Catalyst: Fast and flexible modeling of reaction networks - S1
Text - Additional benchmarks and benchmark information

A Exact ODE benchmark times

This section contains Table[A]in S1 Text, describing the exact benchmark times plotted
in Figure 3 A-E.

Table A. ODE Benchmark times.

Model: Multistate | Multisite2 | Egfr_net | BCR Fceri_gamma?2
Julia solver 1 0.107 0.477 5.89 9,550 1,570

Julia solver 2 0.114 0.517 5.91 12,500 1,670

Julia solver 3 0.117 0.535 6.65 35,900 7,510

Catalyst Isoda 0.220 1.17 29.7 172,000 644,000
Catalyst CVODE | 0.310 1.78 7.31 6,520 423

BioNetGen 154 322 5,280 170,000 108,000
COPASI 0.849 13.0 520 3,110,000 1,990,000
GillesPy2 17.2 315 6,280 24,400,000 | 26,800,000
Matlab 8.34 47.8 880 101,000 354,000

Main text Fig 3 A-E shows the results as bar charts, here, the same benchmark times (median over several simulations) are
given as numbers (in units of milliseconds). Each field corresponds to the same field in Main text Table 3.
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B List of ODE benchmarks

Here follows a list of all ODE simulation methods, and combinations of options, used for
each tool. The best-performing combinations are shown in Fig 3 (with details of the
used options listed in Table 3). The results of all combinations listed here can be found
in Figs[A] and [B]in S1 Text. For some settings, a parenthesis further clarifies what the
option implies. For all ODE simulations, the absolute tolerance was set to 1e-9 and the
relative tolerance to 1e-6.

B.1 BioNetGen solvers

The ode method is the CVODE solver, by default using dense LU and a finite difference
Jacobian approximation. The n_steps parameter sets the number of saved steps. We
sat this to 1, to ensure no intermediary time points were saved. Setting sparse = true
enables the (un-preconditioned) GMRES linear solver (for which we used the default
GMRES tolerance). BioNetGen does not seem to offer an option to specify a
preconditioner for GMRES.

e Method = ode, n_steps = 1, sparse = false.

e Method = ode, n_steps = 1, sparse = true.

B.2 Catalyst solvers

The CVODE_BDF sovler is the CVODE solver. The KrylovJL_GMRES linear solver is the
GMRES linear solver (for which we used the default GMRES tolerance). The jac =
true options set that a symbolic Jacobian is built, else, the Jacobian is computed
through automatic differentiation (or if autodiff = false is used, through finite
differences). If the sparse = true is used, a sparse Jacobian representation is used.

e Solver = lsoda.

e Solver = CVODE_BDF.

e Solver = CVODE_BDF, linear_solver = LapackDense.
e Solver = CVODE_BDF, linear_solver = GMRES.

e Solver = CVODE_BDF, linear_solver = GMRES, sparse = true, iLU
preconditioner.

e Solver = CVODE_BDF, linear_solver = KLU, sparse = true, jac = true.
e Solver = TRBDF2.
e Solver = TRBDF2, linsolve = KrylovJL_GMRES.

e Solver = TRBDF2, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

e Solver = TRBDF2, linsolve = KLUFactorization, sparse = true, jac = true.
e Solver = KenCarp4.
e Solver = KenCarp4, linsolve = KrylovJL_GMRES.

e Solver = KenCarp4, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

September 24, 2023



Solver = KenCarp4, linsolve = KLUFactorization, sparse = true, jac =
true.

Solver = QNDF.
Solver = QNDF, linsolve = KrylovJL_GMRES.

Solver = QNDF, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = QNDF, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = FBDF.
Solver = FBDF, linsolve = KrylovJL_GMRES.

Solver = FBDF, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = FBDF, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = Rodas4.
Solver = Rodas4, linsolve = KrylovJL_GMRES.

Solver = Rodas4, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = Rodas4, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = Rodas5P.
Solver = Rodas5P, linsolve = KrylovJL_GMRES.

Solver = RodasbP, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = RodasbP, linsolve = KLUFactorization, sparse = true, jac = true.
Solver = Rosenbrock23.
Solver = Rosenbrock23, linsolve = KrylovJL_GMRES.

Solver = Rosenbrock23, linsolve = KrylovJL_GMRES, sparse = true, iLU
preconditioner.

Solver = Rosenbrock23, linsolve = KLUFactorization, sparse = true, jac =
true.

Solver = Tsit5.
Solver = BS5.

Solver = VCABM.
Solver = Vern6.
Solver = Vern7.
Solver = Vern8.

Solver = Vern9.
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e Solver = ROCK2.
e Solver = ROCKA4.

The iLU preconditioner option simulations were benchmarked only for the two largest
models (BCR and Fceri_gamma2). The explicit solvers (Tsit5, BS5, VCABM, Vern6,
Vern7, Vern8, Vern9, ROCK2, and ROCK4) were not benchmarked for the BCR model.

For all benchmarks, we used the saveat = [Simulation length] option to ensure no
intermediary time points were saved. For the TRBDF2, KenCarp4, QNDF, FBDF, Rodas4,
Rodasb5P, Rosenbrock23 methods, when benchmarked on the (large) BCR and
Fceri_gamma2 models, the autodiff = false option was used to disable automatic
differentiation. The iLU preconditioner requires setting a single parameter 7. For
CVODE we used 7 =5 (BCR model) and 7 = 1e2 (Fceri_gamma2 model). For the
other methods, we used 7 = 1e12 (BCR model) and 7 = 1e2 (Fceri_gamma2 model).
While these 7 values were roughly optimized for their specific problems, we note that for
both the BCR and Fceri_gamma2 models, the fastest Catalyst solvers included solvers
not depending on preconditioners with customized 7 values.

B.3 COPASI solvers

The stepsize option sets the time between saving the solution. We used the length of
the simulation to ensure no intermediary time points were saved.

e method = deterministic (CVODE), stepsize = [Simulation length].

B.4 GillesPy2 solvers

The nsteps option sets the maximum number of time steps. The increment option
sets the time between saving the solution. We used the length of the simulation to
ensure no intermediary time points were saved. The solver = ODESolver options
designate that we run ODE simulations (as opposed to e.g. Gillespie simulations), while
the integrator sets the numerical solver method used (e.g. 1soda).

e solver = ODESolver, integrator = lsoda, nsteps = 100000, increment =
[Simulation length].

e solver = ODESolver, integrator = csolver, nsteps = 100000, increment =
[Simulation length].

e solver = 0ODESolver, integrator = zvode, nsteps = 100000, increment =
[Simulation length].

e solver = 0ODESolver, integrator = vode, nsteps = 100000, increment =
[Simulation length].

Due to their poor performance compared to 1lsoda, the zvode and vode methods
benchmarks were investigated beyond initial tests. Furthermore, due to its poor
performance, the csolver solver was not benchmarked for the two largest (BCR and
Fceri_gamma?2) models.

B.5 Matlab solvers

The sundials solver type is the CVODE solver, using its default options. For Matlab
there appeared to be no other documented control parameters (including setting the
density at which time points were saved) that could beneficially affect the performance.
We tried the RuntimeOptions.StatesToLog = {} option, however, this offered no
improvement, while reducing performance for the smaller models.
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e SolverType = sundials.
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C List of SSA benchmarks

Here follows a list of all SSA simulation methods used for each tool. Their performance
is shown in Fig 3 (due to the small number of SSA methods, all fit in Fig 3 and no
supplementary figure was needed).

C.1 BioNetGen solvers

The ssa method is the Sorting Direct method. The n_steps parameter sets the number
of saved steps. We sat this to 1, to ensure no intermediary time points were saved.

e method = ssa, n_steps = 1.
Due to the benchmarks surpassing the 4-day limit of jobs at the used HPC

supercomputer, the ssa method was not benchmarked on the BCR model.

C.2 Catalyst solvers

Here, the save_positions = (false,false) options prevent the saving of the solution
before/after a jump is made (which will severely reduce performance when a large
number of jumps are performed). Using this option, we ensured that no intermediary
time points were saved.

e Solver = Direct, save_positions = (false,false)
e Solver = SortingDirect, save_positions = (false,false)
e Solver = RSSA, save_positions = (false,false)

e Solver = RSSACR, save positions = (false,false)

C.3 Copasi solvers

The stepsize option sets the time between saving the solution. We used the length of
the simulation to ensure no intermediary time points were saved.

e method = directMethod, stepsize = [Simulation length].
Due to the benchmarks surpassing the 4-day limit of jobs at the used HPC
supercomputer, COPASI was not benchmarked on the BCR model.

C.4 GillesPy2 solvers

The nsteps option sets the maximum number of time steps. The increment option
sets the time between saving the solution. We used the length of the simulation to
ensure no intermediary time points were saved.

e solver = ssa, increment = [Simulation length].
e solver = numpyssa, increment = [Simulation length].

Due to its poor performance compared to ssa, the numpyssa method benchmarks were
never concluded beyond initial tests. Due to the benchmarks surpassing the 4-day limit
of jobs at the used HPC supercomputer, the ssa method was not benchmarked on the
BCR and Fceri_gamma2 models.
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C.5 Matlab solvers

The ssa solver type is Gillespie’s Direct method. For Matlab there appeared to be no
other documented control parameters (including setting the density at which time
points were saved) that could affect the performance.

e SolverType = ssa.

Due to slow performance and/or crashing for larger models, the ssa method was not
benchmarked on the BCR and Fceri_gamma2 models.

September 24, 2023



D Additional benchmarks of ODE solvers

In this article we compare ODE simulation benchmarks for Catalyst and various other
CRN modelling tools (BioNetGen, COPASI, GillesPy2, and Matlab’s SimBiology
toolbox) (Fig 3). While we benchmarked a large number of combinations of methods
and tools (S1 Text Section , the main text figure only displays the results using the
best combinations. Here, in Figs |§| and [B|in S1 Text, we show the benchmarks for the
full set. Fig in S1 Text shows the run time to reach each models’ steady states (or,
for the BCR model, complete 3 pulses), while Fig in S1 Text shows the simulation
times as a function of the real (physical) end time of the simulation. The exact options
used for each simulation are described in S1 Text Section [Bl
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Fig A. The result of the benchmarks across the full set of ODE solvers and options. These benchmarks are a more
extensive set than what is provided in Fig 3 (which includes only the best alternative for each combination of tool and model). (a)
Benchmarks for Catalyst, using lsoda, as well as CVODE with a range of options (no linear solver specified, or for CVODE, the
LapackDense, GMRES, or KLU linear solvers). The GMRES option was trialed with and without the iLU preconditioner. A sparse
Jacobian representation was used when the KLU linear solver or iLLU preconditioner was used. Furthermore, for the KLU linear solver a
symbolic, sparse, Jacobian was used. (b) Catalyst benchmarks using an extended set of (implicit) ODE solvers. (c) Benchmark for the
same solvers as in B, but with the GMRES linear solver. (d) Same as in C, but using an iLU preconditioner and sparse finite-difference
Jacobian representation. (e) Benchmark for the same solvers as in B, but with the KLU linear solver and sparse, symbolic, Jacobian
representation. (f) Catalyst benchmarks using an extended set of (explicit) ODE solvers. (g) Benchmarks using non-Catalyst tools. For
more details on the options used for each benchmark, please see S1 Text Section'El
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Fig B. The result of the benchmarks across the full set of ODE solvers and options. These benchmarks are a more
extensive set than what is provided in Fig 3 (which includes only the best alternative for each combination of tool and model). Here,
the simulation run time was as a function of the real (physical) end time of the simulation. (a) Benchmarks for Catalyst, using lsoda, as
well as CVODE with a range of options (no linear solver specified, or for CVODE, the LapackDense, GMRES, or KLU linear solvers).
The GMRES option was trialed using with and without the iLU precondition. A sparse Jacobian representation was used when the
KLU linear solver or iLU preconditioner was used. Furthermore, for KLU linear solver, a symbolic, sparse, Jacobian was used. (b)
Catalyst benchmarks using an extended set of (implicit) ODE solvers. (c) Benchmark for the same solvers as in B, but with the
GMRES linear solver. (d) Same as in C, but using an iLU preconditioner and a sparse finite-difference Jacobian representation. (e)
Benchmark for the same solvers as in B, but with the KLU linear solver and sparse, symbolic, Jacobian representation. (f) Catalyst
benchmarks using an extended set of (explicit) ODE solvers. (g) Benchmarks using non-Catalyst tools. For more details on the options
used for each benchmark, please see S1 Text Section'El
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E Work-precision diagrams for Julia solvers

For the best-performing Julia solvers, we compare the run time of the numerical
simulator to the error it generates. For each combination of solver and options, we make
repeated simulations at various tolerances (absolute and real tolerance both equal to
1072, 1075, 107, or 10~8). For each simulation, we calculate the error by comparison
to a single simulation using the CVODE solver and no options, with absolute and real
tolerances for the latter equal to 107'2. For each tolerance, we can thus compute the
mean error and simulation time (across all simulations at that tolerance). Plotting
these, we generate a so-called work-precision diagram. Such diagrams for all models are
shown in Fig[C|in S1 Text.

Unlike all other benchmarks, the work-precision diagrams were not computed on
supercloud, but rather on the SciML organization’s benchmarking server, which has the
following specifications:

OS Linux (x86_-64-linux-gnu)

CPU 128 x AMD EPYC 7502 32-Core Processor
WORD_SIZE 64

LIBM libopenlibm

LLVM 1ibLLVM-13.0.1 (ORCJIT, znver2)
Threads 128 on 128 virtual cores

The code that was used to generate Fig[C|]in S1 Text can be found in the associated
Github benchmarking repository for the article, see main text Section 6.2. For a more
extensive set of work-precision diagrams of available Julia (and thus Catalyst) solvers,
please refer to the SciMLBenchmarks.jl package.
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F Simulation trajectories for various modelling tools

In this article, we compare ODE and SSA simulation benchmarks for Catalyst and
various other CRN modelling tools (BioNetGen, COPASI, GillesPy2, and Matlab’s
SimBiology toolbox). To ensure that each tool successfully simulates each model, we
here plot the output trajectories for each combination of tool and model. These plots
are displayed in Figs in S1 Text.
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Fig D. Catalyst benchmark simulation time trajectories for the multistate model. The multistate model is simulated until
it reaches its (approximate) steady state at ¢ = 20 seconds (same time point which was used for the benchmarks in Fig 3). It was
simulated using both ODE and SSA methods. The simulation trajectories correspond to those of the other tools, suggesting that the

models are correctly interpreted.
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Fig F. Catalyst benchmark simulation time trajectories for the egfr_net model. The egfr_net model is simulated until it
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simulated using both ODE and SSA methods. The simulation trajectories correspond to those of the other tools, suggesting that the
models are correctly interpreted.
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Fig G. Catalyst benchmark simulation time trajectories for the BCR model. The BCR model is simulated until it reaches
its (approximate) steady state at ¢ = 10,000 seconds (same time point which was used for the benchmarks in Fig 3). It was simulated
using both ODE and SSA methods. The time of the SSA simulation’s pulse initiation is variable, and hence the system was resimulated
to ensure that a pulse was initiated in the simulation. The simulation trajectories correspond to those of the other tools, suggesting that
the models are correctly interpreted.

16,22

September 24, 2023



Lsoda CVODE_BDF CVODE_BDF (LapackDense) CCVODE_BDF (GMRES) CVODE_BDF (GMRES, iLU) CCVODE_BDF (KLU)

1

TRBDF2 KenCarp4 QNDF FBDF

GMRES linear solver
iLU preconditioner
TRBDF2
° 50 100 150 50 100 150 50 100 150 50 100 1 1300
Rodas4 Rodas5P Rosenbrock23 200/
o 100
.

0 50 100 T50 oo
0 TRBDF2 KenCarp4 QNDF FBDF oo
4
100
300
200 K 50 100 T
100 QNDF
laoo|
o
50 00 T 50 00 T

o0 50 00 T

5

EY T00 T
KenCarp4

No linear solver

:

:

Species amount
KLU linear solver
B( N(

NB( °

Rodas4 Rodas5P Rosenbrock23 ool

200

100

o
EQ 00 T EQ 00 T

TRBDF2 KenCarp4 QNDF FBDF 200

o —_——
Eg 00 T 50 00 T

Rodas4 Rodas5P Rosenbrock23

200
100
400
£ 00 T 0 00 s £ o Tso
300
Tsit5 BS5 VCABM Vern6 200
400
100
300

36 00
Rosenbrock23

GMRES linear solver

00

Rodas4

o 50 0

t methods

100 400
° 50 100 150 50 100 150 50 100 150 50 100 150 300
= Vern7 Verng Vern9 ROCK4 200 Rodas5P
O o
—
- 100
S
X 20 o
w £ 00 T50)
100
5 T T % Too T %o Too T 6 T 75
e | ynFree(t)
c e RecMon(t)
o Direct SortingDirect RSSA RSSACR e===RecPbeta(t)
-, em=RecPgammal(t)
o e RecSyk(t)
R e RecSykPS(t)
€ w
i
v w
[7)]

Time (s)
Fig H. Catalyst benchmark simulation time trajectories for the fceri_gamma2 model. The fceri_gamma2 model is
simulated until it reaches its (approximate) steady state at ¢ = 150 seconds (same time point which was used for the benchmarks in Fig
3). It was simulated using both ODE and SSA methods. The simulation trajectories correspond to those of the other tools, suggesting
that the models are correctly interpreted.
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Fig I. BioNetGen benchmark simulation time trajectories. All models are simulated until they reach their (approximate)

steady state (same time point which was used for the benchmarks in Fig 3). They were simulated for the CVODE method both with
and without the GMRES linear solver. The simulation trajectories correspond to those of the other tools, suggesting that the models
are correctly interpreted.
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Sorting Direct
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Fig J. BioNetGen benchmark simulation time trajectories. All models are simulated until they reach their (approximate)
steady state (same time point which was used for the benchmarks in Fig 3). They were simulated using the Sorting Direct method. Due
to the long simulation time, we did not produce trajectories for the BCR model. The simulation trajectories correspond to those of the
other tools, suggesting that the models are correctly interpreted. Note that the timescale is different for the ODE and SSA simulations.
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Fig K. COPASI benchmark simulation time trajectories. All models are simulated until they reach their (approximate) steady
state (same time point which was used for the benchmarks in Fig 3). The simulation trajectories correspond to those of the other tools,
suggesting that the models are correctly interpreted.
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Tau Hybrid solver
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Fig L. GillesPy2 benchmark simulation time trajectories. All models are simulated until they reach their (approximate) steady
state (same time point which was used for the benchmarks in Fig 3). At the time of investigation, GillesPy2 only permitted the plotting
of observables when the Tau hybrid solver was used for simulation. Hence, trajectories could only be checked for this algorithm. Due to
the long simulation time required for this method, we were unable to produce trajectories for the two largest models. The simulation
trajectories correspond to those of the other tools, suggesting that the models are correctly interpreted.
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practice, Matlab was only able to successfully complete Gillespie simulations for the smallest models.
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Fig M. Matlab benchmark simulation time trajectories. All models are simulated until they reach their (approximate) steady
state (same time point which was used for the benchmarks in Fig 3). At the time of investigation, Matlab did not support the plotting
of SBML observables from simulations using the Gillespie interpretation, hence we were unable to produce such plots. However, the
ODE simulation trajectories correspond to those of the other tools, suggesting that the models are correctly interpreted. Finally, in
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