Catalyst: Fast and flexible modeling of reaction networks - S1
Text - Additional benchmarks and benchmark information

A Exact ODE benchmark times

This section contains Table[A]in S1 Text, describing the exact benchmark times plotted
in Figure 3 A-E.

Table A. ODE Benchmark times.

Model: Multistate | Multisite2 | Egfr_net | BCR Fceri_gamma?2
Julia solver 1 0.107 0.477 5.89 9,550 1,570

Julia solver 2 0.114 0.517 5.91 12,500 1,670

Julia solver 3 0.117 0.535 6.65 35,900 7,510

Catalyst Isoda 0.220 1.17 29.7 172,000 644,000
Catalyst CVODE | 0.310 1.78 7.31 6,520 423

BioNetGen 154 322 5,280 170,000 108,000
COPASI 0.849 13.0 520 3,110,000 1,990,000
GillesPy2 17.2 315 6,280 24,400,000 | 26,800,000
Matlab 8.34 47.8 880 101,000 354,000

Main text Fig 3 A-E shows the results as bar charts, here, the same benchmark times (median over several simulations) are
given as numbers (in units of milliseconds). Each field corresponds to the same field in Main text Table 3.

September 24, 2023 1

B List of ODE benchmarks

Here follows a list of all ODE simulation methods, and combinations of options, used for
each tool. The best-performing combinations are shown in Fig 3 (with details of the
used options listed in Table 3). The results of all combinations listed here can be found
in Figs[A] and [B]in S1 Text. For some settings, a parenthesis further clarifies what the
option implies. For all ODE simulations, the absolute tolerance was set to 1e-9 and the
relative tolerance to 1e-6.

B.1 BioNetGen solvers

The ode method is the CVODE solver, by default using dense LU and a finite difference
Jacobian approximation. The n_steps parameter sets the number of saved steps. We
sat this to 1, to ensure no intermediary time points were saved. Setting sparse = true
enables the (un-preconditioned) GMRES linear solver (for which we used the default
GMRES tolerance). BioNetGen does not seem to offer an option to specify a
preconditioner for GMRES.

e Method = ode, n_steps = 1, sparse = false.

e Method = ode, n_steps = 1, sparse = true.

B.2 Catalyst solvers

The CVODE_BDF sovler is the CVODE solver. The KrylovJL_GMRES linear solver is the
GMRES linear solver (for which we used the default GMRES tolerance). The jac =
true options set that a symbolic Jacobian is built, else, the Jacobian is computed
through automatic differentiation (or if autodiff = false is used, through finite
differences). If the sparse = true is used, a sparse Jacobian representation is used.

e Solver = lsoda.

e Solver = CVODE_BDF.

e Solver = CVODE_BDF, linear_solver = LapackDense.
e Solver = CVODE_BDF, linear_solver = GMRES.

e Solver = CVODE_BDF, linear_solver = GMRES, sparse = true, iLU
preconditioner.

e Solver = CVODE_BDF, linear_solver = KLU, sparse = true, jac = true.
e Solver = TRBDF2.
e Solver = TRBDF2, linsolve = KrylovJL_GMRES.

e Solver = TRBDF2, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

e Solver = TRBDF2, linsolve = KLUFactorization, sparse = true, jac = true.
e Solver = KenCarp4.
e Solver = KenCarp4, linsolve = KrylovJL_GMRES.

e Solver = KenCarp4, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

September 24, 2023

Solver = KenCarp4, linsolve = KLUFactorization, sparse = true, jac =
true.

Solver = QNDF.
Solver = QNDF, linsolve = KrylovJL_GMRES.

Solver = QNDF, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = QNDF, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = FBDF.
Solver = FBDF, linsolve = KrylovJL_GMRES.

Solver = FBDF, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = FBDF, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = Rodas4.
Solver = Rodas4, linsolve = KrylovJL_GMRES.

Solver = Rodas4, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = Rodas4, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = Rodas5P.
Solver = Rodas5P, linsolve = KrylovJL_GMRES.

Solver = RodasbP, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = RodasbP, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = Rosenbrock23.
Solver = Rosenbrock23, linsolve = KrylovJL_GMRES.

Solver = Rosenbrock23, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = Rosenbrock23, linsolve = KLUFactorization, sparse = true, jac =
true.

Solver = Tsit5.
Solver = BS5.

Solver = VCABM.
Solver = Vern6.
Solver = Vern7.
Solver = Vern8.

Solver = Vern9.

September 24, 2023

e Solver = ROCK2.
e Solver = ROCKA4.

The iLU preconditioner option simulations were benchmarked only for the two largest
models (BCR and Fceri_gamma2). The explicit solvers (Tsit5, BS5, VCABM, Vern6,
Vern7, Vern8, Vern9, ROCK2, and ROCK4) were not benchmarked for the BCR model.

For all benchmarks, we used the saveat = [Simulation length] option to ensure no
intermediary time points were saved. For the TRBDF2, KenCarp4, QNDF, FBDF, Rodas4,
Rodasb5P, Rosenbrock23 methods, when benchmarked on the (large) BCR and
Fceri_gamma2 models, the autodiff = false option was used to disable automatic
differentiation. The iLU preconditioner requires setting a single parameter 7. For
CVODE we used 7 =5 (BCR model) and 7 = 1e2 (Fceri_gamma2 model). For the
other methods, we used 7 = 1e12 (BCR model) and 7 = 1e2 (Fceri_gamma2 model).
While these 7 values were roughly optimized for their specific problems, we note that for
both the BCR and Fceri_gamma2 models, the fastest Catalyst solvers included solvers
not depending on preconditioners with customized 7 values.

B.3 COPASI solvers

The stepsize option sets the time between saving the solution. We used the length of
the simulation to ensure no intermediary time points were saved.

e method = deterministic (CVODE), stepsize = [Simulation length].

B.4 GillesPy2 solvers

The nsteps option sets the maximum number of time steps. The increment option
sets the time between saving the solution. We used the length of the simulation to
ensure no intermediary time points were saved. The solver = ODESolver options
designate that we run ODE simulations (as opposed to e.g. Gillespie simulations), while
the integrator sets the numerical solver method used (e.g. 1soda).

e solver = ODESolver, integrator = lsoda, nsteps = 100000, increment =
[Simulation length].

e solver = ODESolver, integrator = csolver, nsteps = 100000, increment =
[Simulation length].

e solver = 0ODESolver, integrator = zvode, nsteps = 100000, increment =
[Simulation length].

e solver = 0ODESolver, integrator = vode, nsteps = 100000, increment =
[Simulation length].

Due to their poor performance compared to 1lsoda, the zvode and vode methods
benchmarks were investigated beyond initial tests. Furthermore, due to its poor
performance, the csolver solver was not benchmarked for the two largest (BCR and
Fceri_gamma?2) models.

B.5 Matlab solvers

The sundials solver type is the CVODE solver, using its default options. For Matlab
there appeared to be no other documented control parameters (including setting the
density at which time points were saved) that could beneficially affect the performance.
We tried the RuntimeOptions.StatesToLog = {} option, however, this offered no
improvement, while reducing performance for the smaller models.

September 24, 2023

e SolverType = sundials.

September 24, 2023

C List of SSA benchmarks

Here follows a list of all SSA simulation methods used for each tool. Their performance
is shown in Fig 3 (due to the small number of SSA methods, all fit in Fig 3 and no
supplementary figure was needed).

C.1 BioNetGen solvers

The ssa method is the Sorting Direct method. The n_steps parameter sets the number
of saved steps. We sat this to 1, to ensure no intermediary time points were saved.

e method = ssa, n_steps = 1.
Due to the benchmarks surpassing the 4-day limit of jobs at the used HPC

supercomputer, the ssa method was not benchmarked on the BCR model.

C.2 Catalyst solvers

Here, the save_positions = (false,false) options prevent the saving of the solution
before/after a jump is made (which will severely reduce performance when a large
number of jumps are performed). Using this option, we ensured that no intermediary
time points were saved.

e Solver = Direct, save_positions = (false,false)
e Solver = SortingDirect, save_positions = (false,false)
e Solver = RSSA, save_positions = (false,false)

e Solver = RSSACR, save positions = (false,false)

C.3 Copasi solvers

The stepsize option sets the time between saving the solution. We used the length of
the simulation to ensure no intermediary time points were saved.

e method = directMethod, stepsize = [Simulation length].
Due to the benchmarks surpassing the 4-day limit of jobs at the used HPC
supercomputer, COPASI was not benchmarked on the BCR model.

C.4 GillesPy2 solvers

The nsteps option sets the maximum number of time steps. The increment option
sets the time between saving the solution. We used the length of the simulation to
ensure no intermediary time points were saved.

e solver = ssa, increment = [Simulation length].
e solver = numpyssa, increment = [Simulation length].

Due to its poor performance compared to ssa, the numpyssa method benchmarks were
never concluded beyond initial tests. Due to the benchmarks surpassing the 4-day limit
of jobs at the used HPC supercomputer, the ssa method was not benchmarked on the
BCR and Fceri_gamma2 models.

September 24, 2023

C.5 Matlab solvers

The ssa solver type is Gillespie’s Direct method. For Matlab there appeared to be no
other documented control parameters (including setting the density at which time
points were saved) that could affect the performance.

e SolverType = ssa.

Due to slow performance and/or crashing for larger models, the ssa method was not
benchmarked on the BCR and Fceri_gamma2 models.

September 24, 2023

D Additional benchmarks of ODE solvers

In this article we compare ODE simulation benchmarks for Catalyst and various other
CRN modelling tools (BioNetGen, COPASI, GillesPy2, and Matlab’s SimBiology
toolbox) (Fig 3). While we benchmarked a large number of combinations of methods
and tools (S1 Text Section , the main text figure only displays the results using the
best combinations. Here, in Figs |§| and [B|in S1 Text, we show the benchmarks for the
full set. Fig in S1 Text shows the run time to reach each models’ steady states (or,
for the BCR model, complete 3 pulses), while Fig in S1 Text shows the simulation
times as a function of the real (physical) end time of the simulation. The exact options
used for each simulation are described in S1 Text Section [Bl

a Julia (Isoda and CVODE) b Julia, Implicit c Julia, Implicit (GMRES) d Julia, Implicit (GMRES, iLU) eJu"a‘ Implicit (KLU) f Julia, Explicit g Other tools
10*
10°
102
10'
10°

c
=
7]
[
Q
10-1¢m a
10° =
10° [
10? E
10° (1)
7 W] g
g 1o N
' 105
@ m
€ w <
= -
C 10 =}
= 1]
- -
c
o 108
8= 107
8 3
e 2
£ ol
10°
(7] :’n
10?
(1]
108 =
T |
v m %
102 = g
Q
Fisoda [BlcvoDE [V|TRBDF2 [#] KenCarp4 [B] QNDF [Tsits BS5 [©] veABM [B]BioNetGen (CVODE) [l BioNetGen (CVODE, GMRES) N
[©]CVODE (LapackDense) [lICVODE (GMRES) | | [BlFBDF [H] Rodas4 Bl Verné [BF Vern7 [@ Verns [©] cOoPASI (CVODE) [Hl GillesPy2 (Isoda)
[l CVODE (GMRES, iLU) [A]CVODE (KLU) M Rodas5P [l Rosenbrock23 W Verno [l Rock2 [l ROCK4 [l GillesPy2 (CSolver) [J]Matlab SimBiology (CVODE)

Fig A. The result of the benchmarks across the full set of ODE solvers and options. These benchmarks are a more
extensive set than what is provided in Fig 3 (which includes only the best alternative for each combination of tool and model). (a)
Benchmarks for Catalyst, using lsoda, as well as CVODE with a range of options (no linear solver specified, or for CVODE, the
LapackDense, GMRES, or KLU linear solvers). The GMRES option was trialed with and without the iLU preconditioner. A sparse
Jacobian representation was used when the KLU linear solver or iLLU preconditioner was used. Furthermore, for the KLU linear solver a
symbolic, sparse, Jacobian was used. (b) Catalyst benchmarks using an extended set of (implicit) ODE solvers. (c) Benchmark for the
same solvers as in B, but with the GMRES linear solver. (d) Same as in C, but using an iLU preconditioner and sparse finite-difference
Jacobian representation. (e) Benchmark for the same solvers as in B, but with the KLU linear solver and sparse, symbolic, Jacobian
representation. (f) Catalyst benchmarks using an extended set of (explicit) ODE solvers. (g) Benchmarks using non-Catalyst tools. For
more details on the options used for each benchmark, please see S1 Text Section'El

September 24, 2023 8

@ Julia (soda and CVODE) b Julia, Implicit C Julia, Implicit (GMRES) d Julia, Implicit (GMRES, iLU) @ Julia, Implicit (KLU) f Julia, Explicit

g Other tools =

"
10 I pro—g—o—t—o—t—o—yq o=
102 | A I S — IS S S — [e
| | o 0 0 0 ¢ 0 ¢ 0 ¢ mm
L L o0
100 Lk 4 14 I I N eoooooooe&p
10t L [T T 1 [[T T 1 [[1 | e+
10 10° 10° 10 10° 10° 100 102 100 10t P
10° =
10:' 30700000‘5
10 =—t—a—8-8-§ =
102 ! ! i i i y 1 m

—_ |l e e e e ey I,

DR ER il FEITEEEY o

E 10 10° 10° 10 10° 10° 10' 10° 10° 10' 10° 10° 10° 10° 10° 10 102 10° 10° N

N

6
o JE—— —_ 1 m
o

.g 104 . - - « { { + + .'ﬂ a 8 o & :

wid * 0"'-!_"—‘—‘—‘

szigooﬁt«: ;:m f#!!!'f" sttat; ! ;:P_ .|=

e o

o : : : I e

c 100 10? 10° 10 10? 10° 10 10? 10° 10 10? 10° 10 102 10° 10 10? 10°

O 1’ ¥
105 | _/_o—"_‘ .f_—__. e w

= ss‘*é—ﬁ —— =¥ — ._/.::::¢v;" } pa——— = = 5 o

- 2 58— - LD S Es——— -

E 103 :“f L ¥ & Y 1 t: e I ¢ 1 m

amm 107 L 1 | | { { !

o 1 102 10° 10 102 10° 10 102 10° 10 102 10° 10 102 10° 10 102 103_n
108 s 6 & ! ! g a1 -
| T === ====== =2 =
104 [g—oot—2 — 8 5 ¥ . ey]]] | ©Q
10° r:‘:,: o ° ° ———p—— ! | | | Y g
1%%0f 102 10° 10 102 10° 10" 102 10° 10’ 102 10° 10 102 10° 10 102 10° 10 102 1033

Model (physial) final time (s) o
N
< Isoda ©-CVODE V TRBDF2 - KenCarp4 =@=QNDF =g=Tsit5 3 BS5 O VCABM <= BioNetGen (CVODE) =iBioNetGen (CVODE, GMRES)
<©~CVODE (LapackDense) =lsCVODE (GMRES)| |=s=FBDF =#=Rodas4 ==Vern6 == Vern7 =@= Vern8 @+ COPASI (CVODE) =gm GillesPy2 (Isoda)
=@=CVODE (GMRES, iLU) A CVODE (KLU) =@=Rodas5P =mRosenbrock23 sigsVern9 myem ROCK2 sllls ROCK4 =g= GillesPy2 (CSolver) mgmMatlab SimBiology (CVODE)

Fig B. The result of the benchmarks across the full set of ODE solvers and options. These benchmarks are a more
extensive set than what is provided in Fig 3 (which includes only the best alternative for each combination of tool and model). Here,
the simulation run time was as a function of the real (physical) end time of the simulation. (a) Benchmarks for Catalyst, using lsoda, as
well as CVODE with a range of options (no linear solver specified, or for CVODE, the LapackDense, GMRES, or KLU linear solvers).
The GMRES option was trialed using with and without the iLU precondition. A sparse Jacobian representation was used when the
KLU linear solver or iLU preconditioner was used. Furthermore, for KLU linear solver, a symbolic, sparse, Jacobian was used. (b)
Catalyst benchmarks using an extended set of (implicit) ODE solvers. (c) Benchmark for the same solvers as in B, but with the
GMRES linear solver. (d) Same as in C, but using an iLU preconditioner and a sparse finite-difference Jacobian representation. (e)
Benchmark for the same solvers as in B, but with the KLU linear solver and sparse, symbolic, Jacobian representation. (f) Catalyst
benchmarks using an extended set of (explicit) ODE solvers. (g) Benchmarks using non-Catalyst tools. For more details on the options
used for each benchmark, please see S1 Text Section'El

September 24, 2023 9

E Work-precision diagrams for Julia solvers

For the best-performing Julia solvers, we compare the run time of the numerical
simulator to the error it generates. For each combination of solver and options, we make
repeated simulations at various tolerances (absolute and real tolerance both equal to
1072, 1075, 107, or 10~8). For each simulation, we calculate the error by comparison
to a single simulation using the CVODE solver and no options, with absolute and real
tolerances for the latter equal to 107'2. For each tolerance, we can thus compute the
mean error and simulation time (across all simulations at that tolerance). Plotting
these, we generate a so-called work-precision diagram. Such diagrams for all models are
shown in Fig[C|in S1 Text.

Unlike all other benchmarks, the work-precision diagrams were not computed on
supercloud, but rather on the SciML organization’s benchmarking server, which has the
following specifications:

OS Linux (x86_-64-linux-gnu)

CPU 128 x AMD EPYC 7502 32-Core Processor
WORD_SIZE 64

LIBM libopenlibm

LLVM 1ibLLVM-13.0.1 (ORCJIT, znver2)
Threads 128 on 128 virtual cores

The code that was used to generate Fig[C|]in S1 Text can be found in the associated
Github benchmarking repository for the article, see main text Section 6.2. For a more
extensive set of work-precision diagrams of available Julia (and thus Catalyst) solvers,
please refer to the SciMLBenchmarks.jl package.

September 24, 2023

10/122)

Multistate | Mu_ltisit_ez_

+lIsoda
o CVODE_BDF
o= QNDF
-

KenCarp4
e Rodlas5P
Tsits

BS!

*

-2

Time (s)
A
i
3%
Time (s)
5

10 . - > + +
10 10 100 10% 107 100° 10° 10¢ 100 1072 1010 107° 10° 107 10° 107° 10* 107
Error Error
16 - - - ¥ -
w=e== CVODE_BDF (GMRES, iLU)
o= QNDF (GMRES, iLU)
wssws FBDF (GMRES, iLU)

@mom= QNDF (KLU, sparse jac)
wmemss FBDF (KLU, sparse jac)
#- KenCarp4 (KLU, sparse jac)

1029&7 * . 4 | |

z s
g 10 g
F F
10t . . .
1072] I) . . P 10° . . . 4 4
107 108 1077 10° 107° 107 1073 1072 107° 1072 107t 10° 10t 182

Error

10°
=@ CVODE_BDF (GMRES)
o= CVODE _BDF (GMRES, iLU)
o= QNDF (GMRES, iLU)
s FBDF (GMRES, iLU)
< < < < e TS
10t 1 ! 1 | 1 ! 1
2
o
£
E
10° .
10! ' s
10° 10°% 107 10° 10° 10¢ 10? 10?7 10t

Error

10°

Fig C. Work-precision diagrams for selected Julia ODE solvers (and options). Native Julia solvers typically have smaller
errors (compared to lsoda and CVODE) when tolerances are kept identical. The simulation options used for this figure are drawn from

the list in S1 Text Section']él

September 24, 2023

11

F Simulation trajectories for various modelling tools

In this article, we compare ODE and SSA simulation benchmarks for Catalyst and
various other CRN modelling tools (BioNetGen, COPASI, GillesPy2, and Matlab’s
SimBiology toolbox). To ensure that each tool successfully simulates each model, we
here plot the output trajectories for each combination of tool and model. These plots
are displayed in Figs in S1 Text.

September 24, 2023 12

Species amount

t methods

ici

GMRES linear solver No linear solver

KLU linear solver

Expl

SSA Simulation

Lsoda

CVODE _BDF

CVODE_BDF (LapackDense)

CVODE_BDF (GMRES)

CVODE_BDF (KLU)

)

\

TRBDF2 KenCarp4 QNDF FBDF
o s 10 15 0 0 s 10 15 0 0 s 10 0 o s 10 15)
Rodas4 Rodas5P Rosenbrock23
o s 10 15 20 o B 10 15 2 o s 10 15 2
TRBDF2 KenCarp4 QNDF FBDF
o B 10 15 20 0 s 10 15 2 o s 10 15 2 0 B 10 15 2
Rodas4 Rodas5P Rosenbrock23
e A P(t)
A_unbound_P(t)
o= A _bound_P(t)
o s 10 15 2 o s 10 15 2 o s 10 15 20| -
TRBDF2 KenCarp4 QNDF FBDF
o 5 10 15 2 0 s 10 15 2 0 s 10 15 0 0 s 10 15 2
Rodas4 Rodas5P Rosenbrock23
o 10 15 20 0 10 15 0 0 10 2
Tsit5 BS5 VCABM Verné
o s 10 15 20 0 s 10 15 2 o s 10 15 2 o 10 15 20
Vern7 Verng Vern9 ROCK4
o s 10 15 20 0 B 10 15 2 o s 10 15 20 0 s 10 15 20
SortingDirect RSSA RSSACR

Direct

\

10 15 20

Time (s)

Fig D. Catalyst benchmark simulation time trajectories for the multistate model. The multistate model is simulated until
it reaches its (approximate) steady state at ¢ = 20 seconds (same time point which was used for the benchmarks in Fig 3). It was
simulated using both ODE and SSA methods. The simulation trajectories correspond to those of the other tools, suggesting that the

models are correctly interpreted.

September 24, 2023

1322

Lsoda CVODE BDF CVODE BDF (LapackDense) CVODE BDF (GMRES) ‘CVODE_BDF (KLU)

)
)

20 00 03 10 s 20 00 [10 15 20

00 [10 15 20 00 20 00 03

TRBDF2 KenCarp4 QNDF FBDF
5000
4000
3000
2000
1000
K o 05 10 15 20 00 05 10 15 20

Rodas4 Rodas5P Rosenbrock23

5000

4000

3000

2000

No linear solver

)
)

1000

o 5 1o Ts 20 00 5 1o 15 20 00 o5 To 15 Z0
TRBDF2 KenCarp4 QNDF FBDF
asnoo
>41mo
annu
e
S 1000
) c
: D o 0s 10 15 20 00 05 10 15 20 00 s 10 1s 20 00 0s) 15 20
: _E Rodas4 Rodas5P Rosenbrock23
- 5000
0O wv.
e Rfree(t)
= w Rfree(t
2000 G
S = Lfree(t)
1000
o s AT P(t)
7)) 00 05 10 15 20 00 05) 15 20 00 0s 10 15 20
w TRBDF2 KenCarpd QNDF FBDF
Ll 5000
U 3
4000
(]
w >
o
Q 3 .
n oL
© 00 0s 10 15 20 00 0s 10 15 20 00 0s 10 15 20 00 0s 10 15 20
Q Rodas4 Rodas5P Rosenbrock23
£
— 4000
= e
= f f
g =
1000
3
00 0s 10 15 20 00 05 10 15 20 00 0s 10 15 20
Tsit5 BS5 VCABM Verné
U0 s
T
o
2000
O
€ .
00 5 10 1s 20 00 05 10 1s 20 00 05 10 1s 20 00 05 10 1s 20
-": Vern7 Verng Vern9 ROCK4
o
Q. o
X a0
1T Qe
1000
0

20 00 05 10 s 20 00 05 10 s 20 00 05 10 s

Direct SortingDirect RSSA RSSACR

5000

4000

2000

Time (s)
Fig E. Catalyst benchmark simulation time trajectories for the multisite2 model. The multisite2 model is simulated until it
reaches its (approximate) steady state at t = 2 seconds (same time point which was used for the benchmarks in Fig 3). It was simulated

using both ODE and SSA methods. The simulation trajectories correspond to those of the other tools, suggesting that the models are
correctly interpreted.

)
)

20 00 os

September 24, 2023 14

Lsoda CVODE BDF CVODE BDF (LapackDense) CVODE BDF (GMRES) CVODE BDF (KLU)
Lsaadt
1.00x10°
s5.00x10*
Dn 2 K] g] 0 0 2 £} © B BUNN 2 K] ©] 0 0 2 @ ®] 0 o 2 K] g] 10
TRBDF2 KenCarp4 QNDF FBDF
a 1506
> Loox10°
—
Q st
m 0
1
3 Rodas4 Rodas5P Rosenbrock23
C o
-
; Lo
2 o
o
. TRBDF2 KenCarp4 QNDF FBDF
D oo
>
3 1000
2 oo
= 8 on 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 10 o 2 4 6] 10
c Rodas4 Rodas5P Rosenbrock23
3 =
o 7)) === Dimers(t) =R _Shc(t)
H w505 _act(t) =R _ShcP(t)
o e Y1068(t) s ShCP(t)
e Y1148(t) =R _G_S(t)
© = —==Shc_Grb(t) ===R S G_S(t)
) e==Shc_Grb_So0s(t) ====Efgr_tot(t)
0 2 0 0 s o o : T g 0 o o > 0 . %o |===R_Grb2(t)
w TRBDF2 KenCarp4 QNDF FBDF
Ll
v 1s0ad
]
o > ool
o 3
0 - -
2 3 G 0 0 0 b i G 0 0 o 2 s : 0 o 2 i G 0 10
(]
Q Rodas4 Rodas5P Rosenbrock23
(=
= 1s0ad
D oo
=
¥ soa
o
2 3 G O 1o 2 s s O T 2 2 G T
Tsit5 BS5 VCABM Verné
B
S
B
:': Vern7 Verng Vern9 ROCK4
%)
—_—150x10°
Q
X 1000
w
so0x10"
o
g 2 3 G O 10 2 0 G G 1o 2 s G T 2 3 G 0 3
'.E Direct SortingDirect RSSA RSSACR
-—
5 isead
E.
[7)]
< s.00x10*
(9] o
)] o 2 2 3 8) 2 3) s G 0 o 2 2 3 s 10

Time

(

s)

Fig F. Catalyst benchmark simulation time trajectories for the egfr_net model. The egfr_net model is simulated until it
reaches its (approximate) steady state at ¢ = 10 seconds (same time point which was used for the benchmarks in Fig 3). It was
simulated using both ODE and SSA methods. The simulation trajectories correspond to those of the other tools, suggesting that the
models are correctly interpreted.

September 24, 2023

15,22

CVODE BDF (KLU)

Lsoda CVODE BDF CVODE BDF (LapackDense) CVODE BDF (GMRES) CVODE_BDF (GMRES, iLU)
sond
somdt
° 50010 1o0x16" 15010 200x104 5.00x10" 100x10" 150x16" 200x10 s00x10° Lo0x1d" 150x10" 20010 50010 Lo0x1d" 15010 5.00x10° 100x10" 150x10" 200x16¢ s00x10° 1o0x16" 15010 200%
TRBDF2 KenCarp4 QNDF FBDF
- 000
g 2ot
—
o 10x16°
(]
o
E o 50000 10016 15010 200x10°0 50010 1owadt 150ad' 200x100 5000 1000 150100 200x100 50010 1owad 1s0act 200x10t
@ Rodas4 Rodas5P Rosenbrock23
-
—
o 50010 1ooxi' 1500’ 200x10°0 500a¢ 100x10' 15010 200x10°0 50010 1ooxadt 1s0ad' 200w
TRBDF2 KenCarp4 QNDF FBDF
a—) 3.0610°
c -
(=]
: [e
15
O 5 .
o 5.00x 1 1.00% 1 1.50x10° 2.00x10%0 5.00%1 1.00x10° 1.50x10° 2.00x10°0 5.00x10° 1.00x10° 1.50%1 2.00%1 5.00% 1 1.00%1 1.50x10° 2.00x1C
¢ o * 3 3 *] o 7] o o0 3 o]
.E Rodas4 Rodas5P Rosenbrock23
m —
()]
nw ¥
Ll Q J
(@) o 5000 10000 15000 200600 50010 100a0° 150x00 200x10 5000100 100x0° 150x0 200x
w o . TRBDF2 KenCarp4 QNDF FBDF
30
Q =
Qo 29 ..
U) [=3r)
[7, It
B -
g‘g K S00a0 | tooad 1soad 200x00 S00a0 | tooad 1soad | 200x100 So0a0 1ooad 1soadt | 200x00 Soxao 1o0ac Lsoad 2000
_E 8 Rodas4 Rodas5P Rosenbrock23
-_ ?
n o
2o
=3 R ﬂ l
o o S00aC Looad' 1soxa0t 2003109 50010 100a0 1soxadt 200x100 S0xI0 10000 1soaot 200
TRBDF2 KenCarp4 QNDF FBDF
3.000°
1
@ 00
>
3 10x10°
0
o
E o s00a¢ 100a0 1s0x100 200x10°0 so0a¢ 1o0x10t Lsoxio' 2006100 so0a¢ 100x0 1sox10' 2006100 s00a¢ 1o0ad 1s0x0 200x10°
()] Rodas4 Rodas5P Rosenbrock23 N
c == Activated_Syk(t)
= =====|g_alpha_P(t)
=====|g_alpha_PP(t)
=) g beta_PP(t)
il e Activated_Lyn(t)
=== Autoinhibited_Lyn(t)
e Activated_Fyn(t)
o S00x10 100%10° 150x10' 200x20°0 500.10° 100x10' 150x10' 2.00x100 50010 100w10' 1soxadt 200% === Autoinhibited_Fyn(t)
e PAG1_Csk(t)
c SortingDirect RSSA RSSACR
(] 3.0x10°
=)
[]
E 2.0x10°
.(3 1.0x10°
< o
m o 5.00x10° 1.00x10* 1.50x10* 5.00x10° 1.00x10* 1.50x10" o 5.00x10° 1.00x10* 1.50x10*

0

Time (s)

Fig G. Catalyst benchmark simulation time trajectories for the BCR model. The BCR model is simulated until it reaches
its (approximate) steady state at ¢ = 10,000 seconds (same time point which was used for the benchmarks in Fig 3). It was simulated
using both ODE and SSA methods. The time of the SSA simulation’s pulse initiation is variable, and hence the system was resimulated
to ensure that a pulse was initiated in the simulation. The simulation trajectories correspond to those of the other tools, suggesting that
the models are correctly interpreted.

16,22

September 24, 2023

Lsoda CVODE_BDF CVODE_BDF (LapackDense) CCVODE_BDF (GMRES) CVODE_BDF (GMRES, iLU) CCVODE_BDF (KLU)

1

TRBDF2 KenCarp4 QNDF FBDF

GMRES linear solver
iLU preconditioner
TRBDF2
° 50 100 150 50 100 150 50 100 150 50 100 1 1300
Rodas4 Rodas5P Rosenbrock23 200/
o 100
.

0 50 100 T50 oo
0 TRBDF2 KenCarp4 QNDF FBDF oo
4
100
300
200 K 50 100 T
100 QNDF
laoo|
o
50 00 T 50 00 T

o0 50 00 T

5

EY T00 T
KenCarp4

No linear solver

:

:

Species amount
KLU linear solver
B(N(

NB(°

Rodas4 Rodas5P Rosenbrock23 ool

200

100

o
EQ 00 T EQ 00 T

TRBDF2 KenCarp4 QNDF FBDF 200

o —_——
Eg 00 T 50 00 T

Rodas4 Rodas5P Rosenbrock23

200
100
400
£ 00 T 0 00 s £ o Tso
300
Tsit5 BS5 VCABM Vern6 200
400
100
300

36 00
Rosenbrock23

GMRES linear solver

00

Rodas4

o 50 0

t methods

100 400
° 50 100 150 50 100 150 50 100 150 50 100 150 300
= Vern7 Verng Vern9 ROCK4 200 Rodas5P
O o
—
- 100
S
X 20 o
w £ 00 T50)
100
5 T T % Too T %o Too T 6 T 75
e | ynFree(t)
c e RecMon(t)
o Direct SortingDirect RSSA RSSACR e===RecPbeta(t)
-, em=RecPgammal(t)
o e RecSyk(t)
R e RecSykPS(t)
€ w
i
v w
[7)]

Time (s)
Fig H. Catalyst benchmark simulation time trajectories for the fceri_gamma2 model. The fceri_gamma2 model is
simulated until it reaches its (approximate) steady state at ¢ = 150 seconds (same time point which was used for the benchmarks in Fig
3). It was simulated using both ODE and SSA methods. The simulation trajectories correspond to those of the other tools, suggesting
that the models are correctly interpreted.

September 24, 2023 17

Species amount

80

60

40

5000

4000

3000

2000

1000

CVODE

0.0 25 5.0 75 100 125 150 175 200

175000

150000

125000

100000

75000

50000

25000

0

300000

250000

200000

150000

100000

50000

L | | N

0 2500 5000 7500 10000 12500 15000 17500 20000

400

350

300

250

200

150

100

50

20 40 60 80 100 120 140
time

— AP

A_unbound_P
—— A_bound_P
— RLAP

—— Rfree
Lfree
— AlP

—— Dimers
Sos_act
Y1068
Y1148
Shc_Grb
Shc_Grb_Sos
R_Grb2
R_Shc
R_ShcP
ShcpP

R G.S
RS G.S
Efgr_tot

Activated_Syk
Ig_alpha_P
Ig_alpha_PP
Ig_beta_PP
Activated_Lyn
Autoinhibited_Lyn
Activated_Fyn
Autoinhibited_Fyn
PAG1_Csk

—— LynFree
RecMon
RecPbeta
RecPgamma
RecSyk
RecSykPS

Time (s)

Fig I. BioNetGen benchmark simulation time trajectories. All models are simulated until they reach their (approximate)

steady state (same time point which was used for the benchmarks in Fig 3). They were simulated for the CVODE method both with
and without the GMRES linear solver. The simulation trajectories correspond to those of the other tools, suggesting that the models
are correctly interpreted.

CVODE (GMRES)

80

40

20

5000

4000

3000

2000

1000

175000

150000

125000

100000

75000 4

50000 4

25000 1

0

300000

250000

200000

150000

100000

50000
‘ L
0

\

|

0

2500

5000

7500 10000 12500 15000 17500 20000

400

3504

3004

2501

2001

1504

1004

501

20

40

60

80

100

120

140

9jejsninin

oSN

- 1163

U 4}

. jok:)

zewwebh 11304

September 24, 2023

1822

Sorting Direct

175000 —— Dimers
80 Sos_act
: 150000 —— Y1068 m
— Y1148
o - —oe @
A_unbound_P - =y
: —— A_bound_P G' 100000 —_ ih‘cs_gb_Sosq
: ° RLA_P = 75000 R_S}:c I
o m 50000 R_ShcP =
20
P o —— ShcP m
E m 25000 — RG.S (=
o RSGS
m 0 - — Efgr tot
00 25 50 75 100 125 150 175 20.0 0 > 4 & 8 10 grto
w 5000 300000
- =
U 4000 : 250000
—— Activated_Syk
w 3000 -y 200000 9_alpha_P
n — Rfree ~ —— Ig_alpha_PP w
Lfree e —— Ig_beta_PP
2000)] 150000 —— Activated_Lyn r’
m AlP - Autoinhibi
—— Autoinhibited_Lyn
H | Activated_Fyn w
1000 m 100000 —— Autoinhibited_Fyn
| PAG1_Csk
o N 500001 |
000 025 050 075 100 125 150 175 2.00 i h
o \
0 2000 4000 6000 8000 10000 12000 14000 16000
400 n
350 —— LynFree m
300 RecMon -
—— RecPbeta -
250 —— RecPgamma I
200 —— RecSyk
—— RecSykPS

zewweb

Time (s)
Fig J. BioNetGen benchmark simulation time trajectories. All models are simulated until they reach their (approximate)
steady state (same time point which was used for the benchmarks in Fig 3). They were simulated using the Sorting Direct method. Due
to the long simulation time, we did not produce trajectories for the BCR model. The simulation trajectories correspond to those of the
other tools, suggesting that the models are correctly interpreted. Note that the timescale is different for the ODE and SSA simulations.

September 24, 2023 19

CVODE Direct

80
80

60
60 —— Values[A_P]

Values[A_unbound_P]
20 —— Values[A_bound_P] 40
—— Values[RLA_P]

20 20
0

5000

0.0 25 5.0 75 10.0 125 15.0 175 20.0
5000
4000 4000
—— Values[Rfree]
3000 3000
Values[Lfree]
—— Values[A1P]
2000 2000
1000 1000
o
- g g . g 000 025 050 075 100 125 150 175 2.00
0 2 4 6 8 10

o1eisninin

ZasnIni

175000 —— Values[Dimers] 175000

Values[Sos_act]

150000 —— Values[Y1068] 150000
—— Values[Y1148]

122000 —— Values[Shc_Grb] 12000

100000 —— Values[Shc_Grb_Sos] 100000
Values[R_Grb2]

75000 —— Values[R_Shc] 75000

50000 Values[R_ShcP] 50000

—— Values[ShcP]
25000 —— Values[R_G_S] 25000
o] L= - Values[R_S_G_S] o

—— Values[Efgr_tot]

b3

19U 4}

Species amount

.o k:]

50000 Values[PAG1_Csk]

300000 300000
250000 —— Values[Activated_Syk] 250000
Values[lg_alpha_P]
200000 —— Values[lg_alpha_PP] 200000
—— Values[lg_beta_PP]
150000 —— Values[Activated_Lyn] 150000
—— Values[Autoinhibited_Lyn]
100000 Values[Activated_Fyn] 100000
—— Values[Autoinhibited_Fyn]
50000
I
| I | A

LN \ N o o

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2000 4000 6000 8000 10000 12000 14000 16000

400 400 m
350 350 -
300 I

—— Values[LynFree] 300 Q

250 Values[RecMon] 250
200 —— Values[RecPbeta] m

200
—— Values[RecPgamma] 3

150 —— Values[RecSyKk] 150
100 —— Values[RecSykPS] 100 5
50 50 m
o - 0 h ’

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Time (s)

Fig K. COPASI benchmark simulation time trajectories. All models are simulated until they reach their (approximate) steady
state (same time point which was used for the benchmarks in Fig 3). The simulation trajectories correspond to those of the other tools,
suggesting that the models are correctly interpreted.

September 24, 2023 20

Tau Hybrid solver

] c
|
60 A r
—— Values[A_P] ——
Values[A_unbound_P] m
40 A —— Values[A_bound_P] f I
—— Values[RLA_P] m
20 m
c 1
= 00 25 50 75 100 125 150 175 20.0
o 5000 A
E 4000 1 §
|
3000 Values[Rfree] ”
m Values|Lfree] -
—— Values[AlP]
w 2000 A E.
-
8 ®
Q -
m 000 025 050 075 1.00 125 150 175 2.00
175000
—— Values[Dimers]
150000 4 Values[Sos_act]
—— Values[Y1068]
125000 4 —— Values[Y1148] m
—— Values[Shc_Grb] Q
100000 A —— Values[Shc_Grb_Sos] — mmjy
Val
75000 4 ues[R_Grb2] -
—— Values[R_Shc]
50000 Values[R_ShcP] :
—— Values[ShcP] m
25000 —— Values[R_G_S] ﬁ
Values[R_S_G_S]
0 —— Values[Efgr_tot]

Time (s)

Fig L. GillesPy2 benchmark simulation time trajectories. All models are simulated until they reach their (approximate) steady
state (same time point which was used for the benchmarks in Fig 3). At the time of investigation, GillesPy2 only permitted the plotting
of observables when the Tau hybrid solver was used for simulation. Hence, trajectories could only be checked for this algorithm. Due to
the long simulation time required for this method, we were unable to produce trajectories for the two largest models. The simulation
trajectories correspond to those of the other tools, suggesting that the models are correctly interpreted.

September 24, 2023 21

Species amount

practice, Matlab was only able to successfully complete Gillespie simulations for the smallest models.

100

90

80

70

60

50

40

6000

5000

4000

3000

2000

1000 [t
|

Dimers
Sos, ot
Y1068
Y1148

she b
She b gos
Rgb2 1
Rghe
——— RgheP
ShcP
R
RSGS
Efgr ot

as

91eliSinin

COMSHININ

b3

39U 4}

States

-0.5

05 ||

! [

Activated syk
Ig alpha P i
Ig aIpha PP

Ig beta PP
Activated wn
Autoinhibited | yn
Activated eyn

.ot

Autoinhibited cyn
PAG1 Csk 4

400

o
x
=)
*

350
300 -

250

150 |

LynFree
RecMon
RecPbeta ||
RecPgamma
RecSyk
RecSykPS

50

Time (s)

Fig M. Matlab benchmark simulation time trajectories. All models are simulated until they reach their (approximate) steady
state (same time point which was used for the benchmarks in Fig 3). At the time of investigation, Matlab did not support the plotting
of SBML observables from simulations using the Gillespie interpretation, hence we were unable to produce such plots. However, the
ODE simulation trajectories correspond to those of the other tools, suggesting that the models are correctly interpreted. Finally, in

100

zewweb 11954

@
3

September 24, 2023

2229

	Exact ODE benchmark times
	List of ODE benchmarks
	BioNetGen solvers
	Catalyst solvers
	COPASI solvers
	GillesPy2 solvers
	Matlab solvers

	List of SSA benchmarks
	BioNetGen solvers
	Catalyst solvers
	Copasi solvers
	GillesPy2 solvers
	Matlab solvers

	Additional benchmarks of ODE solvers
	Work-precision diagrams for Julia solvers
	Simulation trajectories for various modelling tools

