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1. Heuristic approach1

The pseudocode of our adaptive RAxML-NG2

heuristic approach is summarized in Algorithm3

1. The functions are the following by order of4

appearance:5

• GetRandStartingTrees(): Function that6

takes as input the difficulty score of the MSA to7

be analyzed and returns the number of random8

starting trees to be used by adaptive RAxML-9

NG, based on Figure 2a available in the main10

text.11

• GetParsStartingTrees(): Function that12

takes as input the difficulty score of the MSA13

to be analyzed and returns the number of MP14

starting trees to be used by adaptive RAxML-15

NG (see Figure 2a, main text).16

• Optimize(): Core function of the algorithm,17

which takes as input a random/MP starting18

tree, the difficulty score of the corresponding19

MSA, and a numerical parameter ϵ. This20

function conducts a full ML tree search21

based on the adaptive heuristic described in22

Section 3 of the main text and returns the23

ML tree and its log-likelihood score. The24

numerical parameter ϵ is used as a log-25

likelihood improvement threshold, that is, the26

tree search is terminated when the attained log-27

likelihood improvement does not exceed this28

ϵ value. This default numerical convergence29

parameter is taken directly from RAxML-30

NG (Kozlov et al., 2019) and was also used31

in standard RAxML (Stamatakis, 2014). The32

default parameter value in RAxML-NG v1.133

and standard RAxML is 0.1, while in the34

adaptive version and in v1.2 is 10. This35

modification on the default parameter value is36

based on the results of a recent comparative37

study (Haag et al., 2022a), where the authors38

investigate the effect of different ϵ value settings39

on the ML tree inference accuracy. Users can set40

the ϵ value via the command line.41

• BLO(): Branch-length optimization routine,42

that takes as input a binary tree and optimizes43

its branches.44
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Algorithm 1 Adaptive RAxML-NG heuristic

Input: MSA, difficulty, ϵ
Output: MLtree, MLnL
MLnL ← −∞, MLtree ← NONE // Initialization

// Initialize random/MP trees and execute the heuristic
randTrees ← GetRandStartingTrees(difficulty)
parsTrees ← GetParsStartingTrees(difficulty)
for randTree in randTrees do // Execute for each random tree

( tmpMLtree, LnL ) ← Optimize(randTree, difficulty,ϵ)
if LnL > MLnL then

MLnL ← LnL, MLtree ← tmpMLtree
end if

end for

for parsTree in parsTrees do // Execute for each MP tree
( tmpMLtree, LnL ) ← Optimize(parsTree, difficulty, ϵ)
if LnL > MLnL then

MLnL ← LnL, MLtree ← tmpMLtree
end if

end for

function Optimize(tree, difficulty, ϵ)
LnL ← −∞, impr ← TRUE // Initialization
// Initial BLO, MPO
( tree, LnL )← Blo (tree)
( tree, LnL )← Mpo (tree)
// Easy and difficult datasets start with an NNI Round
if difficulty < 0.3 OR difficulty > 0.7 then

( tree, LnL )← NNI (tree)
( tree, LnL )← Mpo (tree)
if Converged(LnL) then go to SECOND STAGE
end if

end if

// First stage, Fast-SPR + NNI
sprRad ← 5, step ← 5, rf ← ∞, maxRad ← 25
while NOT Converged(LnL) AND rf != 0 AND impr do

( newTree, newLnL )← Fast-SPR (tree, sprRad)
( newTree, newLnL )← NNI (tree)
impr ← ( newLnL − LnL > ϵ ) // Boolean
rf ← RFdist ( tree, newTree)
tree ← newTree, LnL ← newLnL
if sprRad < maxRad then

sprRad ← sprRad + step
end if

end while

SECOND STAGE: // SLOW-SPR + NNI
( tree, LnL )← Mpo (tree) // Intermediate MPO
impr ← TRUE
sprRad ← GetSlowSPRradius(difficulty)
while impr do

( tree, newLnL )← Slow-SPR (tree, sprRad)
( tree, newLnL )← NNI (tree)
impr ← ( newLnL − LnL > ϵ ), LnL ← newLnL

end while
( tree, LnL )← Mpo (tree) // Final MPO
return ( tree, LnL ) // Return statement

end function

function Converged(LnL)
if MLtree != NONE AND (MLnL−LnL)/|MLnL|< 0.01

then
return TRUE

end if
return FALSE

end function

function GetSlowSPRradius(difficulty)
if difficulty < 0.5 then

return ⌊50· difficulty +5⌋
else

return ⌊−50· difficulty +55⌋
end if

end function

function GetRandStartingTrees(difficulty)
numTrees ← ⌊5.5·NormalDist(difficulty,0.5,0.2)⌋
return min(numTrees, 10) // MIN(): minimum function

end function

function GetParsStartingTrees(difficulty)
numTrees ← ⌊7.0·NormalDist(difficulty,0.5,0.25)⌋
return min(numTrees, 10) // MIN(): minimum function

end function

function NormalDist(x,m,s)
inv sqrt 2pi ← 0.39894
a ← (x - m) / s

// EXP(): exponential function
return inv sqrt 2pi / (s · EXP(−0.5·a·a))

end function

• MPO(): Model parameter optimization1

routine, that takes as input a binary tree and2

optimizes its model parameters.3

• NNI(): NNI round routine, which takes as4

input a binary tree and applies a sequence of5

NNI moves, based on a greedy, hill-climbing6

heuristic. This function returns the NNI-7

optimal tree.8

• Converged(): This function takes as input the9

current log-likelihood score of the best-scoring10

tree found so far during the tree search and11

returns TRUE if the current score is less than12

1% worse than the reference score. This function13

will return FALSE otherwise. As a reference14

score, we use the log-likelihood score of the15

best ML tree found so far during all (preceding)16

finished tree searches.17

• Fast-SPR(): Fast version of the SPR round,18

which takes as input a binary tree, applies a19

sequence of SPR moves based on a hill-climbing20

heuristic, and returns the optimized tree.21

• Slow-SPR(): Slow version of the SPR round,22

which takes as input a binary tree, applies a23
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sequence of SPR moves based on a hill-climbing1

heuristic, and returns the optimized tree.2

• RFdist(): RF distance (Robinson and Foulds,3

1981) function, which takes as input two binary4

trees and returns the RF distance between5

them.6

• GetSlowSPRradius(): This function takes7

as input the difficulty score of the MSA being8

analyzed and returns the Slow-SPR radius9

parameter calculated by adaptive RAxML-NG10

(see Figure 2b, main text).11

2. Difficulty score and Datasets12

Figure 3 (available in the main text) shows the13

distribution of empirical and simulated datasets14

over 10 difficulty intervals. We can observe that15

the proportion of datasets with a difficulty score16

exceeding 0.9 is somewhat low compared to the17

rest of the datasets. In the main text, we briefly18

mention that this phenomenon is associated19

with the definition of the difficulty score per20

se. Further, in Section 2.2 in the main text,21

we provide a short description of the difficulty22

prediction paper (Haag et al., 2022b). In this23

study members of our lab initially defined and24

calculated the difficulty score of empirical MSAs25

by conducting 100 ML tree searches on each26

dataset using RAxML-NG. They provided the27

following definition of the difficulty score:28

difficulty=
1

5
·(RFall+RFpl+

N∗
all

Nall
+

N∗
pl

Npl
+(1−

Npl

Nall
)) (1)

The five terms included within the parentheses29

in Eq. S1 are the following in order of appearance:30

• RFall: The average relative RF distance31

between all pairs of trees in the 100 output ML32

trees.33

• RFpl: The average relative RF distance between34

all pairs of trees in the plausible tree set.35

• N∗
all

Nall
: The number of unique tree topologies in36

the output ML tree set (N∗all) divided by the37

total number of trees in the same set (e.g.,38

given that Haag et al. carried out 100 ML tree39

searches, this parameter would be Nall=100).40

• N∗
pl

Npl
: The number of unique tree topologies in41

the plausible tree set (N∗pl) divided by the total42

number trees in the same set (Npl).43

• Npl

Nall
: The number of trees in the plausible tree44

set (Npl) divided by the total number of trees45

in the output ML tree set (Nall=100). We46

subtract this ratio from 1, leading to the full47

expression of the last term (1− Npl

Nall
)48

Each term results in a value between 0.0 and49

1.0. Since all terms are divided by 5, each of50

them can individually contribute up to 0.2 units51

to the overall difficulty score. The reason why52

only a small proportion of MSAs have a difficulty53

score exceeding 0.9 is mainly associated with the54

last term in the parentheses (1− Npl

Nall
). On easy55

datasets, almost all independent ML tree searches56

yield trees with similar topologies and likelihood57

scores. Therefore, the vast majority of the final58

ML trees is included in the plausible tree set.59
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In this case, the ratio Npl

Nall
is close to 1 and1

the term (1− Npl

Nall
) is close to 0. However, the2

majority of ML trees inferred on difficult MSAs3

are also plausible. While the topologies are highly4

incongruent, their likelihood scores are almost5

equal, and therefore the term (1− Npl

Nall
) is, again,6

close to 0. Hence, on difficult MSAs the last7

term contributes less than 0.1 units (out of 0.2),8

yielding an upper ”bound” of 0.9 for the overall9

score which is rarely exceeded. The four remaining10

terms, however, contribute 0.2 units each, and11

thus, the problem is somewhat alleviated for12

difficult MSAs. This happens because, in such13

cases, both the RF distance terms and the unique-14

topology ratios are close to 1, implying a high15

number of distinct and incongruent topologies in16

the final ML tree set.17

Overall, the difficulty score for ”hopeless-to-18

analyze” MSAs is usually underestimated by19

the current definition (Eq. S1). Intuitively, the20

difficulty score of such datasets should be close21

to 1.0, but since the contribution of the last term22

in the parenthesis is low (for the reasons outlined23

above), the calculated value usually lies within the24

range of [0.8,0.9]. Indeed, only a small proportion25

of empirical MSAs in TreeBASE (Piel et al.,26

2009) exhibit a difficulty score exceeding 0.9. On27

the other hand, due to the high contribution of28

the remaining four terms, the difficulty scores of29

”hopeless-to-analyze” datasets are rarely below30

0.8. We believe that the definition of the difficulty31

score should be reformulated such that difficult32

MSAs are distributed more uniformly within the33

respective difficulty score range [0.7,1].34

Regarding the datasets used in our experiments,35

in Section 4 of the main text we describe in detail36

the filtering process we followed to generate 9,51537

empirical and 5,000 simulated MSAs in total.38

Out of the 9,515 empirical MSAs, 8,052 are39

unpartitioned alignments with DNA sequences40

(UP-DNA), 638 are partitioned alignments with41

DNA sequences (P-DNA), 817 are unpartitioned42

alignments with amino-acid sequences (UP-AA),43

and 8 are partitioned alignments with amino-acid44

sequences (P-AA). Further, from the 5,00045

simulated MSAs, 4,482 are UP-DNA, 18 are P-46

DNA, 487 are UP-AA, and 13 are P-AA datasets.47

We subsampled the simulated DNA datasets from48

the datasets used in study by Höhler et al. (2022).49

We simulated the AA MSAs based on a sample50

of RAxML Grove (Höhler et al., 2021) datasets.51

RAxML Grove datasets contain files with inferred52

trees, their respective estimated substitution53

model parameters, and statistical information54

about the analyzed MSA. In order to avoid55

simulating very large MSAs for the consecutive56

analyses, we selected datasets with an MSA57

number of unique sites (i.e., number of patterns)58

and number of taxa below the 95th percentile59

respectively. Then, we used the trees and the60

substitution models that were selected by the61

users of the RAxML web servers to estimate the62

model parameters we used to simulate MSAs with63

AliSim (Ly-Trong et al., 2022). Overall, we used64
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the following substitution models for AA MSA1

simulations: JTT+Γ (Jones et al., 1992)(29.79%),2

LG+Γ (Le and Gascuel, 2008)(28.64%),3

Dayhoff+Γ (Dayhoff, 1972)(26.70%),4

WAG+Γ (Whelan and Goldman, 2001)(7.37%),5

Blosum62+Γ (Henikoff and Henikoff, 1992)(4%),6

MtArt+Γ (Abascal et al., 2007)(2.71%),7

VT+Γ (Müller and Vingron, 2000)(2.34%),8

GTR+Γ(1.57%), MtREV+Γ (Adachi and9

Hasegawa, 1996)(1.22%), MtMAM+Γ (Yang10

et al., 1998)(1.0%), rtREV+Γ (Dimmic et al.,11

2002)(0.85%), MtZOA+Γ (Rota-Stabelli12

et al., 2009)(0.65%), cpREV+Γ (Adachi13

et al., 2000)(0.47%), PMB+Γ (Veerassamy14

et al., 2003)(0.22%), HIVw+Γ (Nickle et al.,15

2007)(0.1%), FLU+Γ (Dang et al., 2010)(0.07%),16

DCMut+Γ (Kosiol and Goldman, 2005)(0.07%),17

HIVb+Γ (Nickle et al., 2007)(0.07%).18

For the analyses of all DNA MSAs, we used19

the GTR+Γ (Tavaré, 1986) model. In order to20

reduce the computational complexity and the CO221

footprint when analyzing protein sequences, we22

used the LG model for the analysis of AA MSAs23

and did not account for rate heterogeneity with24

the Γ model (i.e., LG+Γ).25

3. Commands26

Users can invoke the adaptive RAxML-NG version27

using the --adaptive option when running the28

standard version of RAxML-NG. Our results29

can be reproduced by executing the following30

commands:31

Standard version:32

./raxml-ng --threads 1 --msa {msa}33

--model {model} --seed 034

--extra compat-v1135

Adaptive version:36

./raxml-ng --adaptive --threads 137

--msa {msa} --model {model} --seed 038

--lh-epsilon 0.1 --lh-epsilon-triplet 0.139

We wish to emphasize that the adaptive version40

of RAxML-NG was designed and implemented41

based on RAxML-NG v1.1. Since then, a42

new version of RAxML-NG (i.e., v1.2) has43

been released. RAxML-NG v1.2 introduces44

modifications in the default values of log-45

likelihood improvement thresholds, for example46

the numerical convergence parameter ϵ discussed47

in Section S1 or the convergence threshold48

when optimizing the branch-lengths of the three49

adjacent branches around the insertion point50

during a Slow SPR move (see Section 2.1 in the51

main text)1. These changes in the default values52

have been incorporated into the adaptive version53

as well.54

In our experiments we compared RAxML-55

NG v1.1 with adaptive RAxML-NG always56

using the default values from RAxML-NG v1.157

for the convergence parameters. RAxML-58

NG v1.1 can be invoked by adding the59

--extra compat-v11 argument to the standard60

1More information regarding RAxML-NG v1.2 can be found at:

https://github.com/amkozlov/raxml-ng/releases/tag/1.2.0
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RAxML-NG command line. Similarly, the1

adaptive version that uses the default values2

from RAxML-NG v1.1 for the convergence3

parameters can be invoked by adding the4

--lh-epsilon 0.1 --lh-epsilon-triplet 0.15

arguments to the adaptive RAxML-NG command6

line. In case these arguments are omitted, the user7

will invoke standard/adaptive RAxML-NG with8

the updated default values for the convergence9

parameters.10

4. IQ-TREE 2 significance tests11

IQ-TREE 2 (Minh et al., 2020) supports several12

statistical tests (Naser-Khdour et al., 2019) using13

the RELL approximation (Kishino et al., 1990)14

to determine if some trees in an input tree15

set are statistically significantly better than16

the remaining trees. We use these statistical17

tests to asses the ML trees inferred by the18

standard and adaptive versions of RAxML-19

NG. The implemented tests are: the bootstrap20

proportion2, the Kishino-Hasegawa test (Kishino21

and Hasegawa, 1989) and the Shimodaira-22

Hasegawa test (Shimodaira and Hasegawa, 1999),23

both in their weighted and un-weighted variants,24

the Approximately Unbiased test (Shimodaira,25

2002) , as well as the Expected Likelihood Weight26

test (Strimmer and Rambaut, 2002). We use the27

default IQ-TREE settings regarding the number28

of resampled estimated log-likelihood (RELL)29

2This method is also described in Kishino et al. (1990).

replicates (10,000) as well as for the significance30

level (α=0.05).31

5. Absolute log-likelihood differences32

Figures S1 and S2 summarize the absolute log-33

likelihood differences (LD) for all standard-34

adaptive tree pairs, measured in log-likelihood35

units (LHU). We divide datasets into ten36

difficulty intervals. The heights of the bars37

correspond to the proportion of datasets, within38

the specified difficulty interval, where the LH39

difference lies within a specified LHU range. For40

example, in Figure S1 and on difficulty interval41

[0,0.1), there are 1,196 datasets (purple bar)42

where the absolute LH difference of the standard-43

adaptive pair is between 0 and 2 LHU. This44

range corresponds to approximately 72% of the45

empirical datasets that have a difficulty score46

within [0,0.1).47
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FIG. 1. Distributions of absolute log-likelihood differences in all standard-adaptive tree pairs, on empirical data. The abolute
LH differences are measured in log-likelihood units (LHU). We divide the MSAs into ten difficulty intervals. The height of
the bars corresponds to the proportion of datasets, within the specified difficulty interval, in which the score of standard
and adaptive trees have an absolute difference within a range of LHU. The numbers at the top of the bars correspond to
the number of datasets in this LHU range.
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FIG. 2. Distributions of absolute log-likelihood differences in all standard-adaptive tree pairs, on simulated data. The abolute
LH differences are measured in log-likelihood units (LHU). We divide the MSAs into ten difficulty intervals. The height of
the bars corresponds to the proportion of datasets, within the specified difficulty interval, in which the score of standard
and adaptive trees have an absolute difference within a range of LHU. The numbers at the top of the bars correspond to
the number of datasets in this LHU range.
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