
Catalyst Article, Reply to Reviewers
Reviewer 1
In the manuscript, Loman et al. present Catalyst.jl, a Julia package for modelling and
simulation of chemical reaction networks. They describe how Catalyst is integrated into the
SciML package ecosystem, leveraging other packages for symbolic model representation
and numerical simulations. The authors demonstrate how chemical reaction networks in
Catalyst can be generated, simulated, and extended or analysed further using intrinsic
Catalyst features, other SciML tools and third-party Julia packages. They also perform an
extensive set of model simulation benchmarks using a variety of ODE and SSA solvers,
comparing Catalyst’s runtime performance to that of several other popular modelling
packages.

In my opinion Catalyst.jl is a great library that works beautifully in tandem with the broader
Julia ecosystem for numerical simulation and higher-level analysis, making Julia the
programming language of choice for many computational biologists. On GitHub, the package
is well documented and includes thorough tutorials. The manuscript itself is clear to follow
and does a good job in presenting Catalyst, showcasing its features and higher-level
applications. I also appreciate the rigorous simulation benchmarks and their detailed
descriptions.

In summary, Catalyst.jl is a great contribution to the field and I happily endorse the
manuscript’s publication.

Comment 1

“Data and Code Availability” in the additional info has an old URL that does not work, but the
correct one is provided in the Code Availability section of the main text.

Reply: We thank the reviewer for carefully checking these links. We have
double-checked each link to ensure they are all correct.

Comment 2

There appears to be a reference missing in “That a CRN can be unambiguously represented
using these models forms the basis of several CRN modeling tools [?,11–22]”. In addition,
another software tool that perhaps should be cited given its list of features is ”CERENA:
ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of
Stochastic Chemical Kinetics”, PLoS ONE 11(1): e0146732.

Reply: We thank the reviewer for pointing out this error, which we now have
corrected. We have also added the reference to Kazeroonian et al. (2016).

Comment 3

In Figure 2, it might be helpful to show the Brusselator reaction diagram and assumptions
made to make life easier for an unfamiliar reader, or at least mention it in the caption.



Alternatively, a more accessible reference could be useful: from a quick look at the one cited,
i.e., Lefever et al. (1988), it does not seem to clearly define the Brusselator as used here and
does not explicitly discuss the limit cycle condition (relationship between A and B). Perhaps
"Elements of Applied Bifurcation Theory" by Y. A. Kuznetsov or another textbook would work
better.

Reply: We have added this additional reference to the Brusselator (Figure 2 caption).
We have also updated the figure and caption to more thoroughly describe the
Brusselator CRN, show how the model is created in Catalyst, and show the underlying
reactions.

Comment 4

In Section 2.2, is there a particular reason why Catalyst is benchmarked against BioNetGen,
COPASI, GillesPy2, Matlab’s SimBiology, and not any other packages? These seem to be
chosen very reasonably given their popularity, list of features and them being actively
maintained, but it might be worthwhile to mention this explicitly.

Reply: We have now updated the second paragraph in 2.2, motivating the selection of
these tools (the reason being the same as suggested by the reviewer). We now say
“These tools were selected as they are popular and highly cited, well documented,
scriptable for running benchmark studies, and actively maintained. The Matlab
SimBiology toolbox was selected due to the enduring popularity of the Matlab
language. Overall, they provide a representative sample of the broader chemical
reaction network modeling software ecosystem.”

Comment 5

Regarding Section 2.2 and Fig. 4, it might be interesting to have even a very short
discussion summarising the potential main factors leading to such notable runtime
differences between CVODE and lsoda in different languages/packages, as well as almost
always superior performance of native Julia solvers. Is it mostly about native language
performance, specific implementations of the solvers or other algorithmic choices made?

Reply: We have added a new paragraph at the end of 2.2 mentioning some of the
reasons Catalyst models might demonstrate better runtime performance. A more
detailed discussion that goes beyond the scope of this manuscript, and would
perhaps form the basis for a future work, follows.

The quick answer is that attributing it to any single aspect is a major
over-simplification and it is a combination of many minor details. It would require an
entire manuscript to clearly detail what pieces contribute to the whole picture, and
without the space to share all of the evidence it becomes a subjective rather than
objective comparison as to what parts matter. Therefore, we wish to restrain from
making strong assertions about the specifics within the manuscript which are both
subject to change over time and require many figures/plots/etc. of their own in order
to justify an exact breakdown.

However, as an oversimplification to give a clearer picture to the reviewers we share
the following below.



Some of the factors include that the default linear solver used in the Julia side is not a
standard LAPACK implementation but instead an optimised recursive LU-factorization
which tends to greatly outperform OpenBLAS (the standard BLAS shipped in most
open source languages such as R and Python) and even outperform Intel’s own MKL
up to matrix sizes of 500x500 (see https://github.com/SciML/LinearSolve.jl/issues/357
for a more detailed comparison on many different CPU architectures as reported by
users). This is in part due to improved SIMD heuristics. Given the LU factorization is
one of the most expensive operations in solving with an implicit method, this
performance improvement over LAPACK means that one would expect the same
method to have a non-trivial performance advantage from the way it’s called in Julia
vs the way it’s called even from the C/Fortran demos that Sundials ships with
(Sundials is the C++ library that provides CVODE). In addition, it’s not clear whether
the other domain-specific modeling tools alter the build process to use a BLAS
implementation for this aspect, as by default Sundials CVODE will build with an
internal 3-loop implementation for LU-factorizations, and lsoda would require
modifying the source in order to bring in an alternative factorization. So with all of the
uncertainty in how this effect is dependent on the matrix size, the CPU, and the
LAPACK choices of the other software, this can cause anywhere from a 50%
difference to 1000% difference in performance depending on the exact scenario being
looked at.

We note that such BLAS/LAPACK implementations which are not the standard
CVODE/lsoda built-in will also automatically multithread LU-factorizations by default
when a certain size heuristic is hit (for example, OpenBLAS’s heuristic is at 200x200
matrices which is actually too small and makes OpenBLAS slower than its single
threaded counterpart until around 450x450 matrices on many CPUs). The
LinearSolve.jl solvers used in the Julia implicit ODE methods have a default that
jumps between different implementations using known issues like this. For the
purpose of these benchmarks, we used single-threaded LU-factorizations to provide a
more direct comparison against the other implementations, which may not wrap a
multithreaded LAPACK. Due to the aforementioned threading effect this actually
improves the performance in many of the examples (that are not BCR).

“Native language performance” is an aspect that needs to be broken down into more
detail. It is quite difficult to know the exact details of the differences within software
here as none of the software shares examples of what the generated C code looks like
from their compilation process without diving into extreme details (and in some cases
this process is part of a proprietary compiler of which we would prefer to shield
ourselves of any legal backlash), but we can at least note what aspects we have found
to be important in such projects and speculate as to how one may see a difference.
One key aspect to the code generation process is that the final code generated from
Catalyst fully inlines all aspects of the rate function calculation into a single flat
representation of the function. This inlining greatly improves the performance by
removing small function calls. While in many cases a compiler’s inlining heuristic can
statically remove the function call and perform an auto-inlining, there are many edge
cases to such an inlining heuristic, such as function size, that could trigger adverse
behaviour and thus cause some functions to not inline. In particular, with respect to
the Julia compiler Michaelis-Menton functions and Hill functions are right on the edge

https://github.com/SciML/LinearSolve.jl/issues/357


according to the inlining heuristic, though faster to inline and it does inline in later
Julia versions (though from memory it did not in versions before v1.3 when a new
inline scheduler was added, with this function being a test case provided by me to the
compiler team as something we wished to ensure inlined). A generated C code relying
on GCC heuristics may lose some performance at this point, though this is exactly the
kind of detail we would not want to write into a paper without doing a complete
analysis proving what aspects are inlining and not inlining (and it would be a
complete diversion to include a multi-page analysis of this, beyond that its usefulness
is questionable since the results will be subject to change between compiler
versions).

One piece to note about the Julia implementation is that the inlining of nonlinear
functions is counteracted by direct optimizations for mass action terms. The
generated code in many instances (such as the jumps) handles mass action terms
separately from the rest of the nonlinear terms. If this was not done, the level of
optimization that is applied to the general nonlinear functions would not be tenable
because the code size would be too large and the compilation times would balloon
(maybe at a rate of O(n^4) due to the LLVM GC Mark pass, though dependent on
specifics of what must be marked and whether the compiler heuristic knows whether
to remove the mark pass via complete inference). Thus mass action terms for jump
problems are handled separately in a way that has been hand-optimised, looping over
the mass action terms to achieve constant time compilation with respect to the
number of mass action terms. Under the assumption that most terms are mass action,
this is a piece that allows the compilation process to be hyper-optimising on the
difficult parts while not ballooning too fast.

Another major aspect of native language performance is vectorization, vectorization
not in the sense of Python/MATLAB/R but in the sense of allowing code generation to
automatically determine optimal SIMD scheduling via things like SSE2 and AVX512
instructions to allow for computing multiple + and * operations simultaneously. One of
the core optimizations which can be helpful here is SLP vectorization which allows for
auto-vectorization of non-loop code like the generated code from inlined chemical
reaction networks. Many auto-vectorization codes focus most of their effort on the
automated SIMD of for loops, but in the scenario of the generated code like we see
here the SLP vectorization is much more important. SLP vectorization is also much
more difficult. The only documented improvements we know of to GCC completed in
2011 (https://gcc.gnu.org/projects/tree-ssa/vectorization.html). This is important
because, even though GCC added a block vectorization code model which would be
important in the repeated structures found in a chemical reaction network, its cost
model dates back to a time where AVX512 instructions (and even some SSE2
instructions) were new enough that many CPUs would have to down-clock in order to
make use of them. At a high level, this means that while a CPU could execute 4 or 8 +
operations simultaneously, doing so would require an expensive instruction which
would change the clock speed on your CPU temporarily in order to execute the
instruction, and then require an expensive instruction to automatically bring the clock
speed back to the normal rate. This means you would need to ensure that these
commands are only performed if you have many of these commands, and thus cost
models from this time are heavily conservative with many never using AVX512

https://gcc.gnu.org/projects/tree-ssa/vectorization.html


instructions at all. More modern AMD and Intel CPUs have greatly improved the way
that support for these vector instructions can be done (through improved thermal
management), and thus the cost model required for more representative CPUs (and
thus the SLP vectorization algorithm that would be efficient, since it’s a greedy
algorithm solution to an NP-hard problem) is substantially different from what one
could/should/would have written in 2011. Julia’s approach through LLVM uses a more
modernised SLP vectorization pass (https://llvm.org/docs/Vectorizers.html) which in
particular had some contributions from Intel
(https://llvm.org/devmtg/2015-04/slides/MaskedIntrinsics.pdf) to ensure that this could
be done.

Years ago in a much earlier Julia where this benchmarking was much more common,
there were more than a few cases discussed in chat where, on toy examples (no
packages, straight-line code), someone found Julia was faster than a GCC compiled C
code (usually in the 2x-3x range) but matched Clang-compiled C code, where Clang is
the LLVM compiler front end for C. In these cases, the difference was often attributed
to differences in inlining heuristics and SLP vectorization. So while a detailed
manuscript worthy of publication in a computer science outlet would be required to
definitely “prove” what aspects of the compiler heuristics are likely causing a
difference and to what extent they are, we can put together at a high level that (a) the
kind of code Catalyst is generating can be very reliant on inlining and SLP
vectorization heuristics and (b) these have been seen to be better in LLVM than GCC
before, and thus hypothesise that this may be a substantial part of what could cause a
difference in the generated code performance between Catalyst and the other tools
which we suspect all use GCC on generated C code. Of course, this comparison
would require an extreme amount of detail in order to achieve exact numbers and
attributions on a per-CPU basis, and therefore we refrain from making a detailed claim
in this manuscript attributing differences to this exact portion.

Another potential substantial contributor to performance differences which can be
attributed to “native language performance”, which comes into play with some of the
smaller differential equation examples, is a detail in JIT compilation where one can
embed runtime level information into the compiled function call. With ahead-of-time
compilation this would be invalid since some of the runtime details may change
between compilation and execution, but that’s not possible in the JIT compilation
setting, allowing for further optimizations. This leads to the surprising result that
calling C shared libraries from C, using C’s ABI, is faster from JIT compiled languages
which make use of this trick than C itself (in particular Julia and LuaJIT)! See
independent measurements for extra details https://github.com/dyu/ffi-overhead. This
gives JIT compiled languages about a 10% performance improvement when handling
shared libraries, something that would come into play with many calls to Sundials in
an ODE solver loop as it interacts with the shared library for small ODEs, meaning
that with all other code being equal a solver loop calling Sundials .so binaries from
Julia with the same compiled ODE code would run faster in Julia than from C. The
exact contribution of this effect can be quite difficult to measure in practice but is
likely worth mentioning in the complete story.

One other potentially substantial effect could be the underlying math library. C
defaults to using the system math library, which has different implementations on

https://llvm.org/docs/Vectorizers.html
https://llvm.org/devmtg/2015-04/slides/MaskedIntrinsics.pdf
https://github.com/dyu/ffi-overhead


different operating systems and thus can be difficult to attribute any single
performance number to any single operating system. The Julia compiler team itself
wrote and maintains OpenLibm (https://openlibm.org/) which is one of the core open
source libm implementations used by some programming languages and operating
systems. That said, since around Julia v1.3 all calls to OpenLibm, and thus any
system math library, were removed from Julia base with all implementations being
direct Julia implementations. The reason was this allowed for more rapid
development and improvements of Base math functions. In particular, the differential
equation solvers had their own floating point power implementation as mentioned
briefly in some previous manuscripts as attributing to 2x-3x performance
improvements in Runge-Kutta solvers in small ODEs due to the use of floating point
power in the time adaptivity heuristics
(https://www.biorxiv.org/content/10.1101/2020.11.28.402297v2). These implementations
were further improved using min-max polynomials by Oscar Smith and added to Base
Julia. While it seems the 64-bit version is a bit obscured in its exact performance
difference, https://github.com/JuliaLang/julia/pull/40236 notes that 32-bit floats
achieve a performance improvement of 1.5x in the 0.5 ulp implementation against a
previous Julia-based one (which already outperformed OpenLibm), which gives a
rough estimate back in that range of around 2x. We note that floating point power
calculations are on the order of 100-1000 times more expensive than * and +
operations, and thus chemical reaction network simulations with many Hill function
terms can have performance limited by the ^ operation if the operand does not type
the power as integer. A near future optimization to the ModelingToolkit code
generation process used by Catalyst will allow for the operands to be correctly
integral typed (https://github.com/SciML/ModelingToolkit.jl/pull/2231), thus allowing
the compiler to specialize a^2 -> a*a and fully remove this effect, though with the
optimizations already made in Julia we suspect that this exact effect in Hill functions
is likely not too large anymore. However, we point this out as a place where
specialised optimizations would be required by the other tools. Some SBML models
treat this operand as an integer literal, in which case the code generation process
with GCC and standard system libraries would need to avoid naively lowering to a
pow/powf call and directly perform this operation in the code generation process in
order to not see a slowdown. And in some cases SBML models treat this value as an
integer parameter, and thus if the lowering is done to a single parameter vector of
floats this would lead to a pow/powf call as well, and therefore the lowering would
need to manually split these coefficients out to avoid the system library call. This is
deep in the code generation pipeline and thus it is very difficult for us to determine
exactly how other programs are doing this lowering (and impossible in some cases
that are proprietary), but given the effect we’ve seen over the years of optimising this
effect we can at least point out that it would require manual intervention that we
suspect is not being done.

In conclusion, it depends. We hope the reviewers are interested in such a high-level
heuristic breakdown but at the same time understand that the amount of effort to
really nail down all of these details would be a manuscript itself (and a moving target
as CPU architectures and compiler infrastructure changes). This insight comes from
years of developer chats with the compiler teams and users and any overly succinct
summary would require a significant amount of work to produce the sufficient

https://openlibm.org/
https://www.biorxiv.org/content/10.1101/2020.11.28.402297v2
https://github.com/JuliaLang/julia/pull/40236
https://github.com/SciML/ModelingToolkit.jl/pull/2231


evidence included with the manuscript to give direct attributions to the level of
contribution from each effect. Though knowing these effects, we hope the reviewers
understand why such a performance should be expected a priori.

Comment 6

In Section 2.4, it might be more fitting with the paragraph style to specify which Julia
packages allow approximating the unknown CRN structures using neural networks.

Reply: We have now clarified this functionality is enabled by the SciMLSensitivity
package in Section 2.4 where we now write: “Furthermore, unknown CRN structures
(such as a species’s production rate) can be approximated using neural networks and
then fitted to data.”... “This functionality is enabled by the SciMLSensitivity package
[60].”

Comment 7

Would be interesting to hear more details about the planned updates for spatial model
support mentioned in the Discussion. Would that be a compartmentalised approach (akin to
reaction–diffusion master equation) and what specific spatial SSA solvers would it include?
Or does this also imply support for continuous reaction-diffusion processes?

Reply: We currently have several work in progress PRs, see the Catalyst.jl repo, on
adding spatial support for graph-type models (where transport is between nodes of a
graph). For jump process models this would indeed encompass the reaction-diffusion
master equation, though our longer-term goal is to support non-local reaction
structures too and allow the use of the convergent reaction-diffusion master equation
and other classes of models. JumpProcesses.jl currently has two RDME solvers,
though both are currently limited to only mass action type reactions. One is based on
the next subvolume method and the other, more performant, method uses the
composition-rejection direct method to select the site of the next transition, and then
uses the direct method to choose the event that occurs at that site.

On the ODE side these PRs should allow support for a variety of spatially-discretized
PDE models, where the discretized transport operator can be represented as
transitions within a graph. They can also be used for modelling transport in models
involving discrete compartments. Ultimately, we hope to also allow continuous-space
reaction network representations, and leverage other packages like MethodOfLines.jl
to automatically discretize the associated reaction-diffusion PDE models and/or
generate spatial transition matrices for spatial SSAs. Should suitable Brownian
Dynamics or other particle-type solvers become available as Julia libraries, we would
certainly be interested in interfacing with them too via such a continuous-space
reaction-network representation.

We have updated the discussion to now say “This includes specialised support for
spatial models, including spatial SSA solvers for the reaction-diffusion master
equation, and general support for reaction models with transport on graphs at both
the ODE and jump process level. A longer-term goal is to enable the specification of
continuous-space reaction models with transport, and interface with Julia partial



differential equation libraries to seamlessly generate such spatially-discrete ODE and
jump process models.”

Comment 8

One quality of life improvement in Catalyst would be allowing to associate a volume
parameter with each compartment and hence automatically scale the mass-action reaction
rates according to volume. On a different note, an interactive GUI even in a very limited form
(tutorials/specific Pluto notebooks?) could make the software more appealing for biologists
with little to no programming experience. I see that both these comments are to some extent
covered in the issues on GitHub, but perhaps expanding on future work and touching upon
these and other similar possible improvements would be an insightful addition.

Reply: We thank the reviewer for these suggestions, and hope they will continue
contributing any ideas or suggestions they have, using GitHub or other means. While
volumes are currently supported, in the sense that a user can define a volume
parameter and include it in rate expressions, it is true that we do not provide
automatic conversion from concentration units to “number of” units (or vice-versa).
This is certainly something that has been requested by several users and is in our
thoughts, though we haven’t yet figured out how we would like to handle this / what
the interface should be (suggestions are welcome!). We have added the following
sentence to the discussion: “Finally, given Catalyst's support for units we hope to
implement functionality for automatically converting between concentration and
"number of" units within system specifications by allowing users to specify
compartments with associated size units.”

A complete GUI for acausal modeling which integrates Catalyst for chemical reaction
network components, known as JuliaSim, is being developed by JuliaHub. This is a
separate project which is proprietary of which authors Chris Rackauckas and Yingbo
Ma are associated (though free for academic and non-commerical usage). To avoid
confusion we leave out any mention of this in the current manuscript and focus
strictly on the open source Catalyst library (and therefore the model representation
and code generation). We note that ModelingToolkit, Catalyst, and all of SciML are
fully free and open source (MIT licensed) and thus we encourage any third party to
build GUI components off of Catalyst as they see fit, and have seen some small scale
third party projects already doing this (for example see
https://github.com/bradcarman/ModelingToolkitDesigner.jl).

Adding some example interactive tutorials via Pluto or Jupyter notebooks to illustrate
how users can easily get basic interactive environments is definitely something we
will consider (and we have opened an issue on this as a future work).

Reviewer 2
In the manuscript entitled ‘Catalyst: Fast and flexible modeling of reaction networks’ by
Loman et al the authors developed a tool, Catalyst.jl, to describe biochemical reaction
networks in the framework of Julia programming language. The Julia library Catalyst.jl is a
symbolic modelling package where users can create the network model using Catalyst's
domain specific language (DSL). The models created using this framework can now be



simulated to generate deterministic or stochastic trajectories using various types of methods
available in the existing package in Julia (DifferentialEquations.jl). Furthermore models
developed in the Catalyst can also be used for variety of other purposes (e.g. bifurcation
analysis, parameter estimation) using existing tools under Julia library.

There are many types of standalone modelling tools (e.g. COPASI, BioNetGen etc.)
available to systems biology researchers for simulating biochemical reaction networks. The
main appealing factor of Catalyst, in my opinion, is that in can be integrated into diverse
types of existing Julia programming tools to achieve the desired objective. I recommend
publication of the manuscript in the Plos Computational Biology upon justification of the
following points.

Comment 1

Often system biology models are phenomenological in nature where the reaction rates are
nonlinear with phenomenological rate functions. Although the authors mentioned about Hill
function, however it is not clear whether user can customize the rate function as needed.

Reply: We apologise for any confusion caused by our wording. Indeed, any general
Julia function of species amounts, parameters, and time, is allowed for defining a
reaction rate. We have now clarified this in the text in Section 2.1 where we now say
“Each reaction rate can either be a constant, a parameter, or a function. Predefined
Michaelis–Menten and Hill functions are provided by Catalyst, but any user-defined
Julia function can be used to define a rate.”

Comment 2

Does Catalyst allow non-integer Hill coefficient?

Reply: Yes, non-integer Hill coefficients can be used.

Comment 3

Due to the gaussian nature of the noise, solution of chemical Langevin equation may lead to
negative concentration/population if the copy number of the relevant species becomes very
low. How this scenario is addressed in the Catalyst?

Reply: We currently wrap the rate laws within square roots that represent noise
strength in absolute values, preventing square roots of negative numbers, following
the approach of Higham (ref. [68]). This allows SDE solvers to still time step even
when populations become negative, with a behaviour for the noise terms which is
approximately reflective around the 0. This should be made a user-selectable option
though, as it may be preferable for users to receive an error message about complex
numbers arising in the solution process (and we have opened an issue to add such
flexibility and better document / illustrate this issue and what users can do in our
tutorials). Using this form of reflection allows users to be able to identify when such a
case occurs in a post-processing via analysing whether any concentrations are
negative, and either manually post-process states via absolute value or manually
error.



More generally though, a model where such issues arise with the CLE suggests the
CLE is not the appropriate physical representation to use for the system in the
desired parameter regimes (at least beyond the first time a species population
becomes zero and the CLE therefore becomes undefined) and any non-erroring CLE
simulation would only be an approximation. A better approach would be to allow
hybrid models that can dynamically shuffle species and reactions between different
physical representations (i.e. jump process, tau-leaping, CLE, or ODE) as appropriate.
Such hybrid models are not currently supported, but as mentioned in the discussion,
are a future goal.

We have modified the discussion to now say: “Such hybrid approaches can help to
overcome the potential negativity of solutions that can arise in τ-leaping and
CLE-based models [67]. In the CLE case, Catalyst currently wraps rate laws within the
coefficients of noise terms in absolute values to avoid square roots of negative
numbers, allowing SDE solvers to continue time-stepping even when solutions
become negative (following the approach in [68]). We hope to also integrate
alternative modelling approaches, such as the constrained CLE [67], which avoid
negativity of solutions via modification of the dynamics at the positive-negative
population boundary.”

Comment 4

Is the computational efficiency due to the Catalyst or the differential equation solvers
developed in the Julia language?

Reply: Please see the extended response to Comment 5 of the first reviewer. It is
likely due to both features provided by Catalyst (inlining mass action rate laws within
the generated ODE derivative function, analysing and binning jumps into the most
performant representation supported by JumpProcesses.jl, etc), coupled with the
broad variety and extensive features of the differential equation and jump process
solvers in DifferentialEquations.jl and JumpProcesses.jl. We have added a paragraph
at the end of Section 2.2 discussing this.

Other changes
We have taken the opportunity to add references and comments on additional CRN
modelling tools in the list of references within the introduction. We have also added
an “Author summary” section, as required for PLOS Computational Biology articles.


