 The future perspective of cancer therapies and techniques have not been considered.

tor peer terien on

Page 5 of 52

61 Introduction

Several migration waves from mainland China to Hong Kong have occurred over the past century. These migration waves included a large-scale migration inflow from 1945 to 1950 (the Chinese Civil War) and a few small-scale inflows in the 1950s, 1970s, and 1990s [1-3]. In 2016, immigrants from mainland China formed approximately 38% of the population of Hong Kong. These inflows have led to a growing interest in research on the disparity of health conditions between the locals and immigrants.

Cancer has been one of the most common causes of death, as an estimated 19.3 million new cancer cases and 9.9 million new cancer-associated deaths occurred worldwide in 2020 [4]. In Hong Kong, lung cancer is one of the most common causes of cancer deaths [5, 6]. Previous studies suggested that the primary cause of lung cancer is cigarette smoking [7-11]. Genetic factors, asbestos, radon gas, second-hand smoke, and other forms of air pollution have been proven to influence the risk of lung cancer [12-18]. The overall daily smoking rate in mainland China was approximately 23.2% in 2018 [19], whereas the daily smoking rate in Hong Kong was only 10.2% in 2019 [20]. The leading causes of liver cancer include viral infection, drinking of alcohol and polluted water and food supplies which are also culprits for colon, stomach and pancreatic cancer [21]. Alcohol consumption per capita in Hong Kong has reached 2.37 liters in 2021 [22], compared to 7.0 liters of per capita consumption of alcohol in mainland China in 2018 [23]. As approximately 99% of prostate cancer cases occur after age 50, factors of prostate cancer have been regarded as old age, race, family history and the diet of red meat consumption [24]. In addition to these risk factors, studies have suggested that cancer mortality rates vary depending on migrant status [25-28]. According to data from the Census and Statistics Department of Hong Kong, approximately 81% of immigrants in Hong Kong immigrated from mainland China, Macau, and Taiwan. Immigrants from mainland China account for the bulk of this population. Previous studies have shown that child immigrants in Hong Kong tend to suffer from a higher risk of wheezing disorders and cardiovascular diseases, and immigrant women have higher age-specific mortality rates of breast cancer than locally-born women in Hong Kong [29, 30]. However, to date, few studies have investigated the effect of length of stay in Hong Kong and birthplace on the risk of other types of cancer.

In this study, we compared the mortality rates of lung, pancreatic, colon, liver, prostate and stomach cancers between locally born residents in Hong Kong and immigrants from mainland China. Both populations are widely considered as ethnically homogeneous with similar cultures. Nevertheless, due to different early life experiences, immigrants are exposed to more various social economy and lifestyles than locals. Therefore, it's constructive to ascertain whether immigrants from mainland China have a different mortality pattern of cancers from locals to verify the significance of migration status for this health outcome. As age-period-cohort (APC) 99 analysis plays a vital role in studying time-specific phenomena in epidemiology, in this study, 100 to evaluate the effect of immigration on cancer mortality in the past and future, we developed 101 APC models specified by sex and migrant status to assess the effects of age, period, birth cohort, 102 and of the length of stay in Hong Kong on the mortality risks of cancers. Additionally, we 103 explore the projection of mortality rates for the locally born population and immigrants in Hong 104 Kong who were younger or older than 60 using a predictive model, taking into account age, 105 period, and birth cohort effects as well.

107 Methods

Data

We obtained the death registry data in Hong Kong between 1998 and 2021 from the Census and Statistics Department of Hong Kong, as the data in 2022 has not been available up to now. The data was extracted from a routine census held by the Hong Kong government as subjective errors caused by resampling can be neglected. The population data were stratified by age, sex, immigration status, and length of stay in Hong Kong. We retrieved six types of cancer cases from the death registry data using ICD codes, such as ICD-9 code 162 and ICD-10 codes C34.0-C34.3, C348, and C349 for lung cancer. To assure comparability among registries, deaths from the age group of 35–85 years were selected, since cases younger than 35 and older than 85 were relatively trivial for lack of statistical interpretability [31]. Immigration status was classified into three groups: locals born in Hong Kong, immigrants who have lived in Hong Kong for >10 years before death defined as long-stay immigrants, and immigrants who have lived in Hong Kong for ≤ 10 years before death defined as short-stay immigrants. Notably, much focus was placed on immigrants from mainland China, because approximately 81% of immigrants in Hong Kong came from mainland China, Macau, and Taiwan based on the data from the Census and Statistics Department of Hong Kong. Moreover, few cases recorded from Macau and Taiwan are statistically insignificant in the analysis. Demographics and population projections from 2022 to 2030 were retrieved from the Census and Statistics Department of Hong Kong and estimated with cubic smoothing spline as the prerequisite of the predictive model. Codes for APC and BAPC analysis are available in the GitHub repository (https://github.com/kshz2164313/APC-population-projections-for-immigration-HK).

131 <u>Statistical analysis</u>

We modeled cancer mortality rates in Hong Kong using APC analysis based on log-linear
Poisson regression models. The model aimed to disentangle age, period, and cohort effects of
time-varying phenomena simultaneously [32, 33], given that

$$\log(E_{ij}) = \alpha_i + \beta_j + \gamma_k + \mu + \log(\theta_{ij}) \tag{1}$$

BMJ Open

2		
3	136	where E_{ij} denotes expected mortality; α_i , β_j , and γ_k denote age, period, and cohort
5	137	effect, respectively, for $i=1,,I$, $j=1,,J$, $k=1,,K$ with $k=I-i+j$.
6 7	138	$\log(\theta_{ij})$ is the offset. We mainly focused on the contributions of sex and immigration status
8	139	due to the non-identifiability problem that the effects of these three components are collinear
9	140	with each other (denoted as period – age = cohort) [34]. Birth cohort effect and period effect
10 11	141	were assessed with relative risks to evaluate the effect of three components. The median year
12	142	of birth among cases was regarded as the reference cohort [35,36]. Since death cases aged at
13	143	35-85 years between 1998 and 2021 were selected, the range of birth cohort from 1913 to
14	144	1986 covered observations and further projections until 2030. The second and penultimate
15 16	145	period effects were constrained to the reference for period. For sex and immigration status,
10	146	maximum likelihood framework was applied to estimate the relative risks and 95%
18	147	confidence intervals (CIs) by age groups, calendar period, and birth cohort.
19 20	148	
20 21	149	Several projection approaches for future cancer mortality have been developed, but a
22	150	Bayesian age-period-cohort (BAPC) model built upon integrated nested Laplace
23	151	approximations (INLA) [37] yields relatively higher coverage and better performance for all
24 25	152	evaluated parameter combinations [38]. To prevent some sampling problems caused by
25 26	153	Markov chain Monte Carlo (MCMC), this MCMC-free BAPC approach was applied to
27	154	predict future cancer mortality within a fully Bayesian inference setting and provide outputs
28	155	of interest simply such as projected age-standardized and age-specific rates. Convergence
29 30	156	checks are not necessary for this technique [37]. The projections of age-standardized cancer
30 31	150	mortality rates for each sex age group (younger or older than 60 years) and migrant status
32	158	taking into account age period and birth cohort effects were performed based on the weights
33	150	of nonulation age groups from the WHO World Standard nonulation [39] with 95%
34 35	160	prediction intervals. Mann Kendall trend test was applied to verify the projection trend
36	161	Friedman's Two Way Analysis of Variance was applied to test interactions between gender
37	162	and immigration groups for each year
38	102	and miningration groups for each year.
39 40	163	
41	164	All analyses were performed via R version 4.2.1 (R Core Team, R Foundation for Statistical
42	165	Computing, Vienna, Austria, 2013, http://www.R-project.org/). The APC models were
43 44	166	established using the Epi package, and the projections based on Bayesian APC models were
44 45	167	performed with the BAPC package.
46	168	
47 48	169	Patient and public involvement
49	170	None
50	170	None.
51	1/1	
52 53	172	
54	173	Results
55 56		
50 57	174	Figure 1 & 2 and eFigure 1(a-e) in Supplementary Material illustrate the estimates of age
58	175	(assessed by cancer mortality), cohort and period effects (assessed by relative risk) based on
59 60	176	APC models among three migrant groups for men and women with six types of cancers,

respectively. All the mortality rates for each gender and immigration status exhibit notable increasing trends with age. Age, cohort and period effects of six types of cancer for immigrants who stayed in Hong Kong for ≤10 years revealed relatively more pronounced fluctuations and deviations from those effects in the other two immigration groups. Significant increasing trends of age effect occurred in all types of cancer, regardless of gender and immigration status. For example, while relatively insignificant differences in lung cancer mortality rates by immigration status among females have performed, male immigrants who remained in Hong Kong for >10 years had higher lung cancer mortality rates at ages above 50 years and those who arrived ≤ 10 years had lower lung cancer mortality at ages below 62 years compared to local men Figure 1. In addition to compatible dynamics of period effect for locals and long-stay immigrants, similar changes of relative risks by birth cohort for locals and long-stay immigrants in lung, colon, liver and stomach cancers occurred before 1945, whereas significant differences of relative risks by birth cohort between these two immigration groups occurred after 1960 (Figure 1 & eFigure 1(a.b.d)). Locals and long-stay immigrants in pancreatic and prostate cancer perform almost similar changes of relative risks by birth cohort effects all the time (eFigure 1(c,e)). Short-stay immigrants who have stayed in Hong Kong for ≤ 10 years had more fluctuating relative risks affected by period effects before 2020 than those for locals and long-stay immigrants. Lack of young cases, especially young short-stay immigrants, of prostate cancer leads to significant deviations and variances in age and cohort effects.

Figure 3-5, eFigure 2-6 in Supplementary Material illustrate the age-standardized mortality rates of six types of cancer from 1998 to 2021 and their projections by sex, immigrant status and age groups from 2022 to 2030, taking into account age, period, and birth cohort effects. Means and standard deviations of predictive mortality rates are shown in eTable 1-6 in **Supplementary Material**. For all ages projection (Figure 2 & eFigure 2-6), as approximately significant interactions between gender and immigration groups emerge for each type of cancer in each year (p < 0.05), given the projected trends, immigrants for each gender, especially who have stayed in Hong Kong for > 10 years will suffer from higher mortality rates of cancer in each year than locals. Monotone decreasing trends or plateau of forecasting occur for both genders and all immigration groups in cancers, except for increasing trends for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer (p < 0.05, Avg +0.30) deaths/100,000 per annum) from 15.47 deaths/100,000 (95% CI: 11.28, 19.66) in 2021 to 18.50 deaths/100,000 (95% CI: 2.31, 34.69) in 2030, and male immigrants who have stayed in Hong Kong for > 10 years with pancreatic cancer (p < 0.05, Avg +0.72 deaths/100,000 per annum) from 16.30 deaths/100,000 (95% CI: 14.38,17.26) in 2021 to 23.49 deaths/100,000 (95% CI: 12.49, 34.49) in 2030. Most of predictive trends for younger cases (<60 years) and older cases $(\geq 60 \text{ years})$ reach a consensus with those for all ages population, except for two phenomena: 1.) mortality rates of lung cancer for men immigrants ≤ 10 that insignificant trend for all ages

(p > 0.05) vs. decline for younger cases (p < 0.05) vs. increase for older cases (p < 0.05); 2.) mortality rates of liver cancer for men immigrants >10 that decline for all ages (p < 0.05) vs. decline for younger cases (p < 0.05) vs. insignificant trend for older cases (p > 0.05). Some particular cases occur in the projection of prostate cancer that young long-stay male immigrants (0.44 deaths/100,000, 95% CI: 0, 1.05) aged less than 60 will be at lower mortality rate than locals (0.69 deaths/100,000, 95% CI: 0, 1.42) in 2030 (eTable 6). Compared with other cancers and immigration groups, male immigrants who have stayed in Hong Kong for >10 years with lung cancer would perform the most significant decline in predictive mean from 102.90 (95% CI: 98.14, 107.66) to 79.55 (95% CI: 47.46, 111.64) deaths per 100,000 population (Avg -2.34 deaths/100,000 per annum) (eTable 1), while the same immigration group with pancreatic cancer would indicate the most significant uptrend in each year of 16.30 (95% CI: 14.38,17.26) and 23.49 (95% CI: 12.49, 34.49) deaths per 100,000 population in 2021 and 2030, respectively (Avg + 0.72 deaths/100,000 per annum) (eTable 4).

Discussion

Early detection of cancer is positive and instructive for increasing chances of cure. Nevertheless, the high mortality rate of cancer results from late diagnosis among most patients after progression to more advanced or severe stages. Individuals at high risk of cancer, such as smokers, alcoholics or those who are frequently exposed to susceptible circumstances, should be screened for early detections to increase opportunities for cure [40]. Therefore, the differences in mortality rates among immigration groups are synonymous with detection means, therapies, and social history in disparate periods and areas.

While the changes in mortality rates by age for long-stay immigrants reached approximate harmony with those for locals, the changes in mortality rates by age for short-stay immigrants revealed clear differences with those for the other two populations. The group of long-stay immigrants had a higher risk of death from lung, colon and liver cancers than the other two immigration groups after the age of 60 years. Short-stay male immigrants were less likely to die from lung cancer before the age of 65 years. The contrast in age effects among the immigration groups was partially consistent with studies [25, 41] that highlighted the age effects for locals and immigrants on breast cancer mortality in Hong Kong and lung cancer incidence in Sweden, as they both showed similar trends and magnitudes between locals and immigrants before the age of 60 years. They are also compatible with the results in [42] that diagnosis of liver cancer is the most frequent among populations at 55 to 65 years old. According to these trends, young individuals, especially new young immigrant men, who have benefited from all-rounded development in mainland China and Hong Kong, are more

likely to seek early detection and be treated for cancers using more advanced treatments [43].
Differences in birth cohort effects among immigrant groups partially comply with the
interpretation above.

 We observed significant trends of cohort effects among locals and immigrants. These findings are partially consistent but subtly different from previous findings, regarding the effect of immigration status on cancers. Zhao et al. [25] described multiple peaks of cohort effects on breast cancer mortality between locals and immigrants in Hong Kong, as well as a significant decline in cohort effects after 1950. In contrast, Sung et al. [44] investigated the difference in breast cancer incidence between Chinese Americans and non-Hispanic whites in the U.S. and emphasized that Chinese Americans were at lower risk of breast cancer than non-Hispanic whites born in the same year. Here, we interpret the cohort-driven trends resulting from the intricacy of social history and lifestyle. Compared to a relatively stable social development in Hong Kong, representing downward trends of relative risks for locals, wars and social instability in mainland China resulted in several immigration waves from mainland China to Hong Kong before 1950. Additionally, remarkable increasing trends were recorded for new immigrants after 1950, which corresponded to the economic downturn after wars and famine between 1959 and 1961 during their youth [45]. The increasing trends for new immigrants and similar trends for locals and long-stay immigrants were consistent with the finding that nutrient deficiency contributes to a higher risk of severe mortality rates of cancers [46]. Furthermore, we speculate that these trends, especially those for locals and long-stay immigrants, are most likely attributed to social development and personal behaviors, such as daily habits, occupational history, different diagnoses and treatments, and domestic environmental exposures. Notably, short-stay immigrants suffered from a lower risk of death from colon cancer for all ages (eFigure 1a in Supplementary Material). As locals and immigrants in Hong Kong transitioned to more westernized lifestyles, higher consumption of meat was associated with a higher risk of these types of cancer, whereas consumption of vegetables had a strong protective effect against pancreatic cancer, and moderate consumption of coffee appeared to be beneficial against lung cancer [47,48]. Further studies on potential risk factors are required.

Short-stay immigrants had more fluctuating and non-stationary but inconspicuous relative risks by period effects before 2021 than locals and long-stay immigrants. Cumulatively, an arch pattern and fluctuating curve depicting period effects externally resulted in an arch pattern of age-standardized mortality rates for short-stay immigrant women and irregular rates for short-stay immigrant men before 2021. The external performance of different period effects on mortality rates could be most likely attributed to the higher effect of different lifestyles and social development on new immigrants than on long-stay immigrants and locals in Hong Kong. For the age-standardized mortality rates and projections, consistent with

previous findings [49,50], we predict that the mortality rates of cancer in Hong Kong after 2021 will continue to decline or remain relatively stable, consistent with the trends before 2020, except for male immigrants who have stayed in Hong Kong for ≤ 10 years with colon cancer and male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer. Men will be at higher risk of mortality rates of cancer than women, regardless of immigration status. They are also compatible with the results in [4] that men suffer from a higher risk of these types of cancer than women, excluding prostate cancer. Furthermore, new immigrant women will be at lower risk than local women, even though long-stay immigrants will suffer from higher mortality rates than locals in the future. Potential interpretations could be consistent with those for birth cohort effects, as age and period effects are considered as confounders of cohort effect.

In the past few decades, spurred by an increasing burden of high incidence and mortality rates of cancer, several studies focused on the inherent identification dilemma of three effects in the APC model. Further, complicated population distribution and immigration status in Hong Kong, one of the areas with the highest population density and migration frequency in the world, have intricate causes and inherent dynamics of cancer and other diseases. To our knowledge, few studies have assessed the relationship between immigration status and cancer mortality. Therefore, this study is original to examine the effect of the length of stay in Hong Kong and origins of previous residence on cancer deaths, which is instructive for further immigration policy-making and targeted strategies of disease detection and intervention. However, this study had several limitations. Given the non-identifiability problem in ageperiod-cohort models, we could only depict trends and variations among different immigration and sex groups, as illustrated in figures, and insufficiently perform the estimates of the contributions of three effects or subgroups to mortality rates. Furthermore, we adopted a cubic smoothing spline to estimate populations of immigrants and locals due to the large proportion of unspecified immigration status from official demographic projections. A few acceptable cases resulted in a limited type of cancer so that some common cancers, such as the ovary and cervix, were discarded. Since the issue of quantification, the future perspective of cancer therapies and techniques have not been considered in the model of projection.

324 Conclusion

We conclude that immigrants, especially short-stay immigrants, had more pronounced
fluctuations of mortality rates by age and of relative risks by cohort and period effects for six
types of cancers than those of long-stay immigrants and locals. Male immigrants who have
stayed in Hong Kong for ≤10 years with colon cancer and male immigrants who have stayed
in Hong Kong for >10 years with pancreatic cancer would perform significant uptrend in the

- 330 future, while other immigration groups for each type of cancer would continue to decline or
- remain relatively stable. Immigrants for each gender in Hong Kong would suffer from higher
 - 332 mortality risks of cancers than locals in the future.

to per terien on

1		
2		
3 4 5	333	Declaration
5 6 7	334	Ethical approval and consent to participate
, 8 9	335	Ethical approval and consent to participate are not applicable. This study does not directly
10 11	336	involve human participants. Data was obtained from the Census and Statistics Department of
12 13	337	Hong Kong.
14 15	338	Consent for publication
16 17	339	Not applicable.
18 19 20	340	Data availability statement
20	341	Data are available upon reasonable request.
22 23	342	Contributors
24	343	Yanii Zhao ⁻ Methodology Formal analysis Data Curation Writing - Original Draft
25	344	Visualization Zian Zhuang: Methodology Formal analysis Data Curation Writing - Review
27	345	& Editing Lin Vang: Validation Writing - Review & Editing Daihai He: Concentualization
28	346	Writing - Review & Editing Supervision
29	347	
30 31	547	
32	348	Funding
33 34	349	The work described in this paper was partially supported by a grant from the Research Grants
35 36	350	Council of the Hong Kong Special Administrative Region, China (HKU C7123-20G).
37 38	351	Competing interests
39 40 41	352	None declared.
42		
43		
44		
45		
40		

References

- 1.Fan S-C. The population projection of Hong Kong. Southeast Asian Journal of Social Science. 1974;2(1/2):105-17. 2.Department CaS. Hong Kong Statistics 1947-1967 (Report). https://www.statistics.gov.hk/pub/hist/1961 1970/B10100031967AN67E0100.pdf Accessed 4th May 2019. 3. Department CaS. Demographic Trends in Hong Kong 1981-2011 (Report). http://www.statistics.gov.hk/pub/B1120017032012XXXXB0100.pdf, Accessed 4th May 2019. 4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 2021 2021/05/01;71(3):209-49. doi: https://doi.org/10.3322/caac.21660. 5. Wang XR, Chiu YL, Qiu H, Au JSK, Yu ITS. The roles of smoking and cooking emissions in lung cancer risk among Chinese women in Hong Kong. Annals of Oncology. 2009 2009/04/01/;20(4):746-51. doi: https://doi.org/10.1093/annonc/mdn699. 6. Chiu Y-L, Wang X-R, Qiu H, Yu IT-S. Risk factors for lung cancer: a case-control study in Hong Kong women. Cancer Causes & Control. 2010 2010/05/01;21(5):777-85. doi: 10.1007/s10552-010-9506-9. 7. Office on S, Health. Publications and Reports of the Surgeon General. Women and Smoking: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2001. 8. Escobedo LG, Peddicord JP. Smoking prevalence in US birth cohorts: the influence of gender and education. American Journal of Public Health. 1996 1996/02/01;86(2):231-6. doi: 10.2105/AJPH.86.2.231. 9. Husten CG, Shelton DM, Chrismon JH, Lin YC, Mowery P, Powell FA. Cigarette smoking and smoking cessation among older adults: United States, 1965-94. Tobacco Control. 1997;6(3):175. doi: 10.1136/tc.6.3.175. 10. Bolego C, Poli A, Paoletti R. Smoking and gender. Cardiovascular Research. 2002;53(3):568-76. doi: 10.1016/S0008-6363(01)00520-X. 11. Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary report. Br Med J. 1954;1(4877):1451-5. PMID: 13160495. doi: 10.1136/bmj.1.4877.1451. 12. Ramada Rodilla JM, Calvo Cerrada B, Serra Pujadas C, Delclos GL, Benavides FG. Fiber burden and asbestos-related diseases: an umbrella review. Gaceta Sanitaria. 2021 2021/06/11/. doi: https://doi.org/10.1016/j.gaceta.2021.04.001. 13. Collishaw NE, Kirkbride J, Wigle DT. Tobacco smoke in the workplace: an occupational health hazard. Can Med Assoc J. 1984;131(10):1199-204. PMID: 6498670. 14. Dresler CM, Fratelli C, Babb J, Everley L, Evans AA, Clapper ML. Gender differences in genetic susceptibility for lung cancer. Lung Cancer. 2000 2000/12/01/;30(3):153-60. doi: https://doi.org/10.1016/S0169-5002(00)00163-X. 15. Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1 genotypes affect benzo a pyrene DNA adducts in smokers' lung: comparison with
- aromatic/hydrophobic adduct formation. Carcinogenesis. 2002;23(12):1969-77. doi:

2				
3	397	10.1093/carcin/23.12.1969.		
4 5	398	16. Samet JM. Radon and Lung Cancer. JNCI: Journal of the National Cancer Institute.		
6	399	1989;81(10):745-58. doi: 10.1093/jnci/81.10.745.		
7	400	17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in		
8	401	homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-		
9 10	402	control studies. BMJ. 2005;330(7485):223. doi: 10.1136/bmi.38308.477650.63.		
11	403	18. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E. Stafoggia M. Weinmavr G. et al.		
12	404	Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the		
13	405	European Study of Cohorts for Air Pollution Effects (ESCAPE) The Lancet Oncology 2013		
14	406	2013/08/01/·14(9)·813-22 doi: https://doi.org/10.1016/\$1470-2045(13)70270-1		
16	407	2015/00/01/,14(9).015-22. uoi. <u>Imps.//uoi.org/10.1010/514/0-2045(15)/02/9-1</u> . 10. 2018 Summary 20100710 Patriaved August 26, 2022 from		
17	407	19. 2010 Summary-20190/19. Ketrieved August 26, 2022, from		
18	408	nttps://www.who.int/docs/default-source/wprodocuments/countries/china/2018-gats-china-		
19 20	409	The sector of th		
21	410	20. Thematic household survey. Retrieved August 26, 2022, from		
22	411	https://www.censtatd.gov.hk/en/data/stat_report/product/B1130201/att/B11302702020XXXX		
23	412	B0100.pdf		
24 25	413	21. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-		
26	414	cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis		
27	415	for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71.		
28	416	22. Estimated alcohol consumption per capita in Hong Kong. Change4Health. (n.d.).		
29 30	417	Retrieved December 1, 2022, from		
30 31	418	https://www.change4health.gov.hk/en/alcohol_aware/figures/alcohol_consumption/index.htm		
32	419	1		
33	420	23. World Health Organization. Global status report on alcohol and health 2018. World		
34 25	421	Health Organization; 2019 Feb 14.		
36	422	24. Wild C. World cancer report 2014. Wild CP, Stewart BW, editors. Geneva, Switzerland:		
37	423	World Health Organization: 2014.		
38	424	25 Zhao S Dong H Oin I Liu H Li V Chen V et al Breast cancer mortality in Chinese		
39 40	425	women: does migrant status play a role? Annals of Enidemiology 2010 $2010/12/01/2002$		
40 41	426	women, does migrant status play a role: Annais of Epidemiology. $2019/2019/12/01/,40.26$ - 34 e2 doi: https://doi.org/10.1016/i.annenidem.2019.10.006		
42	427	26 Gomez SI Vang I Lin S W McCusker M Sandler A Chang I at al Incidence trends of		
43	427	20. Joinez SL, Tang J, Lin S-W, McCusker W, Sandier A, Cheng I, et al. Incidence trends of		
44 45	420	Draw 2015;24(8):1157 64 DMID: 25000552 dai: 10.1159/1055.00(5 DDI 15.0102		
45 46	429	$\begin{array}{c} \text{Field} \\ Fi$		
47	430	27. Hemininki K, Li A, Czene K. Cancer fisks in first-generation miningrants to Sweden.		
48	431	International Journal of Cancer. $2002 - 2002/05/10;99(2):218-28$. doi:		
49 50	432	https://doi.org/10.1002/ijc.10322.		
50 51	433	28. Vanthomme K, Rosskamp M, De Schutter H, Vandenheede H. Lung cancer incidence		
52	434	differences in migrant men in Belgium, 2004–2013: histology-specific analyses. BMC Cancer.		
53	435	2021 2021/03/30;21(1):328. doi: 10.1186/s12885-021-08038-6.		
54 55	436	29. Schooling M, Leung GM, Janus ED, Ho SY, Hedley AJ, Lam TH. Childhood migration		
55 56	437	and cardiovascular risk. International Journal of Epidemiology. 2004;33(6):1219-26. doi:		
57	438	10.1093/ije/dyh221.		
58	439	30. Leung JYY, Li AM, Leung GM, Schooling CM. Mode of delivery and childhood		
59 60	440	hospitalizations for asthma and other wheezing disorders. Clinical & Experimental Allergy.		
00				

1		
2		
3	441	2015 2015/06/01;45(6):1109-17. doi: https://doi.org/10.1111/cea.12548.
4 5	442	31. Baker A, Bray I. Bayesian projections: what are the effects of excluding data from younger
6	443	age groups?. American Journal of Epidemiology. 2005 Oct 15;162(8):798-805.
7	444	32. Rosenberg PS, Anderson WF. Age-Period-Cohort Models in Cancer Surveillance Research:
8	445	Ready for Prime Time? APC Models Cancer Epidemiology Biomarkers & Prevention 2011
9 10	446	Iul 1·20(7)·1263-8
10	447	33 Holford T Analyzing the effects of age period and cohort on incidence and mortality rates
12	119	Stat Meth Med Res 1002.1:317 37
13	440	24 Brookmayer P. Stroup DE editors Monitoring the health of nonulations: statistical
14 15	449	34. Brookineyer R, Stroup DF, eutors. Monitoring the health of populations. statistical
15	450	principles and methods for public health surveillance. Oxford University Press, 2004.
17	451	35. Yang Y, Land KC. Age-period-conort analysis: New models, methods, and empirical
18	452	applications. Taylor & Francis; 2013.
19 20	453	36. Robertson C, Gandini S, Boyle P. Age-period-cohort models: a comparative study of
20 21	454	available methodologies. Journal of clinical epidemiology. 1999 Jun 1;52(6):569-83.
22	455	37. Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort
23	456	analysis with integrated nested Laplace approximations. Biometrical Journal. 2017
24	457	May;59(3):531-49.
25	458	38. Knoll M, Furkel J, Debus J, Abdollahi A, Karch A, Stock C. An R package for an integrated
20 27	459	evaluation of statistical approaches to cancer incidence projection. BMC medical research
28	460	methodology. 2020 Dec;20(1):1-1.
29	461	39. Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M, Age
30	462	standardization of rates: a new WHO standard Geneva: World Health Organization 2001
31	463	Ian:9(10):1-4
33	464	An Sung H. Farlay I. Siagal RI. Laversanna M. Soariomataram I. Jamal A. Bray F. Global
34	404	40. Sung H, Ferray J, Sieger KL, Eaversamie M, Soerjomatarami I, Jeniar A, Bray F. Globar appear statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 26
35	405	cancer statistics 2020. GEOBOCAN estimates of incidence and monanty wondwide for 50
36 27	400	cancers in 185 countries. CA: a cancer journal for clinicians. 2021 May, $71(5):209-49$.
38	467	41. Mousavi SM, Fallan M, Sundquist K, Hemminki K. Age-and time-dependent changes in
39	468	cancer incidence among immigrants to Sweden: colorectal, lung, breast and prostate cancers.
40	469	International journal of cancer. 2012 Jul 15;131(2):E122-8.
41	470	42. National Cancer Institute. SEER stat fact sheets: liver and intrahepatic bile duct cancer.
42 43	471	43. Wu X, Chung VC, Hui EP, Ziea ET, Ng BF, Ho RS, Tsoi KK, Wong S, Wu JC.
44	472	Effectiveness of acupuncture and related therapies for palliative care of cancer: overview of
45	473	systematic reviews. Scientific reports. 2015 Nov 26;5(1):1-5.
46	474	44. Sung H, Rosenberg PS, Chen WQ, Hartman M, Lim WY, Chia KS, Wai-Kong Mang O,
47 48	475	Tse L, Anderson WF, Yang XR. The impact of breast cancer-specific birth cohort effects among
49	476	younger and older C hinese populations. International journal of cancer. 2016 Aug
50	477	1;139(3):527-34.
51	478	45. The world economy volume 1: a millennial perspective. 2. Historical statistics: Academic
52	479	Foundation Gurgaon India (2007)
55 54	480	46 Elias SG Peeters PH Grobbee DE van Noord PA The 1944-1945 Dutch famine and
55	481	subsequent overall cancer incidence Cancer Enidemiology Riomarkers & Prevention 2005
56	187	Δ_{10} :1/(8):1081-5
57 50	402	Aug. 17(0). 1701-J. A7 Chiu VI Wang VD Oiu H Vu IT Dick factors for hung concert a case control study in
50 59	403	Hong Kong women, Concer Courses & Control 2010 Mar 21(5):777.95
60	484	nong Kong women. Cancer Causes & Control. 2010 May;21(5):///-85.

3	485	48. Li J, Lam AS, Yau ST, Yiu KK, Tsoi KK. Antihypertensive treatments and risks of lung
4 5	486	Cancer: A large population-based cohort study in Hong Kong. BMC cancer. 2021 Dec;21(1):1-
6	487	9.

- 488 49. Du J, Sun H, Sun Y, Du J, Cao W, Sun S. Assessment of age, period, and cohort effects of
 489 lung cancer incidence in Hong Kong and projection up to 2030 based on changing
 490 demographics. American Journal of Cancer Research. 2021;11(12):5902.
- 491 50. Centre for Health Protection, Department of Health Lung Cancer. Centre for Health
- 13 492 Protection. Retrieved August 10, 2022, from
- 14 493 https://www.chp.gov.hk/en/healthtopics/content/25/49.html

to beet terien only

FIGURE LEGENDS

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands

Figure 2. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of female lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

Figure 3. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 4. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 5. Projections of lung cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 1. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of male lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

Figure 2. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-cohort model of female lung cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

Figure 3. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 4. Projections of lung cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Figure 5. Projections of lung cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Supplementary Material for

"An age-period-cohort analysis and projection of cancer mortality in

Hong Kong, 1998–2030"

APC Figures

eFigure 1(a) Colon cancer	3
eFigure 1(b) Liver cancer	4
eFigure 1(c) Pancreatic cancer	5
eFigure 1(d) Stomach cancer	6
eFigure 1(e) Prostate cancer	7
Projection Figures Colon cancer	
eFigure 2(a)Projection (all ages)	8
eFigure 2(b)Projection (<60 years)	9
eFigure 2(c)Projection (≥60 years)	
eFigure 3(a)Projection (all ages)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years)	
eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (\geq 60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (\geq 60 years)	
 eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer 	
 eFigure 3(a)Projection (all ages) eFigure 3(b)Projection (<60 years) eFigure 3(c)Projection (≥60 years) Pancreatic cancer eFigure 4(a)Projection (all ages) eFigure 4(b)Projection (<60 years) eFigure 4(c)Projection (≥60 years) Stomach cancer eFigure 5(a)Projection (all ages) 	

1		
2 3	eFigure 5(c)Projection (≥60 years)	
4 5	Prostate cancer	
6	$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$	20
8	efigure 6 Projection (all ages, <60 years and \$60 years)	20
9 10	T (1) (1)	
11	Tables	
12	eTable 1 Lung cancer	21
13 14	eTable 2 Colon cancer	
15	eTable 3 Liver cancer	
16	aTable 4 Depercetic capeer	24
18		
20	eTable 5 Stomach cancer	25
21	eTable 6 Prostate cancer	
22 23		
24		
25 26		
27		
28		
29 30		
31		
32 33		
34		
35		
30 37		
38		
39 40		
41		
42 42		
45 44		
45		
46 47		
48		
49 50		
50		
52		
53 54		
55		
56		
5/		

eFigure 1(a). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female colon cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(b). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female liver cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(c). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female pancreatic cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(d). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male and female stomach cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 1(e). Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-periodcohort model of male prostate cancer mortality rates by immigrant groups: locals, immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands.

eFigure 2(a). Projections of colon cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(b). Projections of colon cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 2(c). Projections of colon cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(a). Projections of liver cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(b). Projections of liver cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 3(c). Projections of liver cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(a). Projections of pancreatic cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 4(b). Projections of pancreatic cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

28 IS SINC...

eFigure 4(c). Projections of pancreatic cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(a). Projections of stomach cancer mortality rates by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(b). Projections of stomach cancer mortality rates for the population younger than 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

eFigure 5(c). Projections of stomach cancer mortality rates for the population older than or equal to 60 by gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

an is show...

eFigure 6. Projections of prostate cancer mortality rates for males by immigrant status and age groups (less than, greater than or equal to 60 years old) from 2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates where prediction started.

Predictive mean of age-standardized mortality rates of lung cancer per 100,000 population											
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Female	41.80	41.34	40.58	39.87	39.19	38.53	37.89	37.26	36.65	36.04	
immigrants >10	(1.27)	(1.86)	(2.27)	(2.75)	(3.28)	(3.86)	(4.46)	(5.09)	(5.74)	(6.4)	
Female immigrants ≤	23.92	22.22	20.56	19.01	17.57	16.24	15.00	13.85	12.79	11.81	
10	(4.00)	(4.67)	(5.38)	(6.10)	(6.80)	(7.45)	(8.04)	(8.56)	(9.01)	(9.39)	
Female locals	34.67	30.22	30.63	31.05	31.48	31.9	32.32	32.73	33.15	33.55	
	(1.76)	(3.54)	(4.77)	(6.38)	(8.29)	(10.47)	(12.87)	(15.48)	(18.31)	(21.33)	
Male immigrants >10	102.90	100.18	97.18	94.34	91.71	89.15	86.66	84.19	81.81	79.55	
	(2.43)	(4.18)	(5.33)	(6.72)	(8.24)	(9.84)	(11.47)	(13.11)	(14.74)	(16.37)	
Male immigrants ≤10	81.26	79.90	79.81	79.72	79.62	79.50	79.32	79.08	78.78	78.41	
	(9.21)	(10.41)	(11.82)	(13.42)	(15.19)	(17.09)	(19.09)	(21.18)	(23.32)	(25.53)	
Male locals	60.96	52.27	50.83	49.56	48.18	46.64	45.13	43.83	42.67	41.43	
	(2.82)	(4.86)	(5.39)	(6.13)	(6.97)	(7.84)	(8.76)	(9.76)	(10.8)	(11.8)	
Female	15.51	14.51	13.90	13.29	12.71	12.13	11.57	11.02	10.49	9.98	
immigrants>10(<60y)	(1.12)	(1.50)	(1.76)	(2.04)	(2.33)	(2.62)	(2.91)	(3.18)	(3.43)	(3.68)	
Female immigrants ≤ 10(<60y)	8.14 (1.91)	7.79 (1.95)	7.18(2.23)	6.62(2.53)	6.10(2.81)	5.63(3.08)	5.19(3.32)	4.79 (3.53)	4.42 (3.72)	4.09 (3.88)	
Female locals(<60y)	10.25 (0.77)	9.48 (0.89)	9.17(1.02)	8.87(1.16)	8.57(1.32)	8.27(1.49)	7.97(1.65)	7.68 (1.82)	7.38 (1.98)	7.09 (2.13)	
Male	27.81	26.36	24.96	23.64	22.38	21.17	20.03	18.96	17.96	17.03	
immigrants>10(<60y)	(2.10)	(3.58)	(3.94)	(4.35)	(4.79)	(5.23)	(5.67)	(6.10)	(6.51)	(6.90)	
Male immigrants ≤	15.01	13.38	12.02	10.79	9.68	8.69	7.79	6.98	6.25	5.59	
10(<60y)	(2.98)	(3.71)	(4.17)	(4.59)	(4.95)	(5.24)	(5.46)	(5.61)	(5.69)	(5.72)	
Male locals(<60y)	15.19	14.45	14.03	13.61	13.14	12.65	12.13	11.55	10.93	10.26	
	(0.78)	(1.15)	(1.29)	(1.46)	(1.64)	(1.82)	(2.01)	(2.17)	(2.31)	(2.43)	
Female immigrants >10(≥ 60y)	108.85 (4.80)	107.21 (5.17)	106.26 (6.24)	105.52 (7.54)	104.94 (9.04)	104.51 (10.72)	104.21 (12.57)	104.07 (14.61)	104.06 (16.78)	104.16 (19.14)	
Female immigrants ≤	66.16	63.84	59.88	56.14	52.60	49.27	46.14	43.20	40.44	37.85	
10(≥60y)	(13.25)	(15.72)	(17.50)	(19.31)	(21.03)	(22.66)	(24.16)	(25.52)	(26.74)	(27.81)	
Female locals(≥60y)	77.33	76.53	76.22	75.94	75.69	75.49	75.32	75.19	75.10	75.03	
	(9.40)	(10.11)	(10.85)	(11.79)	(12.94)	(14.28)	(15.80)	(17.48)	(19.33)	(21.32)	
Male	293.56	289.8	286.6	284.28	282.78	281.99	281.88	282.31	283.37	285.03	
immigrants>10(≥60y)	(9.13)	(11.7)	(15.19)	(19.51)	(24.49)	(30.07)	(36.31)	(43.15)	(50.66)	(58.86)	
Male immigrants ≤	244.88	247.01	251.24	255.62	260.14	264.82	269.61	274.52	279.55	284.69	
10(≥60y)	(30.29)	(36.85)	(42.94)	(50.06)	(58.14)	(67.14)	(77.01)	(87.75)	(99.34)	(111.81)	
Male locals(≥60y)	150.75	146.29	143.54	141.84	140.07	138.14	136.65	136.49	137.24	138.26	
	(16.22)	(18.46)	(20.58)	(23.97)	(28.24)	(33.39)	(39.82)	(47.87)	(57.47)	(68.52)	

eTable 1. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of lung cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of colon cancer per 100,000 population										
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Female	20.03	18.95	18.77	18.59	18.42	18.27	18.12	17.98	17.85	17.73
immigrants >10	(0.95)	(1.13)	(1.37)	(1.66)	(1.98)	(2.33)	(2.71)	(3.11)	(3.53)	(3.96)
Female immigrants ≤	8.11	7.70	7.25	6.82	6.42	6.03	5.67	5.33	5.01	4.71
10	(2.19)	(2.51)	(2.81)	(3.11)	(3.37)	(3.61)	(3.83)	(4.01)	(4.17)	(4.31)
Female locals	13.77	13.47	13.24	13.01	12.77	12.53	12.29	12.06	11.82	11.59
	(1.30)	(1.61)	(1.72)	(1.87)	(2.04)	(2.24)	(2.46)	(2.68)	(2.92)	(3.16)
Male immigrants >10	31.22	29.82	29.66	29.52	29.41	29.30	29.21	29.14	29.06	28.98
	(1.28)	(1.46)	(1.79)	(2.19)	(2.63)	(3.11)	(3.64)	(4.19)	(4.78)	(5.39)
Male immigrants ≤10	15.47	16.77	17.02	17.23	17.45	17.67	17.88	18.09	18.31	18.50
	(2.14)	(3.77)	(4.18)	(4.64)	(5.14)	(5.69)	(6.27)	(6.91)	(7.56)	(8.26)
Male locals	21.28	19.81	19.39	18.97	18.57	18.18	17.81	17.43	17.06	16.71
	(1.38)	(2.07)	(2.22)	(2.42)	(2.61)	(2.85)	(3.12)	(3.40)	(3.71)	(4.03)
Female	7.09	7.36	7.46	7.56	7.65	7.74	7.83	7.92	8.01	8.09
immigrants >10(<60y)	(0.99)	(1.12)	(1.28)	(1.46)	(1.68)	(1.92)	(2.19)	(2.48)	(2.79)	(3.13)
Female immigrants ≤	3.11	2.82	2.65	2.51	2.36	2.22	2.08	1.95	1.83	1.72
10(<60y)	(0.67)	(0.86)	(0.91)	(0.97)	(1.02)	(1.07)	(1.11)	(1.14)	(1.18)	(1.22)
Female locals(<60y)	4.10	3.87	3.73	3.61	3.47	3.34	3.22	3.11	2.99	2.88
	(0.41)	(0.50)	(0.54)	(0.59)	(0.65)	(0.70)	(0.76)	(0.82)	(0.88)	(0.94)
Male immigrants >10(<60y)	8.29 (0.91)	7.98 (1.17)	7.85 (1.38)	7.71 (1.60)	7.54 (1.83)	7.36 (2.08)	7.17(2.32)	6.97(2.57)	6.76(2.81)	6.55(3.05)
Male immigrants ≤ 10(<60y)	5.03 (1.44)	5.18 (1.58)	5.22 (1.75)	5.26 (1.93)	5.30 (2.14)	5.34 (2.36)	5.38(2.59)	5.43(2.84)	5.47(3.11)	5.51(3.38)
Male locals(<60y)	5.14 (0.43)	4.88 (0.63)	4.66 (0.79)	4.46 (0.96)	4.26 (1.13)	4.08 (1.31)	3.91(1.48)	3.73(1.65)	3.57(1.82)	3.42(1.97)
Female	52.16	49.21	48.70	48.26	47.87	47.54	47.26	47.05	46.91	46.81
immigrants >10(≥60y)	(2.59)	(2.99)	(3.56)	(4.26)	(5.05)	(5.94)	(6.90)	(7.94)	(9.06)	(10.26)
Female immigrants ≤	24.01	22.44	21.69	20.95	20.23	19.52	18.84	18.17	17.51	16.86
10(≥60y)	(5.83)	(6.56)	(6.96)	(7.38)	(7.80)	(8.23)	(8.66)	(9.08)	(9.49)	(9.90)
Female locals(≥60y)	37.42	36.69	36.29	35.87	35.46	35.04	34.61	34.19	33.77	33.34
	(5.31)	(5.74)	(6.06)	(6.46)	(6.95)	(7.5)	(8.12)	(8.79)	(9.51)	(10.27)
Male	84.17	82.72	82.16	81.64	81.19	80.81	80.47	80.15	79.85	79.56
immigrants >10(≥60y)	(3.55)	(4.09)	(4.95)	(5.97)	(7.12)	(8.39)	(9.77)	(11.24)	(12.81)	(14.45)
Male immigrants ≤	43.25	44.93	45.62	46.30	46.96	47.61	48.25	48.88	49.51	50.13
10(≥60y)	(11.07)	(13.09)	(14.52)	(16.09)	(17.80)	(19.64)	(21.62)	(23.73)	(25.97)	(28.34)
Male locals(≥60y)	55.79	54.89	53.75	52.63	51.54	50.47	49.43	48.42	47.42	46.44
	(6.86)	(7.65)	(8.03)	(8.52)	(9.12)	(9.8)	(10.55)	(11.37)	(12.25)	(13.16)

eTable 2. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of colon cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of liver cancer per 100,000 population											
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Female immigrants >10	11.34 (0.66)	10.68 (0.71)	10.09 (0.85)	9.54 (1.01)	9.01 (1.16)	8.50 (1.31)	8.02(1.45)	7.57(1.59)	7.14(1.72)	6.74(1.83)	
Female immigrants ≤10	9.15 (1.55)	8.66 (1.82)	8.38 (1.95)	8.11 (2.08)	7.84 (2.22)	7.58 (2.36)	7.32(2.49)	7.07(2.63)	6.82(2.76)	6.58(2.88)	
Female locals	6.72 (0.69)	6.36 (0.88)	6.08 (0.90)	5.81 (0.93)	5.53 (0.97)	5.26 (1.01)	5.01(1.06)	4.77(1.11)	4.53(1.15)	4.3(1.21)	
Male immigrants >10	52.17 (1.78)	49.22 (2.36)	47.76 (2.93)	46.35 (3.59)	45.01 (4.31)	43.67 (5.05)	42.37 (5.81)	41.1(6.56)	39.89 (7.33)	38.71 (8.08)	
Male immigrants ≤10	42.33	39.03	37.39	35.81	34.26	32.76	31.31	29.91	28.56	27.25	
	(5.87)	(6.49)	(7.47)	(8.51)	(9.58)	(10.63)	(11.65)	(12.62)	(13.54)	(14.40)	
Male locals	24.22	22.16	21.02	19.91	18.85	17.83	16.85	15.92	15.03	14.18	
	(1.77)	(2.09)	(2.22)	(2.39)	(2.58)	(2.79)	(3.03)	(3.21)	(3.40)	(3.59)	
Female immigrants >10(<60y)	3.62 (0.45)	3.39 (0.52)	3.29 (0.57)	3.20 (0.63)	3.12 (0.69)	3.04 (0.75)	2.96(0.82)	2.89(0.89)	2.82(0.96)	2.75(1.03)	
Female immigrants ≤ 10(<60y)	4.10 (0.79)	3.81 (0.91)	3.69 (0.96)	3.57 (1.02)	3.46 (1.08)	3.36 (1.15)	3.25(1.22)	3.15(1.29)	3.06(1.36)	2.97(1.43)	
Female locals(<60y)	1.50 (0.13)	1.37 (0.2)	1.29 (0.21)	1.22 (0.23)	1.16 (0.24)	1.10 (0.26)	1.04(0.27)	0.99(0.29)	0.94(0.30)	0.89(0.31)	
Male	26.32	24.04	23.02	22.05	21.13	20.25	19.41	18.62	17.86	17.14	
immigrants >10(<60y)	(2.11)	(2.35)	(2.63)	(2.94)	(3.27)	(3.61)	(3.95)	(4.30)	(4.64)	(4.98)	
Male immigrants ≤	25.52	22.56	21.71	20.87	20.04	19.22	18.42	17.63	16.86	16.11	
10(<60y)	(2.99)	(3.96)	(4.44)	(4.94)	(5.45)	(5.95)	(6.45)	(6.91)	(7.36)	(7.78)	
Male locals(<60y)	8.25 (0.69)	7.47 (0.74)	6.97 (0.79)	6.52 (0.86)	6.11 (0.93)	5.73 (1.01)	5.38(1.08)	5.04(1.15)	4.73(1.21)	4.44(1.27)	
Female immigrants >10(≥	33.67	29.63	27.99	26.42	24.92	23.49	22.13	20.85	19.64	18.50	
60y)	(1.88)	(2.01)	(2.36)	(2.75)	(3.14)	(3.52)	(3.88)	(4.23)	(4.55)	(4.85)	
Female immigrants ≤10(≥	21.72	19.08	18.38	17.71	17.03	16.39	15.76	15.16	14.57	14.01	
60y)	(5.11)	(5.81)	(6.14)	(6.48)	(6.83)	(7.16)	(7.49)	(7.80)	(8.11)	(8.39)	
Female locals(≥60y)	20.63	18.41	17.55	16.72	15.91	15.11	14.34	13.59	12.87	12.17	
	(3.03)	(3.23)	(3.26)	(3.32)	(3.40)	(3.49)	(3.59)	(3.69)	(3.81)	(3.93)	
Male immigrants >10(≥	115.39	113.96	113.43	113.17	113.16	113.37	113.79	114.39	115.19	116.17	
60y)	(4.54)	(5.95)	(7.65)	(9.70)	(12.04)	(14.66)	(17.56)	(20.73)	(24.18)	(27.91)	
Male immigrants ≤10(≥	88.61	85.14	82.59	80.02	77.42	74.83	72.23	69.64	67.07	64.52	
60y)	(15.58)	(18.85)	(20.6)	(22.44)	(24.34)	(26.24)	(28.12)	(29.94)	(31.70)	(33.38)	
Male locals(≥60y)	62.88	58.95	56.51	54.14	51.84	49.61	47.46	45.38	43.38	41.45	
	(5.97)	(7.91)	(8.20)	(8.61)	(9.12)	(9.70)	(10.33)	(11.01)	(11.68)	(12.36)	

eTable 3. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of liver cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive	mean o	of age-standardized mortality rates of pancreatic cancer per 100,000 population 2022 2023 2024 2025 2026 2027 2028 2029 2030								
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Female immigrants >10	10.89 (0.62)	11.11 (0.75)	11.36 (0.91)	11.61 (1.09)	11.87 (1.31)	12.14 (1.56)	12.42 (1.84)	12.71 (2.15)	13.01 (2.48)	13.3(2.85)
Female immigrants ≤ 10	5.51 (1.44)	5.44 (1.56)	5.44 (1.69)	5.43(1.84)	5.42(1.99)	5.41(2.15)	5.39(2.32)	5.36(2.49)	5.34(2.66)	5.31(2.84)
Female locals	8.79 (1.10)	9.01 (1.22)	9.15 (1.34)	9.29(1.48)	9.43(1.64)	9.57(1.83)	9.71(2.05)	9.85(2.28)	9.99(2.54)	10.14 (2.83)
Male immigrants >10	16.30 (0.98)	17.87 (1.19)	18.48 (1.49)	19.11 (1.87)	19.78 (2.32)	20.47 (2.83)	21.18 (3.42)	21.92 (4.07)	22.69 (4.81)	23.49 (5.61)
Male immigrants ≤10	8.10 (2.02)	7.87 (2.37)	7.76 (2.53)	7.64(2.70)	7.51(2.87)	7.38(3.05)	7.24(3.23)	7.09(3.41)	6.95(3.58)	6.81(3.75)
Male locals	11.97 (1.26)	12.29 (1.49)	12.49 (1.64)	12.69 (1.83)	12.91 (2.06)	13.11 (2.33)	13.33 (2.63)	13.55 (2.97)	13.78 (3.34)	14.02 (3.74)
Female immigrants >10(<60y)	3.47 (0.33)	3.62 (0.57)	3.74 (0.66)	3.87(0.77)	4.01(0.89)	4.14(1.02)	4.28(1.18)	4.42(1.34)	4.57(1.53)	4.72(1.73)
Female immigrants ≤ 10(<60y)	1.12 (0.33)	1.21 (0.48)	1.22 (0.52)	1.23(0.56)	1.24(0.61)	1.25(0.66)	1.26(0.71)	1.26(0.77)	1.27(0.83)	1.28(0.89)
Female locals(<60y)	2.76 (0.27)	2.88 (0.36)	2.91 (0.41)	2.93(0.48)	2.96(0.55)	2.99(0.63)	3.02(0.71)	3.04(0.81)	3.07(0.90)	3.10(1.01)
Male immigrants >10(<60y)	6.88 (0.98)	7.05 (1.11)	7.24 (1.32)	7.43(1.56)	7.62(1.84)	7.82(2.16)	8.01(2.50)	8.21(2.88)	8.40(3.30)	8.61(3.75)
Male immigrants ≤ 10(<60y)	2.20 (0.71)	2.01 (0.85)	1.95 (0.91)	1.9(0.94)	1.84(0.99)	1.79(1.04)	1.74(1.09)	1.69(1.14)	1.64(1.19)	1.60(1.24)
Male locals(<60y)	4.16 (0.35)	4.33 (0.48)	4.41 (0.57)	4.46(0.68)	4.53(0.81)	4.61(0.94)	4.69(1.09)	4.77(1.26)	4.85(1.44)	4.93(1.63)
Female immigrants >10(≥60y)	28.58 (1.83)	29.45 (2.11)	29.91 (2.54)	30.38 (3.06)	30.85 (3.66)	31.33 (4.33)	31.81 (5.08)	32.29 (5.91)	32.78 (6.79)	33.27 (7.74)
Female immigrants ≤ 10(≥60y)	16.79 (5.29)	15.65 (6.08)	15.49 (6.71)	15.33 (7.36)	15.16 (8.03)	14.97 (8.73)	14.79 (9.43)	14.59 (10.14)	14.39 (10.86)	14.19 (11.58)
Female locals(≥60y)	22.80 (4.23)	23.85 (4.46)	24.21 (4.81)	24.56 (5.23)	24.91 (5.73)	25.25 (6.30)	25.58 (6.95)	25.90 (7.67)	26.22 (8.47)	26.54 (9.34)
Male immigrants >10(≥60y)	42.70 (2.55)	44.36 (3.02)	45.85 (3.76)	47.41 (4.69)	49.04 (5.78)	50.73 (7.05)	52.48 (8.50)	54.28 (10.13)	56.16 (11.95)	58.11 (13.98)
Male immigrants ≤ 10(≥60y)	24.68 (8.21)	23.96 (9.01)	23.87 (9.74)	23.75 (10.52)	23.61 (11.33)	23.45 (12.17)	23.28 (13.04)	23.09 (13.93)	22.89 (14.83)	22.68 (15.75)
Male locals(≥60y)	30.10 (4.68)	31.17 (5.22)	31.55 (5.63)	31.93 (6.14)	32.30 (6.75)	32.66 (7.45)	33.01 (8.23)	33.35 (9.11)	33.69 (10.08)	34.03 (11.12)

eTable 4. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of pancreatic cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive mean of age-standardized mortality rates of stomach cancer per 100,000 population										
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Female immigrants >10	8.20	7.95	7.71	7.47	7.25	7.03	6.83	6.62	6.43	6.24
	(0.55)	(0.62)	(0.74)	(0.87)	(1.01)	(1.15)	(1.29)	(1.43)	(1.57)	(1.71)
Female immigrants ≤	7.51	7.36	7.33	7.30	7.28	7.27	7.27	7.28	7.31	7.33
10	(1.44)	(1.56)	(1.69)	(1.85)	(2.01)	(2.20)	(2.40)	(2.61)	(2.84)	(3.09)
Female locals	5.26	4.91	4.75	4.61	4.47	4.34	4.21	4.08	3.95	3.83
	(0.40)	(0.52)	(0.57)	(0.63)	(0.71)	(0.77)	(0.84)	(0.91)	(0.99)	(1.06)
Male immigrants >10	15.22 (0.64)	13.89 (0.97)	13.34(1.21)	12.81 (1.46)	12.31 (1.73)	11.83 (1.99)	11.38 (2.26)	10.95 (2.51)	10.54 (2.76)	10.15 (3.01)
Male immigrants ≤10	15.83	15.21	15.07	14.93	14.79	14.64	14.51	14.35	14.19	14.03
	(3.04)	(3.38)	(3.67)	(3.98)	(4.31)	(4.65)	(5.02)	(5.39)	(5.78)	(6.17)
Male locals	8.14 (0.89)	8.07 (0.99)	7.73 (1.03)	7.41(1.07)	7.10 (1.13)	6.81 (1.19)	6.51 (1.26)	6.23 (1.33)	5.97 (1.39)	5.71 (1.46)
Female	4.81	4.69	4.62	4.55	4.47	4.39	4.31	4.22	4.13	4.03
immigrants >10(<60y)	(0.56)	(0.79)	(0.87)	(0.96)	(1.07)	(1.17)	(1.29)	(1.41)	(1.52)	(1.64)
Female immigrants ≤	3.89	4.08	4.10	4.13	4.17	4.21	4.24	4.28	4.32	4.36
10(<60y)	(0.80)	(0.93)	(1.03)	(1.14)	(1.27)	(1.41)	(1.55)	(1.70)	(1.87)	(2.05)
Female locals(<60y)	2.28	2.08	1.98	1.88	1.79	1.71	1.61	1.53	1.44	1.37
	(0.21)	(0.27)	(0.29)	(0.32)	(0.35)	(0.37)	(0.41)	(0.43)	(0.45)	(0.47)
Male	4.94	4.71	4.55	4.41	4.25	4.12	3.98	3.86	3.74	3.63
immigrants >10(<60y)	(0.57)	(0.79)	(0.89)	(0.99)	(1.10)	(1.21)	(1.32)	(1.43)	(1.54)	(1.65)
Male immigrants ≤	4.81	4.70	4.66	4.63	4.59	4.55	4.52	4.48	4.44	4.41
10(<60y)	(1.31)	(1.42)	(1.55)	(1.69)	(1.83)	(1.99)	(2.15)	(2.32)	(2.50)	(2.68)
Male locals(<60y)	2.48	2.37	2.28	2.21	2.12	2.04	1.97	1.91	1.83	1.77(0.
	(0.21)	(0.29)	(0.32)	(0.35)	(0.38)	(0.42)	(0.45)	(0.49)	(0.52)	55)
Female	17.80	16.23	15.65	15.08	14.55	14.03	13.54	13.07	12.62	12.19
immigrants >10(≥60y)	(1.04)	(1.26)	(1.47)	(1.70)	(1.94)	(2.18)	(2.43)	(2.68)	(2.92)	(3.16)
Female immigrants ≤	14.72	13.01	12.52	12.03	11.55	11.08	10.63	10.19	9.76(6.56)	9.34
10(≥60y)	(4.29)	(4.83)	(5.11)	(5.37)	(5.63)	(5.88)	(6.12)	(6.35)		(6.75)
Female locals(≥60y)	12.20 (1.66)	11.86 (1.84)	11.67 (1.98)	11.49 (2.15)	11.33 (2.35)	11.18 (2.58)	11.04 (2.84)	10.91 (3.11)	10.79(3.4)	10.68 (3.71)
Male immigrants >10(≥	37.23	36.59	35.17(3.18)	33.82	32.55	31.34	30.19	29.08	28.02	27.01
60y)	(2.29)	(2.56)		(3.86)	(4.57)	(5.28)	(6.01)	(6.70)	(7.40)	(8.07)
Male immigrants ≤	42.30	41.43	41.03	40.61	40.17	39.71	39.24	38.75	38.23	37.71
10(≥60y)	(10.88)	(11.78)	(12.71)	(13.70)	(14.75)	(15.85)	(16.99)	(18.16)	(19.35)	(20.57)
Male locals(≥60y)	23.04 (3.29)	22.69 (3.56)	22.37(4.07)	22.16(4.8 4)	21.89 (5.86)	21.61 (7.22)	21.52 (9.02)	21.74 (11.29)	22.17 (14.03)	22.73 (17.28)

eTable 5. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of stomach cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Predictive	mean of	age-sta	ndardize	d mortali	ty rates of	prostate c	ancer per 2	100,000 po	pulation	
Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Male immigrants >10	14.81 (0.61)	14.59 (0.79)	14.57 (0.96)	14.56 (1.15)	14.54 (1.37)	14.51 (1.61)	14.48 (1.86)	14.45 (2.13)	14.42 (2.42)	14.38 (2.72)
Male immigrants ≤10	9.03 (2.95)	8.78 (3.11)	8.58 (3.29)	8.39 (3.49)	8.19(3.69)	8.10(3.89)	7.82(4.11)	7.63(4.31)	7.45(4.51)	7.27(4.72)
Male locals	9.54 (1.40)	9.66 (1.57)	9.67 (1.66)	9.69 (1.77)	9.72(1.91)	9.75(2.06)	9.78(2.23)	9.82(2.43)	9.86(2.64)	9.9(2.88)
Male immigrants >10(<60y)	0.57 (0.12)	0.52 (0.17)	0.51 (0.19)	0.50 (0.21)	0.49(0.22)	0.48(0.24)	0.47(0.25)	0.46(0.27)	0.45(0.29)	0.44(0.31)
Male immigrants ≤ 10(<60y)	0.65 (0.59)	0.73 (0.77)	0.81 (0.93)	0.87 (1.10)	0.94(1.31)	1.01(1.51)	1.09(1.75)	1.16(2.02)	1.24(2.32)	1.33(2.64)
Male locals(<60y)	0.63 (0.12)	0.66 (0.14)	0.66 (0.16)	0.66 (0.19)	0.67(0.21)	0.67(0.24)	0.67(0.27)	0.68(0.31)	0.68(0.33)	0.69(0.37)
Male immigrants >10(≥ 60y)	49.43 (2.59)	49.61 (2.73)	49.63 (3.29)	49.64 (3.94)	49.64 (4.68)	49.64 (5.51)	49.63 (6.38)	49.62 (7.32)	49.61 (8.32)	49.58(9.3 7)
Male immigrants ≤ 10(≥60y)	28.29 (9.15)	27.66 (9.78)	26.53 (10.21)	25.4 (10.63)	24.28 (11.03)	23.16 (11.41)	22.07 (11.76)	21.01 (12.09)	19.96 (12.38)	18.95(12. 63)
Male locals(≥60y)	31.57 (5.17)	31.48 (5.49)	31.40 (5.76)	31.32 (6.09)	31.24 (6.48)	31.15 (6.94)	31.06 (7.44)	30.96 (8.01)	30.86 (8.61)	30.74(9.2 6)

eTable 6. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of prostate cancer per 100,000 population for each age group (less than, greater or equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of age-standardized mortality rates in 2021 are also listed.

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract		°Z	
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	4
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	5
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5

Page 51 of 52

BMJ Open

1			of recruitment, exposure, follow-up, and data collection	
2 3 4 5	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.	5
6 7 8 9	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	n/a
10 11 12 13 14	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
15 16 17 18 19 20 21	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	5
22 23	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5
24 25	Study size	<u>#10</u>	Explain how the study size was arrived at	5
26 27 28 29	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	5
30 31 32 33	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	
34 35 26	5			
37 38 39	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	5
40 41	Statistical	#12c	Explain how missing data were addressed	5
42 43	methods			
44 45	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	n/a
46 47	methods			
48 49	Statistical	<u>#12e</u>	Describe any sensitivity analyses	
50 51	methods			
52 53	n/a			
54 55	Results			
56 57 58 59 60	Participants	<u>#13a</u> For	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

BMJ Open

1 2 3 4			included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	
5 6	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	5
7 8 9	Participants	<u>#13c</u>	Consider use of a flow diagram	
10 11	n/a			
12 13 14 15 16 17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	5
19 20 21	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	
22 23 24	n/a			
25 26	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	
27 28 20	n/a			
29 30 31 32 33 34	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable.	
35 36	n/a			
37 38 39 40 41 42 43	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6
44 45 46 47	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	n/a
48 49 50 51	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
52 53	n/a			
54 55 56 57	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7
58 59 60	Discussion	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 53 of 52

BMJ Open

1 2	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8
3 4 5 6 7	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	10
8 9 10 11 12	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	8
13 14 15	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	9
16 17 18 19	Other Information			
20 21 22 23 24	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 56 7 58	This checklist was a EQUATOR Networ	complet t <u>k</u> in co	ed on 11. February 2023 using https://www.goodreports.org/, a tool made by the Ilaboration with Penelope.ai	
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	