Supplementary information for

2	Calpeptin is a potent cathepsin inhibitor and drug candidate for SARS-CoV-2 infections
3	Patrick YA Reinke ¹ [†] , Edmarcia Elisa de Souza ² [†] , Sebastian Günther ¹ [†] , Sven Falke ¹ , Julia
4	Lieske ¹ , Wiebke Ewert ¹ , Jure Loboda ^{3,4} , Alexander Herrmann ⁵ , Aida Rahmani Mashhour ¹ ,
5	Katarina Karničar ^{3,6} , Aleksandra Usenik ^{3,6} , Nataša Lindič ³ , Andreja Sekirnik ³ , Viviane Fongaro
6	Botosso ⁷ , Gláucia Maria Machado Santelli ⁸ , Josana Kapronezai ⁷ , Marcelo Valdemir de Araújo ^{7,9} ,
7	Taiana Tainá Silva-Pereira ^{9,10} , Antônio Francisco de Souza Filho ⁹ , Mariana Silva Tavares ⁹ ,
8	Lizdany Flórez-Álvarez ² , Danielle Bruna Leal de Oliveira ⁹ , Edison Luiz Durigon ⁹ , Paula Roberta
9	Giaretta ^{11,} Marcos Bryan Heinemann ¹⁰ , Maurice Hauser ¹² , Brandon Seychell ¹³ , Hendrik Böhler ¹³ ,
10	Wioletta Rut ¹⁴ , Marcin Drag ¹⁴ , Tobias Beck ^{13,15} , Russell Cox ¹² , Henry N Chapman ^{1,15,16} ,
11	Christian Betzel ^{15,17} , Wolfgang Brehm ¹ , Winfried Hinrichs ¹⁸ , Gregor Ebert ^{5,19} , Sharissa L
12	Latham ^{20, 21} , Ana Marcia de Sá Guimarães ⁹ , Dusan Turk ^{3,6} *, Carsten Wrenger ² *, Alke Meents ¹ *
13	*Corresponding author. Email: dusan.turk@ijs.si, cwrenger@icb.usp.br, alke.meents@desy.de
14	
15	This PDF file includes:
16	
17	Supplementary Text
18	Figs. S1 to S12, Tables S1
19	
20	Supplementary Text
21	Supplementary Note 1: Detailed description of the X-ray crystal structures of M ^{pro} inhibitor
22	complexes
23	The structures of Calpeptin and GC-376 bound to M ^{pro} were previously described ¹⁻⁴ . Calpeptin
24	binds covalently to Cys ¹⁴⁵ of M ^{pro} (PDB: 7AKU) ¹ with its aldehyde group, forming a
25	thiohemiacetal with an interatomic S-O distance of 1.8 Å (Figure S2F) ^{5,6} . This structure was
26	solved in a monoclinic space group, where Calpeptin occupies the S1 to S3 pockets. Overall, the

28 substrate ⁷ The backbone carbonyl of His ¹⁶⁴ forms a hydrogen bond to the pentidomi	
20 substate . The succone carbony of this Torms a hydrogen bond to the peptidonn	imetic
29 Calpeptin amide-nitrogen of the norleucine residue-analog (Figure S12). The termina	al ester
30 carbonyl forms a hydrogen bond with the backbone nitrogen of Glu ¹⁶⁶ . The norleucin	ne side chain
exhibits van der Waals contacts with the backbone of Phe^{140} , Leu^{141} , and Asn^{142} . The	e terminal
32 Cbz-group is oriented to the S3 pocket between the side chains of Glu^{166} and Gln^{189}	and exhibits
33 hydrophobic interactions with norleucine (Figure S2F). The structure of GC-376 ald	ehyde bound
to M ^{pro} solved in a monoclinic space group (PDB: 7QKA) resembles this conformati	on.
35 Substitution of norleucine by 2-oxopyrrolidine leads to additional hydrogen bonds to	His ¹⁶³ and
36 Glu ¹⁶⁶ (Figure S2H). In addition to the monoclinic form with one monomer per asym	metric unit,
37 M ^{pro} also crystallizes in an orthorhombic space group containing two monomers per	asymmetric
38 unit ⁸ and the two monomers within the dimer exhibit structural variations. The struct	ture of
39 Calpeptin derived from S-Calpeptin bound to M ^{pro} was solved in an orthorhombic sp	bace group
40 (PDB 7Z3U) and shows more flexibility with respect to the conformation of the Cbz	- group
41 (Figure S2D). This group is oriented in the S4 pocket in one monomer, while it exhibit	bits an
42 alternative conformation oriented to the S3 or S4 pocket in the other monomer, a sim	nilar
43 flexibility as observed for GC-376 analogs ⁹ . This is linked to an alternative orientation	on of the loop
44 containing Gln^{189} , which is shifted by about 2 Å, further opening this pocket. In addi	tion to the
45 previously described interactions of Calpeptin, the Cbz-group interactions via hydroj	phobic
46 interactions with the backbone of Thr^{190} and Gln^{192} are evident in the S4 pocket. In the	he- structure
47 co-crystallized with S-Calpeptin, the monomers exhibit a NOS-bridge, which is an o	oxygen-
48 mediated link between Cys^{22} and Lys^{61} (molecule B) and a SONOS-bridge, which is	a three-way
49 covalent bond between Cys^{22} , Cys^{44} and Lys^{61} (molecule A). These covalent links in	M ^{pro} were
50 previously observed ¹⁰ .	

52 Supplementary Note 2: Detailed description of the X-ray crystal structures of CatK/V

53 Calpeptin complex

54	The binding mode of Calpeptin to CatK (PDB: 8C3D) and CatV (PDB: 7QGW) is similar to that
55	of CatL, which can be explained by the high conservation of the active site cleft (Figure S12).
56	Small differences occur in the S3-pocket in the vicinity of the terminal Cbz-group of Calpeptin.
57	While in CatL Leu ⁶⁹ and Tyr ⁷² form a hydrophobic pocket in which the phenyl ring is located,
58	this hydrophobic pocket is less voluminous in CatK because it is constrained by Tyr ⁶⁷ (in CatL
59	Leu ⁶⁹), which is oriented toward the Cbz-group, resulting in a restriction of the pocket that forces
60	the phenyl ring towards Asp ⁶¹ (in CatL Glu ⁶³). CatV Phe ⁶⁹ and Arg ⁷² (in CatL Leu ⁶⁹ and Tyr ⁷²)
61	are directed towards this pocket, leading to a restriction of the pocket and forcing the phenyl ring
62	into a slightly different orientation towards Gln ⁶³ (in CatL Glu ⁶³).
63	
64	Supplementary Note 3: Analysis of TMPRSS2 expression by Western blot
65	TMPRSS2 is synthesized as a single-chain zymogen and cleaves SARS-CoV-2 S protein
66	extracellularly. To determinate the expression status of endogenous TMPRSS2 during growth
67	phase we treated LC-HK2 and VERO-CCL81 cells with trypsin to remove surface proteins.
68	TMPRSS2 was barely detectable as a single band in VERO-CCL81 and detectable in LC-HK2 as
69	~ 54-kDa band, representing the zymogen (Figure S4). We detected two additional prominent
70	bands with about ~64 kDa and ~110 kDa in human LC-HK2 probably generated by glycosylation

events under reducing conditions in human TMPRSS2, as previously reported (Figure S4)¹¹.

72

73 Supplementary Note 4: Calpeptin cell experiments

To test whether the viral particles are entrapped in endosomes after S-Calpeptin treatment, the
 distribution of S-protein containing vesicle size in infected LC-HK2 cells was analyzed by

76 fluorescence microscopy. This analysis did not reveal significant differences between S-Calpeptin

treated cells and the control group (Figure S5).

78

79 Supplementary Note 5: Calpeptin toxicity experiments in hamsters

At the time of this study, we did not find any study that used Calpeptin in hamsters. Therefore, 80 81 prior to the antiviral experiment, we performed a small study to investigate if different doses of Calpeptin could lead to acute toxicity in hamsters. Animals were subjected to daily subcutaneous 82 as described in the methods section. The route of administration and doses were chosen based on 83 literature reports of the use of Calpeptin in mouse studies^{12–18}. Clinical signs and weight were 84 followed until day 6, when the animals were euthanized, necropsied, and organs were collected 85 for histopathology analysis. Treated animals did not display acute toxicity-related clinical signs or 86 weight loss during the experiment (Figure S8A and B) nor any noteworthy histopathological 87 lesion in brain, liver, pancreas, gastro-intestinal tract, kidney, lungs, spleen, or trachea. However, 88 a complete blood cell count performed on day 6 showed marked leukopenia caused by 89 lymphopenia and neutropenia in animals treated with 2 mg/kg and 3 mg/kg of S-Calpeptin 90 compared to those that received only 1 mg/kg of S-Calpeptin or 1:100 DMSO (Figure S8C-F). 91 For this reason, we opted to test the dose of 1 mg/kg of S-Calpeptin in the anti-viral animal 92 experiment (Figure S8A and B). 93

94

95 Supplementary Note 6: Histopathological lesions in hamsters infected with SARS-CoV-2

Corroborating previous studies^{19–22}, typical histopathological lesions were seen in hamsters
inoculated with SARS-CoV-2 (G1 and G2). Findings in the lungs included bronchointerstitial
pneumonia, suppurative bronchitis, endothelialitis, necrosis of epithelial cells, and hyperplasia of
bronchial and alveolar type II epithelial cells (Figure S6). Occasional atypical syncytial cells were
seen. Areas of interstitial pulmonary fibrosis and/or inflammation were occasionally detected on

101	both infected groups. On day 7 p.i., there were higher tissue repair scores in infected animals
102	(Figure S6F), coinciding with a lower viral load in respiratory tissues and beginning of the
103	recovery phase (Figure 5). Lesions in the trachea of infected hamsters consisted of loss of cilia,
104	degeneration and/or necrosis of epithelial cells and inflammatory infiltrate in the lumen and/or in
105	the lamina propria. Histopathology analysis showed no statistically significant differences in
106	lesion scores between SARS-CoV-2 infected animals that were treated with S-Calpeptin and to
107	those that were not (Figure S7). Lung vascular lesions are a hallmark of COVID-19 in hamsters ²¹ .
108	Although S-Calpeptin-treated animals showed lower scores for vascular damage compared to the
109	untreated group on days 5 and 7 p.i., these results were also not statistically significant (Figure
110	S7). As expected, the lungs and trachea of hamsters from control groups (G3 and G4) were
111	unremarkable.

113 **References**

- Günther, S. *et al.* X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease.
 Science 372, 642–646 (2021).
- Vuong, W. *et al.* Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus
 replication. *Nat Commun* 11, 4282 (2020).
- Fu, L. *et al.* Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. *Nat Commun* 11, 4417 (2020).
- 4. Ma, C. *et al.* Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by
 targeting the viral main protease. *Cell Res* **30**, 678–692 (2020).
- 122 5. Ramos-Guzmán, C. A., Ruiz-Pernía, J. J. & Tuñón, I. Multiscale Simulations of SARS-CoV-2 3CL Protease
- Inhibition with Aldehyde Derivatives. Role of Protein and Inhibitor Conformational Changes in the Reaction
 Mechanism. *ACS Catal.* 11, 4157–4168 (2021).
- Kuchitsu, K., Fukuyama, T., Tamaru, Y., Yoshida, Z. & Tabushi, I. Carbon-sulfur bond distances and sulfur
 valence angles in 5-thiabicyclo[2.1.1]hexane and 7-thiabicyclo[2.2.1]heptane as determined by gas electron
 diffraction. *J. Am. Chem. Soc.* 93, 2799–2800 (1971).
- Lee, J. *et al.* Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with
 physiological C-terminal autoprocessing site. *Nat Commun* 11, 5877 (2020).
- 130 8. Zhang, L. *et al.* Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α131 ketoamide inhibitors. *Science* 368, 409–412 (2020).
- 9. Sacco, M. D. *et al.* Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing
 dual inhibitors against Mpro and cathepsin L. *Sci Adv* 6, eabe0751 (2020).
- 134 10. Rabe von Pappenheim, F. *et al.* Widespread occurrence of covalent lysine–cysteine redox switches in proteins.
 135 Nat Chem Biol 1–8 (2022) doi:10.1038/s41589-021-00966-5.
- 136 11. Zhang, Y. et al. Transmembrane serine protease TMPRSS2 implicated in SARS-CoV-2 infection is
- 137 autoactivated intracellularly and requires N-glycosylation for regulation. *J Biol Chem* **298**, 102643 (2022).
- 12. Bandaru, S. *et al.* Targeting Filamin A Reduces Macrophage Activity and Atherosclerosis. *Circulation* 140, 67–
 79 (2019).
- 13. Song, L.-J. *et al.* Inhibition of angiotensin II and calpain attenuates pleural fibrosis. *Pulmonary Pharmacology & Therapeutics* 48, 46–52 (2018).

- 14. Tabata, C., Tabata, R. & Nakano, T. The calpain inhibitor calpeptin prevents bleomycin-induced pulmonary
- 143 fibrosis in mice. *Clinical and Experimental Immunology* **162**, 560–567 (2010).
- 144 15. Yoshida, M. *et al.* Calpain inhibitor calpeptin suppresses pancreatic cancer by disrupting cancer-stromal
 145 interactions in a mouse xenograft model. *Cancer Sci* 107, 1443–1452 (2016).
- 146 16. Mani, S. K. et al. Calpain inhibition preserves myocardial structure and function following myocardial
- 147 infarction. American Journal of Physiology-Heart and Circulatory Physiology 297, H1744–H1751 (2009).
- 148 17. Samantaray, S. et al. Inhibition of Calpain Activation Protects MPTP-Induced Nigral and Spinal Cord
- Neurodegeneration, Reduces Inflammation, and Improves Gait Dynamics in Mice. *Mol Neurobiol* 52, 1054–
 1066 (2015).
- 151 18. Zuo, J. et al. Calpeptin attenuates cigarette smoke-induced pulmonary inflammation via suppressing
- 152 calpain/IκBα signaling in mice and BEAS-2B cells. *Pathol Res Pract* **214**, 1199–1209 (2018).
- 153 19. Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure
- 154 development. *Proc Natl Acad Sci U S A* **117**, 16587–16595 (2020).
- 155 20. Chan, J. F.-W. et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019
- 156 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility.
- 157 *Clin Infect Dis* **71**, 2428–2446 (2020).
- 158 21. Gruber, A. D. et al. Standardization of Reporting Criteria for Lung Pathology in SARS-CoV-2-infected
- 159 Hamsters: What Matters? Am J Respir Cell Mol Biol 63, 856–859 (2020).
- 160 22. Sia, S. F. *et al.* Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. *Nature* **583**, 834–838 (2020).

163 **Figure S1.**

Activation of the prodrugs S-Calpeptin and GC-376. (a) S-Calpeptin and (b) GC-376 contain a sulfonated aldehyde, which under physiological conditions slowly converts into hydrogensulfite and the aldehyde, thereby unmasking the warhead. The aldehyde warhead binds covalently to catalytic cysteines of cathepsins and M^{pro}.

170 **Figure S2.**

171	Comparison of inhibitor binding to the active sites of CatL and M ^{pro} . Closeup view of the
172	active site (green) of CatL (a, grey surface) and M ^{pro} (b, blue surface). M ^{pro} residues Ser ⁴⁶ and
173	Asn ¹⁴² are shown as a transparent area (white dashes, dark green area) to reveal the complete
174	extend of the binding site underneath. The central catalytic cysteine is shown in stick
175	representation. Calpeptin (orange sticks) bound to CatL (c) and M ^{pro} (d). Important substrate
176	binding pockets are colored and labelled S1 to S4. Calpeptin derived from S-Calpeptin (teal
177	sticks) bound to CatL (e) and M ^{pro} (f), and GC-376 aldehyde derived from GC-376 (purple sticks)
178	bound to CatL (g) and M ^{pro} (h) in similar representation.

Figure S3.

182	Inhibition of human cathepsin and SARS-CoV-2 Mpro by Calpeptin and Calpeptin-like
183	compounds (Ki determination). (a-c) Morrison inhibition plots of residual cathepsin activity
184	against different inhibitor concentrations (standard errors are shown dotted lines). (d-h) Mixed-
185	model inhibition plots of either cathepsin or M ^{pro} reaction velocities (RFU/seconds) measured at
186	several substrate concentrations for different inhibitor concentrations (standard errors are shown
187	as bars).

190 Figure S4.

Analysis of TMPRSS2 expression by Western blot. (a) LC-HK2 and VERO-CCL81 cells were lysed and subjected to SDS–PAGE following Western blot analysis under reducing conditions. TMPRSS2 was expressed at low levels in VERO-CCL81 and clearly expressed in LC-HK2 detectable as ~ 54-kDa band corresponding to the proenzyme form (zymogen) (*) and two additional major bands migrating at ~ 64-kDa and ~ 110-130 kDa (arrows). As loading control α tubulin was used. (b-c) Uncropped images of source Western blots shown in (a). Wells 1 to 5 in (bc) are not included in the manuscript experiments.

200 Figure S5.

Viral S-protein immunofluorescence microscopy. Representative image from 3D fluorescence microscopy of LC-HK2 cells infected with SARS-CoV-2 at a multiplicity of infection (M.O.I) of 0.05 (a) or treated with S-Calpeptin (b). Co-staining of S-protein (green), CatL (red) and DNA by Hoechst (blue). (c) Vesicle size analysis of various incubation timepoints after SARS-CoV-2 infections in the absence (-) or presence (+) of S-Calpeptin. Images were processed using ZEN (Blue) 2.6 software (ZEISS). Data are shown in diamond box plots (quartiles around median as diamond box, outer quartiles as whiskers).

211 **Figure S6.**

209

Study design and weight of Golden Syrian hamsters infected with SARS-CoV-2 and treated 212 with S-Calpeptin. (a) Study design. The experiment lasted for seven days, animals were infected 213 with SARS-CoV-2 or non-infected (Dulbecco's Modified Eagle Medium with 2.5% fetal bovine 214 serum) intranasally on day zero and treated daily for seven days with 1 mg/kg of S-Calpeptin or 215 vehicle (DMSO) subcutaneously. Subgroups of SARS-CoV-2 infected animals (n=5, treated or 216 not) were euthanized on days 3, 5 and 7 post-infection (p.i.). Non-infected animals (treated or not) 217 218 were euthanized on day 7 p.i. (b) Overview over subgroups of all animals. G1: SARS-CoV-2-219 infected, treated with S-Calpeptin; G2: SARS-CoV-2-infected, injected with DMSO; G3: Noninfected, treated with S-Calpeptin; G4: Non-infected, injected with DMSO. (c) Mean percentual 220 221 weight change from day of infection of all four experimental groups. Error bars represent standard 222 deviation. Weight loss was significantly different between G1/G2 and G3/G4 (p≤0.05). Data from individual hamsters (smaller circles) are depicted with offset. 223

Page 15

Figure S7.

226	Representative histopathology findings in the lungs of Golden Syrian hamsters, hematoxylin
227	and eosin stain. (a) Uninfected control with normal alveolar septa. (b) Bronchus from an
228	uninfected control. (c) Normal endothelial cells in an uninfected control. (d) Suppurative
229	bronchitis in a SARS-CoV-2-infected hamster treated with 1:100 DMSO, day 3 post-infection
230	(p.i.). (e) Necrosis of the bronchial epithelium and suppurative inflammation in a SARS-CoV-2-
231	infected hamster treated with 1:100 DMSO, day 3 p.i. (f) Endothelialitis with hypertrophied
232	endothelial cells and subendothelial inflammatory infiltrate in a medium sized blood vessel of a
233	SARS-CoV-2-infected hamster treated with 1 mg/kg of Calpeptin, day 5 p.i. (g) Severe and
234	diffuse bronchointerstitial pneumonia effacing the pulmonary parenchyma of a SARS-CoV-2-
235	infected hamster treated with 1 mg/kg of Calpeptin, day 5 p.i. (h) The bronchial epithelium is

- 236 hyperplastic (arrows). (i) Alveolar type II epithelial cells are hyperplastic and line the alveoli with
- 237 occasional atypical syncytial cells (arrow).

239 **Figure S8.**

240 Histopathological analysis of tissue from SARS-CoV-2 infected and treated hamsters.

- Analysis for (a) trachea, (b) bronchi damage, (c) lung parenchyma damage, (d) submucosal
- 242 damage, (e) vascular damage, and (f) tissue repair. For (b-f) score is sum of analysis of 5 lung
- 243 lobes per animal. Values are expressed in median, interquartiles and range.

245 **Figure S9.**

Synthesis of S-Calpeptin from Calpeptin. (a) Reaction scheme to create S-Calpeptin, the
bisulfite adduct of Calpeptin. (b) UV spectrum of product. (c) ES- and (d) ES+ spectrum of
product. Calculated m/z for C₂₀H₃₁N₄O₇S [M-Na]⁻ is 443.1857 Da, found: 443.1887 Da.

252 **Figure S10.**

- 253 **NMR analysis of S-Calpeptin.** (a) ¹H NMR of bisulfite adduct S-Calpeptin recorded at 400 MHz
- in DMSO-d₆. (b) ¹³C NMR of bisulfite adduct S-Calpeptin recorded at 100 MHz in DMSO-d₆.

257 **Figure S11.**

S-Calpeptin toxicity experiment. (a) Study design for assessing toxicity of increasing S-258 Calpeptin doses. Each group included 3 Golden Syrian hamsters. Hamsters received a daily 259 subcutaneous dose of S-Calpeptin (1 mg/kg, 2 mg/kg, or 3 mg/kg of body weight) suspended in 260 1:100 DMSO or a solution of 1:100 DMSO for seven consecutive days, starting at day zero. (b) 261 Mean percentual weight change from day of infection of all four experimental groups. Data from 262 individual hamsters (smaller circles) are depicted with an offset. Blood was analyzed on last day 263 of experiment for cell count of leukocytes (c), neutrophils (d), lymphocytes (e), and monocytes 264 (f). Median and range for all four groups is indicated. 265

267 **Figure S12.**

268 Structure cards, with detailed information about inhibitors derived from X-ray structures.

269

Page 27

- -0

- _000

- ____

308 **Table S1.**

309 Score system for histopathological analysis. Parameters and scores for semiquantitative

310 histopathological evaluation of lungs from hamsters experimentally infected with SARS-CoV-2.

Parameter	Scores		
	Bronchi	Pulmonary parenchyma	
Epithelial damage	0 - normal	0 - normal	
	1 - degeneration (cuboidal cells)	1 - degeneration (cuboidal cells) and/or	
	2 - epithelial detachment	peribronchiolar inflammatory infiltrate	
	3 - necrosis and sloughing	2 - epithelial detachment	
		3 - necrosis and sloughing and/or bronchiolar	
		inflammatory infiltrate	
Submucosal	0 - normal		
damage	1 - edema, vascular ectasia, or mild inflammatory infiltrate affecting 10-33% of the examined area		
	2 - moderate inflammatory infiltrate affecting 34-66% of the examined area		
	3 - marked inflammatory infiltrate affect	ing >67% of the examined area	
Vascular damage	0 - normal		
	1 - perivascular edema and/or endothelial hypertrophy		
	2 - mild perivascular inflammatory infiltrate and/or endothelialitis		
	3 - inflammatory infiltrate in the vascula	r wall and/or below the endothelium (vasculitis)	
Tissue repair	0 - normal		
	1 - repair with pre-ciliated cells and/or h	yperplasia of non-ciliated epithelium	
	2 - hyperplasia of alveolar type II epithel	ial cells with or without atypia	
	3 – hyperplasia of goblet cells, and/or pr	esence of granulation tissue and/or fibrosis	