Supplementary information

Apoptotic stress causes mtDNA release during senescence and drives the SASP

In the format provided by the authors and unedited

Supplementary Figure 1 uncropped western blots

Figure 3a

Figure 3j

Figure 5b

Extended Data Figure 4b

Extended Data Figure 7c

Extended Data Figure 8c

Extended Data Figure 9b

HSP60 HSP60

Extended Data Figure 10f

Supplementary Figure 1- Source data for western blot analysis. Uncropped Western blot raw data. The molecular weight marker is indicated on the left (given in kDa). Boxes with red lines indicate cropped regions as presented in the main, extended data and supplementary figures.

Supplementary Figure 2 – Expression of BAX and BAK in proliferating and senescent MRC5 fibroblasts.

(Left) Western blotting showing expression of BAX, BAK, VDAC and α -tubulin in proliferating and senescent (IR) MRC5 fibroblasts. (Right) Quantification of expression of BAX and BAK normalized either to α -tubulin or VDAC. Data are mean of n=3 independent experiments ± S.E.M. Statistical significance (two-sided Student's unpaired t-test) is indicated. For gel source data, see Supplementary Figure 1.

Supplementary Figure 3 – Effect of AAV-Cre-mediated deletion of BAX and BAK in aged liver and bone.

(a) (Top) Representative immuno-FISH image in liver sections from Sham and 4Gy-irradiated Baxfl/fl Bak-/- and BakBax-/- mice. γ H2A.X is shown in green, telomeres are in red, and colocalization between the two is indicated by arrows and amplified at the bottom (scale bar is

5µm). (Bottom) Representative immunohistochemical image of caspase-3 in liver sections from irradiated *Baxfl/fl Bak-/-* and *BakBax-/-* mice (scale bar is 80µm). Quantification of **(b)** mean number of Telomere-associated foci (TAF) (left) and percentage of hepatocytes containing TAF (right) (n=4 Sham-IR and 4Gy-IR Bak^{-/-} Bax^{-/-} Bax^{-/-} and **(c)** percentage of cells positive for caspase-3 in livers from *Baxfl/fl Bak-/-* and *BakBax-/-* mice (n=5) in the conditions indicated. **(d)** Heatmap showing mRNA levels of SASP factors and of Bax in the femur from aged *Baxfl/fl Bak-/-* following tail vein injection of AAV-Cre virus. **(e)** Graphs showing quantification of genes significantly reduced in **(d)**. **(f)** Heatmap showing correlation coefficients between expression levels of Bax and different SASP factors in the bone of aged *Bax^{fl/fl} Bak^{-/-}* (n=7) and *BaxBak^{-/-}* (n=6) mice. Data are mean \pm S.E.M. Statistical significance was assessed using one-way ANOVA followed by Tukey's multiple comparison test (b, c), two-sided Student's unpaired t-test and Mann Whitney test (d and e).

Supplementary figure 4 – *Tfam*+/- MEFs show early onset of replicative senescence and increased SASP.

(a) Cumulative population doublings of Mouse embryonic fibroblasts (MEFs) derived from wildtype (WT) and *Tfam*+/- mice during 10 serial passages. Senescence was confirmed by (b) quantification of SA- β -GAL positive cells and (c) RT-qPCR assessment of p16Ink4a expression, as well as (d,e) RTqPCR assessment of SASP genes (II-6 and Cxcl15) relative to Actin levels. (f -h) RT-qPCR assessment of ISGs (Ifit3, Ifi44, and Stat1) relative to Actin levels. (i) Cumulative

population doublings of MEFs derived from WT and *Tfam*+/- mice treated with vehicle (UNT) or 0.5uM of STING inhibitor SN011 during 9 serial passages. Senescence was confirmed by (j) quantification of SA- β -GAL positive cells (12 images *per* condition from 2 biological replicates; error bars indicate mean ± S.E.M) and (k) RT-qPCR assessment of p16Ink4a expression relative to Actin levels at passages 6 and 9. (I-m) RT-qPCR assessment of ISGs (Ifit3 and Ifi44) and (n) II-6 relative to Actin levels at passages 6 and 9. Data are mean ± S.E.M of n=3 independent experiments. Statistical significance was assessed by Two-sided unpaired t-test followed by Holm-Sidak's multiple comparison test (b-h) and One-Way ANOVA followed by Tukey's multiple comparison test (j-n).

MS proteomic analysis of activated-BAX interactome in senescent cells.

biological process (GO term-based)	interactors of activated BAX
mitochondrial function	mitochondrial dynamics and trafficking: MFN2, ARMCX1, ARMCX2, VAT1 mitochondrial energy metabolism: NDUFV2, NDUFB2, NDUFB11, NDUFC2, EFTB, SMIM20, DLAT mitochondrial lipid homeostasis: NME4, ACOT2 other functions: DNAJA3, FAM210B, MRPS34, ATAD1,
immunity	CDC42SE1, PLGRKT, DEFA3, S100A7, LTA4H, LRCH4, IGKC, HLA-C, LYZ, IGLL5
cytoskeleton organization	SYNE2, GSN, CDC42EP3, ACTN4, SNTB2, FSCN1, AFAP1, CAP1, TUBGCP2, TUBB6
protein folding, degradation and transport	FBXL20, SMURF1, MAN1B1, CAPN1, DNAJA2, STIP1, FKBP15, FKBP7, DNAJB2 DNAJB11, SUMF1, AP1S1, CEP41, SEC31A, KDELR3, TNP01
other processes	nucleic acids metabolism: RBM33, UPF1, MBNL2, NCOR1, YBX3, ZNF445, SAP130 cell fate and apoptosis: DNAJB4, STEAP3, DNAJA3 cytoplasmic vesicles: EXOC4, VTI1A, VPS11 other: SLC39A10, ANTXR1, CDSN, DSG1, DSC1, PPFIBP1, FBN2, ATP6V1D, EIF3G, EIF4A2, ZC3H15, CALML5, ANKS1B, TMEM256, KPRP, TMEM57, PRR14L

Supplementary Figure 5 – Activated-BAX interactome includes mitochondrial dynamics factors.

(a) Schematic representation of the experimental design aimed at identification of activated-BAX interactors. Anti-BAX6A7 co-immunoprecipitates from crude mitochondria lysed in 1% CHAPS were subjected to MS analysis along whole cells as control fraction and isolated crude mitochondria as input fraction. (b) List of activated-BAX interactors selected following rigid selection criteria: (i) interactors should be detected only in immunoprecipitates from senescent cells and absent in immunoprecipitates from proliferative cells (ii) interactors should not be increased in the mitochondrial fraction of senescent cells (protein abundance in the input fraction

of senescent cells should be equal to or lower than in proliferative cells) (iii) both unique peptides and calculated protein intensities should equal zero in immunoprecipitates from proliferative cells. As a proof of concept, activated BAX has been only immunoprecipitated from the mitochondria of senescent cells. Identified interactors belonged to several functional groups including mitochondrial dynamics and trafficking, mitochondrial energy metabolism, mitochondrial lipid homeostasis, immunity, and others.

Supplementary Figure 6 – Senescent cells exhibit a hyperfused mitochondrial network and only fragmented mitochondria show miMOMP.

(a) (Top) Representative immunofluorescence image of proliferating and senescent (IR) IMR90 fibroblasts labelled with MitoTracker Red. (Bottom) Quantification of the percentage of proliferating and senescent cells containing elongated, mixed, and fragmented mitochondria network (data from 1 representative experiment) (scale bar is 10µm). (b) Representative live-cell image of proliferating and senescent IMR90 human fibroblasts labelled with CellLightTM Mitochondria-RFP at the time points indicated. Magnifications on the right show mitochondria network undergoing fission and fusion events. Representative immunofluorescence images of (c)

TOM20 (red) and cytochrome c (green), with magnification showing fragmented mitochondria lacking cytochrome c, and **(d)** BAX6A7 (red) and TOM20 (white) in senescent cells, with magnification showing fragmented mitochondria co-localizing with BAX6A7. Scale bars are 10μ m. Images are representative of n=3 independent experiments.

Supplementary Figure 7 – MFN2 deficiency exacerbates mtDNA release and the SASP in senescent IMR90 fibroblasts.

(a) Representative immunofluorescence images of TOM20 (white) in proliferating and senescent (IR) control (EmptyCRISPR) and MFN2-deficient (MFN2CRISPR) IMR90 fibroblasts (scale bar in 20µm). Images are representative of n=2 independent experiments. (b) Quantification of the percentage of control and MFN2-deficient IMR90 fibroblasts containing elongated, mixed, and fragmented mitochondrial network (n=2 independent experiments). (c) Representative Western blot showing successful CRISPR-Cas9-mediated MFN2 deletion. Quantification of (d) the number of BAX6A7-positive mitochondria in proliferating and senescent controls and MFN2-deficient

IMR90 fibroblasts (n=56 and n=27 proliferating control and MFN2^{-/-} cells, respectively; n=49 and n=23 senescent control and MFN2^{-/-} cells, respectively, analyzed over 2 independent experiments). **(e)** Representative immunofluorescence images of TOM20 (green) and DNA (red) in proliferating and senescent control and MFN2-deficient IMR90 fibroblasts (scale bar is 20µm). Magnification on the right shows DNA foci located outside of TOM20. Images are representative of n=2 Independent experiments. **(f)** Quantification of the number of DNA foci found in the cytosol of proliferating and senescent control and MFN2-deficient IMR90 fibroblasts. Each dot represents the average number of DNA foci per cell per image (n=139 and n=96 proliferating control and MFN2^{-/-} cells, respectively; n=50 and n=38 senescent control and MFN2^{-/-} cells, respectively, analyzed over 2 independent experiments. **(g)** Quantification of mRNA expression levels of SASP genes in control and MFN2-deficient IMR90 fibroblasts (n=3 independent experiments). Data are mean ± S.E.M. Statistical significance was assessed using one-way ANOVA followed by Tukey's multiple comparison test (d, f, g). For gel source data (c), see Supplementary Figure 1.

Supplementary Figure 8 – CCCP-induced mitochondrial fragmentation exacerbates intracellular mtDNA release and the SASP during senescence.

(a) Representative immunofluorescence image of TOM20 (green) and DNA (red) in senescent cells with or without CCCP treatment (scale bar is $20\mu m$). Magnification shows DNA foci outside of TOM20. Images are representative of n=3 independent experiments. (b) Quantification of the

percentage of cells containing elongated, mixed, and fragmented mitochondrial network following treatment with CCCP (n=111 Prol, n=65 Sen, n=43 Sen + CCCP cells analyzed over 3 independent experiments). (c) Quantification of the number of DNA foci found in the cytosol of proliferating and senescent (IR) cells at the conditions indicated (n=92 proliferating cells; n=63 senescent control cells; n=57 senescent cells treated with CCCP analyzed over 3 independent experiments). (d) Quantification of mRNA expression levels of the SASP genes indicated in proliferating and senescent cells following CCCP treatment. Data are mean of n=3 independent experiments. (e) Scheme depicting our hypothesis: In senescent cells majority of mitochondria can be found in a hyperfused state which limits MOMP and the SASP. Only a small subset of fragmented mitochondria undergoes MOMP (miMOMP) and this is sufficient to account for the increased cytosolic mtDNA, activation of cGAS-STING and the SASP. Data are mean ± S.E.M. Statistical significance was assessed using one-way ANOVA followed by Tukey's multiple comparison test (c), two-way ANOVA followed by Tukey's multiple comparison test (d).

Time (h)	M01+3n	M02+3n	M03+3n	Mean	SD
0	BQL*	BQL	BQL	ND*	± ND
1	152	170	176	166	± 12.5
2	159	164	200	174	± 22.4
4	244	284	286	271	± 23.7
8	427	389	389	402	± 21.9
24	805	860	845	837	± 28.4

Individual and mean brain concentration of BAI1 (ng/g)

BQL: = Below the lower limit of quantitation ND: Not determined

Supplementary Figure 9 – BAI1 crosses the Blood Brain Barrier.

Above- table showing individual and mean concentration of BAI1 detected in brain tissue from aged (>16 months old) C57BL/6J male mice injected with BAI1 at different time points (n=3 mice per time point). Below- graph depicting kinetics of BAI1 in brain tissue up to 24 hours.

Supplemental tables:

Table 1: – Antibodies used for immunocytochemistry and immunohistochemistry	
---	--

Primary antibodies	Source	Product number	Concentration
Anti-TOMM20 rabbit polyclonal antibody	Millipore Sigma	HPA011562	1:200
Anti-Cytochrome c mouse monoclonal antibody	BioLegend	612301	1:1000
Anti-Bax(6A7) mouse monoclonal antibody	Santa Cruz	sc-23959	1:100
Anti-Phospho-Histone H2A.X (Ser139) (20E3) rabbit monoclonal antibody	Cell Signaling	9718	1:1000
Anti-DNA mouse monoclonal antibody	Millipore Sigma	CBL186	1:100
Anti-TFAM rabbit monoclonal antibody	Cell Signaling	8076S	1:100
Anti-p16 (E6H4) mouse monoclonal antibody	Roche	705-4713	1:5
Anti p21 Waf1 Cip1 (12D1) rabbit monoclonal antibody	Cell Signaling	2947S	1:1000
Anti-Ki67 rabbit polyclonal antibody	Abcam	ab15580	1:1000
Anti-Bax (D3R2M) rabbit monoclonal antibody	Cell Signaling	14796	1:100
Anti-Cleaved Caspase-3 (Asp175) Antibody	Cell Signaling	9661	1:50
Secondary antibodies	Sourco	Product number	Concentration
Goat anti-Rabbit IgG (H+L), Superclonal™ Recombinant Secondary Antibody, Alexa Fluor 647	Thermo Fisher Scientific	A-27040	1:1000
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Thermo Fisher Scientific	A-11008	1:1000
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 594	Thermo Fisher Scientific	A-11012	1:1000
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594	Thermo Fisher Scientific	A-11032	1:1000
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Thermo Fisher Scientific	A-21235	1:1000
Goat anti-Mouse IgG (H+L), Superclonal™ Recombinant	Thermo Fisher Scientific	A-28175	1:1000

Secondary Antibody, Alexa Fluor		
488		

Table 2: – Antibodies used for Western blotting.

Primary antibodies	Source	Catalog number	Concentration
Anti-cytochrome c (D18C7)	Cell Signaling	11940S	1:1000
rabbit monoclonal antibody			
Anti-UQCR2 rabbit monoclonal	Abcam	ab103616	1:1000
antibody			
Anti-Cleaved Caspase 3 (D175	Cell Signaling	9664S	1:500
hAIE) rabbit monoclonal			
	A I	- 1,0000	4.40000
Anti-p-actin mouse monocional	Abcam	ab8226	1:10000
		00700	1.000
Anti-TFAM rabbit monocional	Cell Signaling	80765	1:200
Anti Bak (D4E4) rabbit		12105	1.1000
monoclonal antibody		12105	1.1000
Anti-Bax (D2F11) rabbit	Cell Signaling	5023	1.1000
monoclonal antibody	Con Olgrianing	0020	1.1000
Anti-Bax (6A7) mouse	Santa Cruz	sc-23959	1:1000
monoclonal antibody			
Anti-B-Tubulin rabbit polyclonal	Cell Signaling	2146S	1:10000
antibody			
Anti-Lamin B1 rabbit polyclonal	Abcam	ab16048	1:1000
antibody			
Anti-HMGB1 rabbit monoclonal	Cell Signaling	6893S	1:1000
Anti-NDUFB8 mouse	Abcam	ab110242	1:1000
monoclonal antibody			
Anti-GAPDH rabbit monoclonal	Cell Signaling	5174S	1:1000
antibody			
Anti-cGAS (D1D3G) rabbit	Cell Signaling	15102	1:1000
monoclonal antibody			
Anti-STING (D2P2F) rabbit	Cell Signaling	13647S	1:1000
monocional antibody		07000	4.500
Anti-APAF1 rabbit monocional	Cell Signaling	87235	1:500
antibody			
Secondary antibodies	Source	Catalog number	Concentration
Goat Anti-Rabbit HRP	Sigma Aldrich	A0545	1.5000
Conjugated		///////////////////////////////////////	1.0000
Goat Anti-Mouse HRP	Sigma Aldrich	A2554	1:5000
Conjugated			

Human qPCR Primer Assay	Source	Product number
CDKN1a (p21)	IDT	Hs.PT.58.38492863.g
CDKN2a (p16) (Fig. 3e, Supp 3)	IDT	Hs.PT.58.40743463.g
CDKN2b (Supp. 3)	IDT	Hs.PT.58.4919581
CX3CL1 (Supp. 2f)	IDT	Hs.PT.58.19601997
IFN-α	IDT	Hs.PT.58.39481063.g
IFN-β	IDT	Hs.PT.58.46311748.g
IL-1β (Supp. 2e, Supp. 3)	IDT	Hs.PT.58.1518186
IL-1α	IDT	Hs.PT.58.40913627
IL-6	IDT	Hs.PT.58.40226675
IL-8	IDT	Hs.PT.58.39926886.g
MCP1 (CCL2) (Supp. 3)	IDT	Hs.PT.58.45467977
RSP16	IDT	Hs.PT.58.366374
Mice qPCR Primer Assay	Source	Product number
Bax	IDT	Mm.PT.58.14012210
Ccl2	IDT	Mm.PT.58.42151692
Cdkn1a (p21)	IDT	Mm.PT.58.5884610
Cdkn2a (p16)	IDT	Mm.PT.58.42804808
Col3a1	IDT	Mm.PT.58.13848686
Cx3cl1	IDT	Mm.PT.58.8767901
Cxcl1	IDT	Mm.PT.58.42076891
Cxcl12	IDT	Mm.PT.58.12038563
Cxcl14	IDT	Mm.PT.58.21980826
lfi44	IDT	Mm.PT.58.12162024
ΙΙ1-α	IDT	Mm.PT.58.32778767
ΙΙ1-β	IDT	Mm.PT.58.41616450
II-6	IDT	Mm.PT.58.13354106
7	IDT	Mm.PT.58.10325839
Inhibin-a	IDT	Mm.PT.58.11832629
Mmp13	IDT	Mm.PT.58.42286812
Mmp2	IDT	Mm.PT.58.9606100
Mmp3	IDT	Mm.PT.58.9719290
Oas1b	IDT	Mm.PT.56a.10289138.g
Oasl2	IDT	Mm.PT.58.17167264

Table 3: - qPCR Primer assays used.

Gene name	Forward and reverse PCR primer		
	sequences		
	CATCTGGTTCCTACTTCAGGG		
пімп-доор	CCGTGAGTGGTTAATAGGGTG		
	AATCTACCATCCTCCGTGAAACC		
тімт-Бюор	TCAGTTTAGCTACCCCCAAGTTTAA		
	ATGCTCCCCGGGCTGTAT		
mActind	CATAGGAGTCCTTCTGACCCATTC		
mCdkn2a	GAACTCTTTCGGTCGTACCC		
mcuknza	CGAATCTGCACCGTAGTTGA		
mCycl1E	GTCCTTAACCTAGGCATCTTCG		
IIICXCI15	TCTGTTGCAGTAAATGGTCTCG		
	TGATGCACTTGCAGAAAACA		
oliiti	ACCAGAGGAAATTTTCAATAGGC		
m Ctat1	CGCGCATGCAACTGGCATATAACT		
mStati	ATGCTTCCGTTCCCACGTAGACTT		
	TTCCCAGCAGCACAGAAAC		
mint3	AAATTCCAGGTGAAATGGCA		
	CTGATTACAAAAGAAGACATGACAGAC		
miti44	AGGCAAAACCAAAGACTCCA		
	CTACCAAACTGGATATAATCAGGA		
mil6	CCAGGTAGCTATGGTACTCCAGAA		
	AGGAGAGCCGGGTGACAGTA		
milia	TCAGAATCTTCCCGTTGCTTG		
mll 1h	CCAAAAGATGAAGGGCTGCT		
mit-10	TCATCAGGACAGCCCAGGTC		
	CAATGAGCTGCGCTGTCAGT		
IIICAGET	TTGAGGTGAATCCCAGCCAT		
mMMD2	TGGAGCTGATGCATAAGCCC		
	TGAAGCCACCAACATCAGGA		
mIENIA	GGACTTTGGATTCCCGCAGGAGAAG		
	GCTGCATCAGACAGCCTTGCAGGTC		
mOAS1	GCCTGATCCCAGAATCTATGC		
IIIOAST	GAGCAACTCTAGGGCGTACTG		
mInhibinA	GATCATCACCTTTGCCGAGT		
ΠΠΠΙΒΙΠΑ	TGGTCCTGGTTCTGTTAGCC		
m18c	GTAACCCGTTGAACCCCATT		
11105	CCATCCAATCGGTAGTAGCG		
mCol2	GTCTGTGCTGACCCCAAGAAG		
IIICCIZ	TGGTTCCGATCCAGGTTTTTA		
mC cl3	TCCCAGCCAGGTGTCATTTT		
IIICCIS	TTGGAGTCAGCGCAGATCTG		
mC al5	GCCCACGTCAAGGAGTATTTCT		
	ACAAACACGACTGCAAGATTGG		
	CCCTGGGAAGCTGTTATCTTCA		
IIICCI/	CTGATGGGCTTCAGCACAGA		
mCof1	ATTGCCAAGGAGGTGTCAGAA		
1110511	GGACCTTCAGGTGTCCATTCC		

 Table 4: – Sybr Green primers used for qPCR.

	CCGAAGTCATAGCCACACTCAA
mCxcl1	CAAGGGAGCTTCAGGGTCAAG
m C vol 2	TCAAGGGCGGTCAAAAAGTT
IIICXCIZ	CAGTTAGCCTTGCCTTTGTTCA
mCycl15	TCCATGGGTGAAGGCTACTGT
mexcits	TTCATTGCCGGTGGAAATTC
real line site 4	TCCTTCGGCCTTCTTCTTGTT
пппарт	AGGATGCTCGCCTTTGATTTT
mloom1	GTGGCGGGAAAGTTCCTGTT
IIICaIIII	GTCCAGCCGAGGACCATACA
mlafhaQ	GCCCCCTGGAACATCTCTACT
migiopz	GTTGTACCGGCCATGCTTGT
mlathr 4	GCAACTTCCACCCCAAACAGT
migiop4	CCTGTCTTCCGATCCACACA
mll10	AAGAGACCATCCAACCCAGATC
IIIIIIa	CCTGACGAGCTTCATCAGTTTG
	TCAGGCAGGCAGTATCACTCA
diim	CACGGGAAAGACACAGGTAGCT
	ACCACGGCCTTCCCTACTTC
diliti	TTGGGAGTGGTATCCTCTGTGA
	GGACTCTCCACCGCAATGAA
minza	GCACTGAGCTTCCCAGATCAC
and to be a	CAGGAAGACACTGCACTTTGA
minnba	TTCAGGAAGAGCCACACTTCT
an Marson O	TTGACGATGATGAACGATGGA
mivimp3	GAGCAGCAACCAGGAATAGGTT
m Mm a O	TGAGTCCGGCAGACAATCCT
minimp9	CCCTGGATCTCAGCAATAGCA
mMmp12	GTGCCCGATGTACAGCATCTT
	GGTACCGCTTCATCCATCTTG
	TGAGGAAGACCTTGTGTTTGCA
minimp 13	GCAAGAGTCGCAGGATGGTAGT
m Nifich 1	GGCTTTGCAAACCTGGGAAT
	TCCGTGCTTCCAGTGTTTCA
- Panna	CATCTCAGGTGTGTCGAACCA
пгарра	TGCAAGGATACCAAGCATGCT
mSorpino1	GGACACCCTCAGCATGTTCA
mSerpiner	CGGAGAGGTGCACATCTTTCT
meaninh?	TTCCGCATACTGGAAACATCAG
mSerpinoz	GGATGCGTCCTCAATCTCATC
mTaf	GTTCTGCAAAGGGAGAGTGG
	GCACCTCAGGGAAGAGTCTG
mAath	AATCGTGCGTGACATCAAAGAG
mActo	GCCATCTCCTGCTCGAAGTC
mUnrt	CGTGATTAGCGATGATGAACCA
	TCCAAATCCTCGGCATAATGA
mTuba1	GGTTCCCAAAGATGTCAATGCT
	CAAACTGGATGGTACGCTTGGT